2,464 research outputs found

    From Hashing to CNNs: Training BinaryWeight Networks via Hashing

    Full text link
    Deep convolutional neural networks (CNNs) have shown appealing performance on various computer vision tasks in recent years. This motivates people to deploy CNNs to realworld applications. However, most of state-of-art CNNs require large memory and computational resources, which hinders the deployment on mobile devices. Recent studies show that low-bit weight representation can reduce much storage and memory demand, and also can achieve efficient network inference. To achieve this goal, we propose a novel approach named BWNH to train Binary Weight Networks via Hashing. In this paper, we first reveal the strong connection between inner-product preserving hashing and binary weight networks, and show that training binary weight networks can be intrinsically regarded as a hashing problem. Based on this perspective, we propose an alternating optimization method to learn the hash codes instead of directly learning binary weights. Extensive experiments on CIFAR10, CIFAR100 and ImageNet demonstrate that our proposed BWNH outperforms current state-of-art by a large margin

    Optimizing the energy consumption of spiking neural networks for neuromorphic applications

    Full text link
    In the last few years, spiking neural networks have been demonstrated to perform on par with regular convolutional neural networks. Several works have proposed methods to convert a pre-trained CNN to a Spiking CNN without a significant sacrifice of performance. We demonstrate first that quantization-aware training of CNNs leads to better accuracy in SNNs. One of the benefits of converting CNNs to spiking CNNs is to leverage the sparse computation of SNNs and consequently perform equivalent computation at a lower energy consumption. Here we propose an efficient optimization strategy to train spiking networks at lower energy consumption, while maintaining similar accuracy levels. We demonstrate results on the MNIST-DVS and CIFAR-10 datasets
    • …
    corecore