51 research outputs found

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models

    Trustworthy Knowledge Planes For Federated Distributed Systems

    Full text link
    In federated distributed systems, such as the Internet and the public cloud, the constituent systems can differ in their configuration and provisioning, resulting in significant impacts on the performance, robustness, and security of applications. Yet these systems lack support for distinguishing such characteristics, resulting in uninformed service selection and poor inter-operator coordination. This thesis presents the design and implementation of a trustworthy knowledge plane that can determine such characteristics about autonomous networks on the Internet. A knowledge plane collects the state of network devices and participants. Using this state, applications infer whether a network possesses some characteristic of interest. The knowledge plane uses attestation to attribute state descriptions to the principals that generated them, thereby making the results of inference more trustworthy. Trustworthy knowledge planes enable applications to establish stronger assumptions about their network operating environment, resulting in improved robustness and reduced deployment barriers. We have prototyped the knowledge plane and associated devices. Experience with deploying analyses over production networks demonstrate that knowledge planes impose low cost and can scale to support Internet-scale networks

    Trustworthy Knowledge Planes For Federated Distributed Systems

    Full text link
    In federated distributed systems, such as the Internet and the public cloud, the constituent systems can differ in their configuration and provisioning, resulting in significant impacts on the performance, robustness, and security of applications. Yet these systems lack support for distinguishing such characteristics, resulting in uninformed service selection and poor inter-operator coordination. This thesis presents the design and implementation of a trustworthy knowledge plane that can determine such characteristics about autonomous networks on the Internet. A knowledge plane collects the state of network devices and participants. Using this state, applications infer whether a network possesses some characteristic of interest. The knowledge plane uses attestation to attribute state descriptions to the principals that generated them, thereby making the results of inference more trustworthy. Trustworthy knowledge planes enable applications to establish stronger assumptions about their network operating environment, resulting in improved robustness and reduced deployment barriers. We have prototyped the knowledge plane and associated devices. Experience with deploying analyses over production networks demonstrate that knowledge planes impose low cost and can scale to support Internet-scale networks

    Architectures and Algorithms for Cloud-Based Multimedia Conferencing

    Get PDF
    Multimedia conferencing is the real-time exchange of multimedia content between multiple parties. It is the basis of several applications, such as distance learning, online meetings, and massively multiplayer online games. Cloud-based provisioning of multimedia conferencing has several benefits, like resource efficiency, elasticity, and scalability. However, it remains very challenging. A challenge, for instance, is the lack of holistic architectures which cover both the infrastructure and the platform layers of cloud-based multimedia conferencing applications. Another challenge is the lack of appropriate algorithms for resource allocation in the conferencing cloud to accommodate the fluctuating number of participants, while meeting the required quality of services (QoS). Yet another example is the lack of suitable algorithms for scaling the multimedia conferencing applications in the cloud while meeting both QoS requirements and cost efficiency objective. Unfortunately, the solutions proposed so far do not address these challenges. This thesis focuses on the architectural and algorithmic challenges of cloud-based multimedia conferencing. It proposes architectural components and interfaces for multimedia conferencing application provisioning, covering both the Platform-as-a-Service (PaaS) and the Infrastructure-as-a-Service (IaaS) layers. The proposed interfaces simplify multimedia conference service provisioning for a wide range of application providers. On the algorithmic side, it proposes resource allocation mechanisms that support scalability in terms of the number of participants while meeting the QoS. These mechanisms allocate the actual resources (e.g., CPU, RAM, and storage) in an optimal manner. Besides these mechanisms, it proposes the scalability approaches for cloud-based multimedia conferencing applications. To ensure cost efficiency, these proposed solutions enable fine-grained scalability of the applications with respect to the number of participants while considering the QoS requirements. All algorithmic problems in this thesis are formulated using the Integer Linear Programming (ILP) and heuristics have been designed and validated to solve them

    Proceedings of the 23rd International Conference of the International Federation of Operational Research Societies

    Full text link

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts
    • …
    corecore