376 research outputs found

    Optimizing Memory Efficiency for Convolution Kernels on Kepler GPUs

    Full text link
    Convolution is a fundamental operation in many applications, such as computer vision, natural language processing, image processing, etc. Recent successes of convolutional neural networks in various deep learning applications put even higher demand on fast convolution. The high computation throughput and memory bandwidth of graphics processing units (GPUs) make GPUs a natural choice for accelerating convolution operations. However, maximally exploiting the available memory bandwidth of GPUs for convolution is a challenging task. This paper introduces a general model to address the mismatch between the memory bank width of GPUs and computation data width of threads. Based on this model, we develop two convolution kernels, one for the general case and the other for a special case with one input channel. By carefully optimizing memory access patterns and computation patterns, we design a communication-optimized kernel for the special case and a communication-reduced kernel for the general case. Experimental data based on implementations on Kepler GPUs show that our kernels achieve 5.16X and 35.5% average performance improvement over the latest cuDNN library, for the special case and the general case, respectively

    Neurostream: Scalable and Energy Efficient Deep Learning with Smart Memory Cubes

    Get PDF
    open4siHigh-performance computing systems are moving towards 2.5D and 3D memory hierarchies, based on High Bandwidth Memory (HBM) and Hybrid Memory Cube (HMC) to mitigate the main memory bottlenecks. This trend is also creating new opportunities to revisit near-memory computation. In this paper, we propose a flexible processor-in-memory (PIM) solution for scalable and energy-efficient execution of deep convolutional networks (ConvNets), one of the fastest-growing workloads for servers and high-end embedded systems. Our co-design approach consists of a network of Smart Memory Cubes (modular extensions to the standard HMC) each augmented with a many-core PIM platform called NeuroCluster. NeuroClusters have a modular design based on NeuroStream coprocessors (for Convolution-intensive computations) and general-purpose RISC-V cores. In addition, a DRAM-friendly tiling mechanism and a scalable computation paradigm are presented to efficiently harness this computational capability with a very low programming effort. NeuroCluster occupies only 8 percent of the total logic-base (LoB) die area in a standard HMC and achieves an average performance of 240 GFLOPS for complete execution of full-featured state-of-the-art (SoA) ConvNets within a power budget of 2.5 W. Overall 11 W is consumed in a single SMC device, with 22.5 GFLOPS/W energy-efficiency which is 3.5X better than the best GPU implementations in similar technologies. The minor increase in system-level power and the negligible area increase make our PIM system a cost-effective and energy efficient solution, easily scalable to 955 GFLOPS with a small network of just four SMCs.openAzarkhish, Erfan*; Rossi, Davide; Loi, Igor; Benini, LucaAzarkhish, Erfan*; Rossi, Davide; Loi, Igor; Benini, Luc
    corecore