4 research outputs found

    Content-Aware Reduction of Bit Flips in Phase Change Memory

    Get PDF
    The energy costs of Phase Change Memory (PCM) depends almost completely on the number of bits written per time unit. By using an encoding, we can reduce the number of bit flips when overwriting low-entropy data with low-entropy data. This is achieved by using a frequency table for bytes in classes of data to select the encoding. Using various corpora of mainly HTML files, we show that we can reduce the number of bit flips by about 0.5 bit flips per byte

    Quantum Search Algorithms for Constraint Satisfaction and Optimization Problems Using Grover\u27s Search and Quantum Walk Algorithms with Advanced Oracle Design

    Get PDF
    The field of quantum computing has emerged as a powerful tool for solving and optimizing combinatorial optimization problems. To solve many real-world problems with many variables and possible solutions for constraint satisfaction and optimization problems, the required number of qubits of scalable hardware for quantum computing is the bottleneck in the current generation of quantum computers. In this dissertation, we will demonstrate advanced, scalable building blocks for the quantum search algorithms that have been implemented in Grover\u27s search algorithm and the quantum walk algorithm. The scalable building blocks are used to reduce the required number of qubits in the design. The proposed architecture effectively scales and optimizes the number of qubits needed to solve large problems with a limited number of qubits. Thus, scaling and optimizing the number of qubits that can be accommodated in quantum algorithm design directly reflect on performance. Also, accuracy is a key performance metric related to how accurately one can measure quantum states. The search space of quantum search algorithms is traditionally created by using the Hadamard operator to create superposition. However, creating superpositions for problems that do not need all superposition states decreases the accuracy of the measured states. We present an efficient quantum circuit design that the user has control over to create the subspace superposition states for the search space as needed. Using only the subspace states as superposition states of the search space will increase the rate of correct solutions. In this dissertation, we will present the implementation of practical problems for Grover\u27s search algorithm and quantum walk algorithm in logic design, logic puzzles, and machine learning problems such as SAT, MAX-SAT, XOR-SAT, and like SAT problems in EDA, and mining frequent patterns for association rule mining
    corecore