582 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Defending against Sybil Devices in Crowdsourced Mapping Services

    Full text link
    Real-time crowdsourced maps such as Waze provide timely updates on traffic, congestion, accidents and points of interest. In this paper, we demonstrate how lack of strong location authentication allows creation of software-based {\em Sybil devices} that expose crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking precise movements for large user populations while avoiding detection. We propose a new approach to defend against Sybil devices based on {\em co-location edges}, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time, co-location edges combine to form large {\em proximity graphs} that attest to physical interactions between devices, allowing scalable detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and discuss how they can be used to dramatically reduce the impact of attacks against crowdsourced mapping services.Comment: Measure and integratio

    Distance-based Cluster Head Election for Mobile Sensing

    Get PDF
    Energy-efficient, fair, stochastic leader-selection algorithms are designed for mobile sensing scenarios which adapt the sensing strategy depending on the mobile sensing topology. Methods for electing a cluster head are crucially important when optimizing the trade-off between the number of peer-to- peer interactions between mobiles and client-server interactions with a cloud-hosted application server. The battery-life of mobile devices is a crucial constraint facing application developers who are looking to use the convergence of mobile computing and cloud computing to perform environmental sensing. We exploit the mobile network topology, specifically the location of mobiles with respect to the gateway device, to stochastically elect a cluster head so that (1) different energy saving policies can be implemented and (2) battery lifetime is increased given an energy efficiency policy, in a fair way. We demonstrate that the battery usage can be made more fair by reducing the difference in battery life-time of mobiles by up to 66%

    Connected Car: technologies, issues, future trends

    Get PDF
    The connected car -a vehicle capable of accessing to the Internet, of communicating with smart devices as well as other cars and road infrastructures, and of collecting real-time data from multiple sources- is likely to play a fundamental role in the foreseeable Internet Of Things. In a context ruled by very strong competitive forces, a significant amount of car manufacturers and software and hardware developers have already embraced the challenge of providing innovative solutions for new generation vehicles. Today’s cars are asked to relieve drivers from the most stressful operations needed for driving, providing them with interesting and updated entertainment functions. In the meantime, they have to comply to the increasingly stringent standards about safety and reliability. The aim of this paper is to provide an overview of the possibilities offered by connected functionalities on cars and the associated technological issues and problems, as well as to enumerate the currently available hardware and software solutions and their main features
    • …
    corecore