198 research outputs found

    Analyzing drop coalescence in microfluidic devices with a deep learning generative model

    Get PDF
    Predicting drop coalescence based on process parameters is crucial for experimental design in chemical engineering. However, predictive models can suffer from the lack of training data and more importantly, the label imbalance problem. In this study, we propose the use of deep learning generative models to tackle this bottleneck by training the predictive models using generated synthetic data. A novel generative model, named double space conditional variational autoencoder (DSCVAE) is developed for labelled tabular data. By introducing label constraints in both the latent and the original space, DSCVAE is capable of generating consistent and realistic samples compared to the standard conditional variational autoencoder (CVAE). Two predictive models, namely random forest and gradient boosting classifiers, are enhanced on synthetic data and their performances are evaluated based on real experimental data. Numerical results show that a considerable improvement in prediction accuracy can be achieved by using synthetic data and the proposed DSCVAE clearly outperforms the standard CVAE. This research clearly provides more insights into handling imbalanced data for classification problems, especially in chemical engineering

    Benchmarking of Embedded Object Detection in Optical and RADAR Scenes

    Get PDF
    A portable, real-time vital sign estimation protoype is developed using neural network- based localization, multi-object tracking, and embedded processing optimizations. The system estimates heart and respiration rates of multiple subjects using directional of arrival techniques on RADAR data. This system is useful in many civilian and military applications including search and rescue. The primary contribution from this work is the implementation and benchmarking of neural networks for real time detection and localization on various systems including the testing of eight neural networks on a discrete GPU and Jetson Xavier devices. Mean average precision (mAP) and inference speed benchmarks were performed. We have shown fast and accurate detection and tracking using synthetic and real RADAR data. Another major contribution is the quantification of the relationship between neural network mAP performance and data augmentations. As an example, we focused on image and video compression methods, such as JPEG, WebP, H264, and H265. The results show WebP at a quantization level of 50 and H265 at a constant rate factor of 30 provide the best balance between compression and acceptable mAP. Other minor contributions are achieved in enhancing the functionality of the real-time prototype system. This includes the implementation and benchmarking of neural network op- timizations, such as quantization and pruning. Furthermore, an appearance-based synthetic RADAR and real RADAR datasets are developed. The latter contains simultaneous optical and RADAR data capture and cross-modal labels. Finally, multi-object tracking methods are benchmarked and a support vector machine is utilized for cross-modal association. In summary, the implementation, benchmarking, and optimization of methods for detection and tracking helped create a real-time vital sign system on a low-profile embedded device. Additionally, this work established a relationship between compression methods and different neural networks for optimal file compression and network performance. Finally, methods for RADAR and optical data collection and cross-modal association are implemented

    Providing Relevant Advertisements Based on Item-Specific Purchase History

    Get PDF
    Generally, the present disclosure is directed to providing relevant advertisements to a shopper based on purchase history. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict how receptive a shopper will be to advertisements for a similar item to an item recently purchased based on purchase history patterns for the item

    Optimization of convolutional neural networks for image classification using genetic algorithms and bayesian optimization

    Get PDF
    Notwithstanding the recent successes of deep convolutional neural networks for classification tasks, they are sensitive to the selection of their hyperparameters, which impose an exponentially large search space on modern convolutional models. Traditional hyperparameter selection methods include manual, grid, or random search, but these require expert knowledge or are computationally burdensome. Divergently, Bayesian optimization and evolutionary inspired techniques have surfaced as viable alternatives to the hyperparameter problem. Thus, an alternative hybrid approach that combines the advantages of these techniques is proposed. Specifically, the search space is partitioned into discrete-architectural, and continuous and categorical hyperparameter subspaces, which are respectively traversed by a stochastic genetic search, followed by a genetic-Bayesian search. Simulations on a prominent image classification task reveal that the proposed method results in an overall classification accuracy improvement of 0.87% over unoptimized baselines, and a greater than 97% reduction in computational costs compared to a commonly employed brute force approach.Electrical and Mining EngineeringM. Tech. (Electrical Engineering
    • …
    corecore