393 research outputs found

    Scalable Breadth-First Search on a GPU Cluster

    Full text link
    On a GPU cluster, the ratio of high computing power to communication bandwidth makes scaling breadth-first search (BFS) on a scale-free graph extremely challenging. By separating high and low out-degree vertices, we present an implementation with scalable computation and a model for scalable communication for BFS and direction-optimized BFS. Our communication model uses global reduction for high-degree vertices, and point-to-point transmission for low-degree vertices. Leveraging the characteristics of degree separation, we reduce the graph size to one third of the conventional edge list representation. With several other optimizations, we observe linear weak scaling as we increase the number of GPUs, and achieve 259.8 GTEPS on a scale-33 Graph500 RMAT graph with 124 GPUs on the latest CORAL early access system.Comment: 12 pages, 13 figures. To appear at IPDPS 201

    Distributed-Memory Breadth-First Search on Massive Graphs

    Full text link
    This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.Comment: arXiv admin note: text overlap with arXiv:1104.451

    Multi-GPU Graph Analytics

    Full text link
    We present a single-node, multi-GPU programmable graph processing library that allows programmers to easily extend single-GPU graph algorithms to achieve scalable performance on large graphs with billions of edges. Directly using the single-GPU implementations, our design only requires programmers to specify a few algorithm-dependent concerns, hiding most multi-GPU related implementation details. We analyze the theoretical and practical limits to scalability in the context of varying graph primitives and datasets. We describe several optimizations, such as direction optimizing traversal, and a just-enough memory allocation scheme, for better performance and smaller memory consumption. Compared to previous work, we achieve best-of-class performance across operations and datasets, including excellent strong and weak scalability on most primitives as we increase the number of GPUs in the system.Comment: 12 pages. Final version submitted to IPDPS 201

    Distributed Graph Neural Network Training: A Survey

    Full text link
    Graph neural networks (GNNs) are a type of deep learning models that are trained on graphs and have been successfully applied in various domains. Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs. As a remedy, distributed computing becomes a promising solution of training large-scale GNNs, since it is able to provide abundant computing resources. However, the dependency of graph structure increases the difficulty of achieving high-efficiency distributed GNN training, which suffers from the massive communication and workload imbalance. In recent years, many efforts have been made on distributed GNN training, and an array of training algorithms and systems have been proposed. Yet, there is a lack of systematic review on the optimization techniques for the distributed execution of GNN training. In this survey, we analyze three major challenges in distributed GNN training that are massive feature communication, the loss of model accuracy and workload imbalance. Then we introduce a new taxonomy for the optimization techniques in distributed GNN training that address the above challenges. The new taxonomy classifies existing techniques into four categories that are GNN data partition, GNN batch generation, GNN execution model, and GNN communication protocol. We carefully discuss the techniques in each category. In the end, we summarize existing distributed GNN systems for multi-GPUs, GPU-clusters and CPU-clusters, respectively, and give a discussion about the future direction on distributed GNN training

    Distributed Breadth-First Search with 2-D Partitioning

    Full text link

    Domain-specific Architectures for Data-intensive Applications

    Full text link
    Graphs' versatile ability to represent diverse relationships, make them effective for a wide range of applications. For instance, search engines use graph-based applications to provide high-quality search results. Medical centers use them to aid in patient diagnosis. Most recently, graphs are also being employed to support the management of viral pandemics. Looking forward, they are showing promise of being critical in unlocking several other opportunities, including combating the spread of fake content in social networks, detecting and preventing fraudulent online transactions in a timely fashion, and in ensuring collision avoidance in autonomous vehicle navigation, to name a few. Unfortunately, all these applications require more computational power than what can be provided by conventional computing systems. The key reason is that graph applications present large working sets that fail to fit in the small on-chip storage of existing computing systems, while at the same time they access data in seemingly unpredictable patterns, thus cannot draw benefit from traditional on-chip storage. In this dissertation, we set out to address the performance limitations of existing computing systems so to enable emerging graph applications like those described above. To achieve this, we identified three key strategies: 1) specializing memory architecture, 2) processing data near its storage, and 3) message coalescing in the network. Based on these strategies, this dissertation develops several solutions: OMEGA, which employs specialized on-chip storage units, with co-located specialized compute engines to accelerate the computation; MessageFusion, which coalesces messages in the interconnect; and Centaur, providing an architecture that optimizes the processing of infrequently-accessed data. Overall, these solutions provide 2x in performance improvements, with negligible hardware overheads, across a wide range of applications. Finally, we demonstrate the applicability of our strategies to other data-intensive domains, by exploring an acceleration solution for MapReduce applications, which achieves a 4x performance speedup, also with negligible area and power overheads.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163186/1/abrahad_1.pd
    corecore