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ABSTRACT 

Architectures and Algorithms for Cloud-Based Multimedia Conferencing 

 

Abbas Soltanian, Ph.D. 

Concordia University, 2018 

 

Multimedia conferencing is the real-time exchange of multimedia content between 

multiple parties. It is the basis of several applications, such as distance learning, online 

meetings, and massively multiplayer online games. Cloud-based provisioning of 

multimedia conferencing has several benefits, like resource efficiency, elasticity, and 

scalability. However, it remains very challenging. A challenge, for instance, is the lack of 

holistic architectures which cover both the infrastructure and the platform layers of cloud-

based multimedia conferencing applications. Another challenge is the lack of appropriate 

algorithms for resource allocation in the conferencing cloud to accommodate the 

fluctuating number of participants, while meeting the required quality of services (QoS). 

Yet another example is the lack of suitable algorithms for scaling the multimedia 

conferencing applications in the cloud while meeting both QoS requirements and cost 

efficiency objective. Unfortunately, the solutions proposed so far do not address these 

challenges. 

This thesis focuses on the architectural and algorithmic challenges of cloud-based 

multimedia conferencing. It proposes architectural components and interfaces for 

multimedia conferencing application provisioning, covering both the Platform-as-a-

Service (PaaS) and the Infrastructure-as-a-Service (IaaS) layers. The proposed interfaces 

simplify multimedia conference service provisioning for a wide range of application 

providers. On the algorithmic side, it proposes resource allocation mechanisms that support 

scalability in terms of the number of participants while meeting the QoS. These 
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mechanisms allocate the actual resources (e.g., CPU, RAM, and storage) in an optimal 

manner. Besides these mechanisms, it proposes the scalability approaches for cloud-based 

multimedia conferencing applications. To ensure cost efficiency, these proposed solutions 

enable fine-grained scalability of the applications with respect to the number of participants 

while considering the QoS requirements. All algorithmic problems in this thesis are 

formulated using the Integer Linear Programming (ILP) and heuristics have been designed 

and validated to solve them.  
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Chapter 1 

 

1. Introduction 

 

This chapter first presents an overview of the challenges and contributions that are 

discussed in this thesis. Then, it discusses the required background information on cloud 

computing and multimedia conferencing. Finally, it presents the outline of the rest of this 

thesis. 

1.1 Overview 

Cloud computing is a paradigm in which resources (e.g., storage, network, and 

services) are provisioned rapidly on demand. It offers three main service models,  

Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-

Service (IaaS) [1]. It provides several benefits, such as scalability and elasticity. 

Multimedia conferencing (or conferencing in short) is the real-time exchange of 

multimedia content (e.g., audio, video, and text) between different parties [2]. It has several 

applications, such as massively multiplayer online games (MMOG) and distance learning. 

In some conferencing applications like MMOGs, there might be thousands or hundreds of 

thousands of users (conference participants). This number of participants may have 

considerable fluctuations over a short period of time. For instance, in one study, the number 

of players in the World of Warcraft game (a famous MMOG) fluctuates between 1.5 and 
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2.5 million during 10 hours [3]. Therefore, such applications require scalability and 

elasticity that cloud-based implementations may provide.  

Conferencing application provisioning refers to the entire life-cycle of the 

conferencing application, i.e., development, deployment, and management [4]. Cloud-

based provisioning of the conferencing applications will bring several benefits including 

rapid provisioning, resource efficiency, scalability, and elasticity. However, it is quite 

challenging. A challenge, for instance, is the lack of holistic architectures which take all 

aspects of cloud-based conferencing applications (e.g., PaaS and IaaS) into account. The 

holistic architecture can ease provisioning of the conferencing applications. For instance, 

it can help the conferencing application providers to not master low-level details of 

conferencing technologies, protocols, and their dependencies. Therefore, provisioning of 

the conferencing applications can be easier especially for non-expert providers.  

Another challenge is the lack of appropriate algorithms for resource allocation in the 

conferencing cloud to accommodate the fluctuating number of participants while meeting 

the required QoSs. As it was mentioned before, the fluctuation in terms of the number of 

participants is high in some conferencing applications. If the allocated resources are not 

enough, the participants cannot attend the conference. In consequence, it reduces the 

participants’ satisfaction and may result in decreasing the QoS. On the other hand, if the 

allocated resources are more than demand, it increases the cost. Thus, the efficient resource 

allocation algorithms can help to avoid under-provisioning and over-provisioning of 

resources.  

Yet another challenge is the lack of suitable algorithms for scaling conferencing 

applications in the cloud while meeting both QoS requirements and cost efficiency 

objective. Besides the actual resources (e.g., computational resources and storage), the 

conferencing applications also need to scale for accommodating the fluctuated number of 

participants. Thus, there is a need for having efficient scaling mechanisms for the 

conferencing applications. 

Unfortunately, the solutions proposed so far do not address these challenges. This 

Ph.D. thesis addresses the architectural and the algorithmic challenges of cloud-based 
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multimedia conferencing. It consists of three main contributions which are presented as 

follows. 

(i) Holistic Cloud-based Architecture for Multimedia Conferencing Applications [5], 

[6] 

 The first contribution is on the architectural components and the interfaces which 

covers both the infrastructure and the platform layers of cloud-based multimedia 

conferencing applications. This architecture simplifies the provisioning of the conferencing 

applications for expert and non-expert application providers. For this contribution, novel 

architectural components are proposed for the PaaS and the IaaS layers of multimedia 

conferencing. The proposed architecture provides novel application programming 

interfaces (APIs) to simplify the provisioning of the conferencing applications for a wide 

range of application providers (experts vs. non-experts). It allows the conferencing 

application providers to utilize the offered conferencing services (e.g., audio and video 

mixing) without having to deal with the complexities of conferences. The proof-of-concept 

prototypes are also implemented. 

(ii) Resource Allocation Mechanisms for Multimedia Conferencing Applications [7], 

[8] 

The second contribution is the cloud-based resource allocation algorithms for 

multimedia conferencing applications. In this contribution, we consider conferencing 

applications with video mixing and compressing. The proposed algorithms allocate the 

actual resources in an optimal manner while supporting scalability in terms of the number 

of participants, and guaranteeing the required QoS. Since these algorithms are designed to 

scale the actual resources (e.g., CPU, RAM, and Storage), they are suitable to be executed 

on the conferencing IaaS.  

(iii) Scaling Mechanisms of Multimedia Conferencing Applications [9], [10] 

Lastly, the third contribution is the fine-grained scaling algorithms for multimedia 

conferencing applications. These algorithms enable the conferencing applications to scale 

in an elastic manner with respect to the number of participants. The proposed algorithms 
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also guarantee to meet the QoS requirements while considering the future demands of the 

conferencing applications and cost efficiency objective. Instead of dealing with the actual 

resources, the proposed algorithms scale the conferencing applications in a higher level of 

abstraction which is the number of participants. In fact, these algorithms in collaboration 

with the resource allocation algorithms in the conferencing IaaS can scale the conferencing 

applications. Therefore, the proposed algorithms in this contribution are suitable to be 

executed on the conferencing PaaS. 

In both algorithmic contributions, the problems are mathematically modeled as integer 

linear programming (ILP) problems. We solve the mathematical models to achieve 

optimality for the small-case scenarios using the optimization tools (e.g., LPSolve Java 

Library). We propose heuristics to solve the problems for the large-scale scenarios in an 

acceptable time. The heuristics are evaluated in different scenarios and with different 

parameters and settings. 

More details and background information on cloud computing and multimedia 

conferencing are presented in the following two sections. 

1.2 Cloud Computing 

There are several definitions for cloud computing. This thesis adopts the definition of 

cloud computing provided by the National Institute of Standards and Technology (NIST) 

[11]: 

“Cloud computing is a model for enabling convenient, on-demand network access to a 

shared pool of configurable computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction.” 

Cloud computing has five essential characteristics [11]: 

1. On-demand self-service: The cloud computing services (e.g., computing, 

networking, and storing) can be provisioned by consumers without human 

interactions with cloud service providers.  
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2. Broad network access: All of the services are available and accessible through the 

network. 

3. Resource pooling: The cloud resources (e.g., compute, storage, and network) are 

pooled to provide services to multi-tenants according to the demand for each 

customer. In fact, physical and virtual resources are dynamically assigned and 

reassigned according to the consumers’ demands. 

4. Rapid elasticity: The cloud is capable of provisioning of services according to the 

consumer’s workload requirements. 

5. Measured service: The usage of cloud resources can be monitored and controlled 

using some metering capabilities. It provides transparency for both providers and 

consumers of the utilized services. 

Cloud computing can be represented using a service-driven business model. In this 

model, hardware and applications are provided as on-demand services [12]. These services 

can be grouped into three layers: 

(i) Infrastructure-as-a-Service (IaaS) 

The IaaS is composed of physical and virtualized resources (e.g., network, storage, 

and servers) and provides scalable and cost-efficient resources as a service to the 

customers. IaaS relies on virtualization technology that enables the abstraction of hardware 

resources from the services. Virtualization allows consolidation of hardware resources into 

pools of virtual shared resources. The consumers of IaaS have limited access to the 

underlying infrastructure resources. However, the offered services can be tailored to the 

consumers’ requirements [13]. Amazon EC2, OpenNebula, and IBM Blue Cloud are some 

examples of cloud IaaS.   

(ii) Platform-as-a-Service (PaaS) 

The PaaS provides the environment needed to facilitate the application provisioning 

lifecycle. The application provisioning includes development, testing, deployment, and 

execution. The PaaS allows developers to focus on creating applications and freeing them 

from the operations or platform maintenance. In consequence, it eases and accelerates the 

application provisioning. The PaaS consumers only have control on their deployed 
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applications [13]. Google Cloud Platform, Aneka, and Cloud Foundry are some examples 

of this cloud service model. 

(iii) Software-as-a-Service (SaaS) 

The SaaS is a software delivery model in which applications are hosted by the service 

providers on cloud and delivered as a service to the users over the network. Here, the 

consumers do not have any control over the application and the underlying infrastructure 

layer [13]. SalesForce.com and Google Docs are examples of SaaS cloud service model. 

1.2.1 PaaS Architectures 

There are some reference models for PaaS architecture such as the one introduced by 

IBM [14] and Aneka [15]. As an example, the IBM PaaS layered architecture is depicted 

in Fig.1.1. It consists of four layers: 

1. Front-end: It has a set of user and developer APIs and tools. Development APIs 

allow the developers for allocating and managing the PaaS resources. The user APIs and 

graphical user interfaces (GUIs) allow the users for invoking and executing the applications 

which are running in the PaaS. 

2. Core: It has necessary frameworks (e.g., containers and storage services) required 

for application hosting and execution. 

Front-end

Core

Management and 

Governance

Abstraction 

Interface

Developer 

APIs

Development 

Kit
User APIs GUIs

Service 

Engines

Resource 

Repositories
Runtime

Execution 

Framework
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User 
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…
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Fig. 1.1. IBM PaaS Reference Architecture 
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3. Management and Governance: Consists of entities for managing the PaaS and the 

hosted applications (e.g., monitoring and scaling). Moreover, it has the required entities to 

support the PaaS Business model (e.g., billing and membership). 

4. Abstraction Interface: It has a set of APIs and operations that enable the interaction 

with the underlying IaaS. 

1.2.2 IaaS Architectures 

Similar to the PaaS, the IaaS also has some reference architecture model such as the 

one introduced in [16]. In this architecture model, the IaaS has three main layers: 

1. Cloud Management: It has the responsibility of managing the overall IaaS. It also 

acts as an interface with IaaS consumers (e.g., PaaS and another IaaS). 

2. Virtual Infrastructure Management: It provides a uniform and homogenous view 

of virtual resources. It provides primitives to schedule and manage VMs across 

multiple physical hosts. 

3. Virtual Machine Management: It provides simple primitives (e.g., start, stop, 

suspend) to manage VMs on a single host. 

1.3 Multimedia Conferencing 

Multimedia conferencing has three main architectural components, namely signaling, 

media handling, and conference control [2]. Signaling is responsible for the establishment, 

modification, and teardown of multimedia sessions. Session establishment can be done in 

two different ways: dial-in or dial-out. In dial-in conferences, the participants should call 

the signaling server to join the conference while in dial-out conferences, the server calls all 

the participants.  

Media handling is related to media functionalities such as audio and video mixing, 

transcoding, and compressing. Some researchers believe that the mixers are the core of the 

media handling systems [17]. Audio mixer and video mixer deal with several received 

media streams from multiple sources, combine them, and send the mixed stream to the 

participants. Some systems may only work with specific codecs. As an example, a device 

may have the ability to only play the “H.264” video codec. In order to support the 

heterogeneity of audio and video codecs, there is a need to have transcoding ability in the 



8 

 

media handling component. Transcoding is a functionality to convert one codec signal to 

another one. The media compressing is another functionality of media handling. It is used 

to reduce the size of media. Its input media type is the same as its output’s. However, the 

output stream size is less than that of the input. 

Conference control encompasses the management functions to define and control the 

conference policies and floor control. The conference policy functions include conference 

arrangement, admission control, participant management, and voting. Based on the 

RFC4582, the floor is: “A temporary permission to access or manipulate a specific shared 

resource or set of resources”. Based on this definition, the floor control is a mechanism 

which enables the management of the joint or exclusive access to the shared resources (e.g., 

audio channel, video channel) among the participants inside a conference. There are three 

entities involved in the floor control mechanism: 1) Floor Participants – a conference 

participant who is requesting for the access to the shared resources in the conference; 2) 

Floor Chair – a conference participant who grants or denies the requests of floor 

participants; and 3) Floor Control Server – a logical entity between the floor chair and all 

floor participants which maintains the state of the floor (e.g., who is the chair, who has the 

floor) and transmit all requests, decisions, and notifications.  

There are some conferencing classification schemes. One example is whether the 

conference has the sub-conferencing capability or not. This capability simulates a 

conference inside another conference. In other words, sub-conferencing simulates a 

conference with some different rooms. In each room, entitled as a sub-conference, the 

participants can hear or see each other while they cannot hear or see other participants in 

other sub-conferences.  

Another classification scheme is whether the conference can be prearranged or ad-hoc. 

In prearranged, the conference starts at a predetermined time and the duration of the 

conference may also be predefined. However, in ad-hoc, the conference starts when the 

first two participants decide to create a session and it ends when the last two participants 

leave. 
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1.4 Thesis Outline 

The rest of the thesis is organized as follows. Chapter 2 discusses the challenges, 

general motivation scenario, and the requirements, followed by the review of the state-of-

the-art. Chapter 3 to 7 present the main contributions of this thesis. Chapter 3 discusses the 

proposed holistic cloud-based architecture for multimedia conferencing applications. 

Chapter 4 presents a proposed resource allocation algorithm for multimedia conferencing 

applications. The proposed algorithm in chapter 4 has some limitations which will be 

covered in another algorithm presented in chapter 5. Chapter 6 discusses a proposed scaling 

mechanism of multimedia conferencing applications. The proposed algorithm in this 

chapter also has some limitations which will be covered in another algorithm presented in 

chapter 7. Finally, chapter 8 concludes the thesis and provides future directions for this 

research.  
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Chapter 2 

 

2. Challenges, Requirements, and Related 

Work 

 

Despite all improvements in the conferencing technologies, the proposed multimedia 

conferencing solutions so far still face many challenges. Cloud computing, as an enabler, 

can help to solve some of these challenges. This chapter presents the motivations behind 

this research by discussing the challenges to be tackled in this thesis. Then, it derives the 

requirements of cloud-based multimedia conferencing. After that, the related works are 

reviewed in light of the derived requirements. Lastly, it concludes with the summary of the 

related work. 

2.1. Challenges 

The challenges are classified into three categories: general challenges, PaaS related 

challenges, and IaaS related challenges.  

2.1.1. General Challenges 

Nowadays, there are several existing multimedia conferencing applications such as 

MMOGs, distance learnings, and online meetings. In some of these applications like 

MMOGs, there might be thousands or hundreds of thousands of conference participants. 

This number of participants may have considerable fluctuations over a short period of time. 

For instance, in one study, the number of players in World of Warcraft (WoW- a famous 
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multiplayer online game), fluctuates between 1.5 and 2.5 million over 10 hours [3]. 

Therefore, scalability is essential in such applications. Non-cloud multimedia conferencing 

solutions do not scale well. For example, a media server (a device or a software that is 

responsible for media transmission, mixing, and transcoding) can offer media handling 

services to the limited number of media streams. Assuming each participant uses a camera 

or a microphone, increasing the number of participants leads to increasing the number of 

media streams. Thus, if the media server is overloaded, a new media server should add to 

offer media handling services to the new participants. However, in non-cloud multimedia 

conferencing solutions, increasing the required resources (i.e., media servers in this 

example) to cope with demands is a challenge. On one hand, it is time-consuming (e.g., it 

may take several hours to several days to add the required resources). On the other hand, 

changing the applications’ configuration in the runtime (to work with the newly added 

resources) may not be possible or may cause application outage. Cloud-based multimedia 

conferencing solutions can tackle these challenges and enable scalability. The resources 

can dynamically increase or decrease on-demand and during the application’s runtime. In 

addition, thanks to the virtualization technology that can be used in the cloud solutions, 

increasing or decreasing the resources can be hidden from the participants’ perspective. 

Therefore, there is no need to change the applications’ configuration in the runtime. 

Besides the scalability problem, the efficient use of resources is another challenge. 

Non-cloud conferencing solutions usually suffer from over-provisioning or under-

provisioning of resources. In such solutions, they may over-provision the resources in 

advance to ensure they can accommodate all possible participants in the near future. For 

instance, WoW uses more than ten-thousand servers while most of the servers’ capacities 

remain idle most of the time [3]. On the other hand, under-provisioning of resources causes 

application outage for the incoming participants. Cloud-based solutions can enable 

allocating and de-allocating of required resources in an elastic manner and in a fine 

granularity. In consequence, it enables efficient use of resources. 

2.1.2. PaaS Related Challenges 

There are several conferencing concepts which conferencing application providers 

should consider. For instance, there are different conference models such as pre-arrange or 
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ad-hoc. As another example, there could be different conferencing technologies such as 

SIP, WebRTC or hybrid. In addition, each concept has its own technical details. For 

instance, the acceptable audio and video encodings in each considered conference 

technology should be defined. All these technical details require experienced conferencing 

application providers. However, their expertise may be different. A conferencing PaaS can 

enable hiding the technical details required for provisioning the conferencing applications. 

Therefore, it can simplify the provisioning of conferencing applications for a wide range 

of conferencing application providers (experts vs. non-experts). In addition, a conferencing 

PaaS can offer suitable algorithms for scaling the conferencing applications while meeting 

different criteria such as QoS and cost efficiency.  

2.1.3. IaaS Related Challenges 

The IaaS layer can enable the on-demand provisioning of the actual resources such as 

CPU, RAM, and storage. Consequently, it enables minimizing the associated capital costs 

of having individual IT infrastructures. However, there are some issues related to having a 

conferencing IaaS. For example, as it was mentioned in chapter one, the IaaS has an 

architectural layer entitled as Cloud Management. This layer is responsible for the overall 

IaaS management and also acts as an interface with IaaS consumers (e.g., PaaS or other 

IaaSs). Generally, the usual IaaS consumers expect IaaS services which can be Computing, 

Storing, and Networking. However, the consumers of a conferencing IaaS might expect 

other services such as Audio and Video Mixing, Transcoding, and Signaling. This 

difference in their expectations brings the need of having new interfaces and APIs. In 

addition, it brings the need of having new resource allocation algorithms in the 

conferencing IaaS. These algorithms can enable efficient resource allocation for the new 

expected services while guaranteeing different requirements such as QoS and cost.  

Solving all mentioned challenges is the motivation of research in cloud-based 

architectures and algorithms for multimedia conferencing. 

2.2. Requirements 

According to the stated challenges, requirements are classified. Some of the mentioned 

challenges have architectural aspects and some others have algorithmic dimensions. 
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Therefore, the requirements are categorized into two categories: architecture-specific 

requirements and algorithm-specific requirements.  

2.2.1. Architecture-Specific Requirements 

These requirements should be considered in the conferencing architectural 

contribution. 

1) Scalability: A multimedia conferencing application should function well with different 

workloads (e.g., having few or several participants). It needs to be scalable in terms of 

different conferencing concepts such as the number of conferences, sub-conferences, 

floors, and conference participants. The conferencing PaaS, in collaboration with the 

conferencing IaaS, should scale the conferencing applications in response to the new 

demand.  

2) Elasticity: The conferencing PaaS and IaaS, should scale the conferencing applications 

in a fine-grained (elastic) manner in response to the new demand (e.g., the fluctuating 

number of participants, increasing or decreasing the number of conferences). This 

enables the cost efficiency and follows the pay-per-use principle of cloud.  

3) Meeting the Quality of Services: As it was mentioned before, multimedia 

conferencing is the real-time exchange of media contents between different parties. To 

guarantee the real-time exchange of media, meeting the QoS requirements, such as 

latency, jitter, and throughput is critical in conferencing applications.  

4) Publish-and-Discovery Mechanism: The cloud conferencing can simplify the 

provisioning of conferencing applications (e.g., distance learnings) by offering 

conferencing services (e.g., audio and video mixing) that may use by these applications. 

Therefore, the providers of the multimedia conferencing applications need to find the 

appropriate conferencing services which can fulfill their requirements. Publish and 

discovery mechanism allows the conference application providers to discover available 

conferencing services. It also enables the conferencing PaaS to discover a conferencing 

IaaS as well as a conferencing IaaS to discover other conferencing IaaSs for excess 

workloads.  

5) Composition: This feature simplifies creating a complex conferencing service based 

on the basic conferencing services. For example, a dial-in audio conference service 
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might be composed of a dial-in service and an audio-mixing service. As another 

example, a video mixer with compression and transcoding capabilities can be 

composed of three video mixing, compressing, and transcoding conferencing services. 

6) High-level PaaS Northbound Interfaces: The conferencing PaaS northbound 

interfaces should enable the conference application provisioning for a wide range of 

providers (experts vs. non-experts). Having a conferencing PaaS with high-level 

northbound interfaces helps to provision new applications without having to deal with 

the complexities of conferencing components and their interactions. The interfaces 

should also be flexible enough for creating complex and novel conferencing 

applications (e.g., a distance learning application with dial-in audio conference 

capability and five minutes of chat per hour).  

7) Conference-rooted IaaS Interfaces: The conferencing IaaS interfaces should support 

communication with IaaS consumers in terms of the virtual conference or finer 

abstracted level such as virtual mixers or conference participants. Thus, the 

conferencing IaaS interface needs to be rooted in the conferencing concepts. 

2.2.2. Algorithm-Specific Requirements 

The following requirements are identified as algorithm-specific requirements.  

1) Scalability: As it was mentioned before, multimedia conferencing applications need to 

scale in terms of different conferencing concepts to function well in different 

workloads. Thus, the resource allocation algorithms for these applications need to 

consider scalability in terms of conferencing concepts. These algorithms should be able 

to dynamically scale the required resources to cope with new demands. 

2) Efficient Use of Resources: Scaling the conferencing applications and their required 

resources need to be done in a fine-grained manner. This enables the efficient use of 

resources and consequently, cost efficiency.  

3) Meeting the Quality of Services: Meeting the QoS requirements, such as latency, 

jitter, and throughput is crucial in conferencing applications. Therefore, the responsible 

algorithms for scaling these applications and their required resources need to meet the 

QoS requirements. Considering the future demands of the application can also play an 
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important role in meeting the QoS. Therefore, the conferencing scaling algorithms need 

to take into account the future demand of the application as well. 

2.3. Related Work 

In this section, the state-of-the-art for cloud-based multimedia conferencing is 

presented. First, we discuss the works related to the architectural aspects of our work. After 

that, the related algorithmic works are reviewed. 

2.3.1. Architectural Related Work 

In this section, the existing architectures of cloud-based conferencing, PaaS, and IaaS 

are reviewed. In addition, service composition and discovery solutions are also discussed. 

(i) Cloud-based Conferencing Architectures 

The existing architectures can be categorized with a focus on the SaaS or IaaS layers. 

Examples of the first category are presented in [18] and [19]. The two solutions focus on 

developing conferencing services at the application layer, without addressing the 

challenges related to the PaaS and IaaS layers (e.g., scalability, QoS, publication, and 

discovery of conferencing services). Ref. [18] offers conferencing services as SaaS, while 

using a conventional PaaS for deployment and execution. Ref. [19] presents an approach 

for providing video conferencing as a web service and defines the interfaces to be used by 

the conferencing application providers. This work tries to transform the existing 

telecommunication services into a reusable resource for the third parties. However, it does 

not address how these services are provisioned.   

Ref. [20] is an example of the relevant works with a focus on the IaaS layer. The 

proposed architecture relies on conferencing substrates (i.e., basic conferencing building 

blocks such as signaling, audio and video mixing) and enables scalability in an elastic 

manner. It also proposes PaaS/IaaS interfaces rooted in substrates and proposes a broker 

between IaaS and PaaS that allows finding suitable substrates. However, it does not 

consider the PaaS and SaaS layers and their relevant issues. Neither does it include high-

level PaaS interfaces for application providers. 
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Other works in the relevant literature, such as [21], [22], and [23], address specific 

problems of cloud-based conferencing, such as inter-datacenter network utilization, media 

mixing, and transcoding. While they focus on how conferencing components can 

efficiently utilize the cloud, they do not address conferencing application provisioning. In 

addition, as these works only offer one service, they do not tackle the service publication, 

discovery, and composition. 

(ii) Existing PaaS Solutions 

Aneka [15] and Cloud Foundry [24], the two PaaS representatives, are evaluated. 

Aneka provides high-level PaaS interfaces and supports scalability in an elastic manner, 

specifically for distributed application provisioning. Nonetheless, it does not offer any 

conferencing APIs. Cloud Foundry provides no interfaces for conferencing application 

provisioning. It supports the scaling of application instances but does not address scaling 

in terms of conference concepts. Neither does it address composition and QoS. 

(iii) Existing IaaS Solutions 

Some relevant literature propose a conceptual architecture of open-source IaaSs. Ref. 

[25], for example, proposes the OpenStack architecture that consists of five layers: 

Compute (Nova), Storage (Swift), Image (Glance), Identity (Keystone), and Dashboard 

(Horizon). Nova is the computing fabric controller for OpenStack and it is all about access 

to the computing resources. Swift, as the storage infrastructure in OpenStack, offers APIs 

to store and retrieve lots of data. Glance builds a discovery and retrieval system for VM 

images. Keystone is responsible for authentication and authorization. Horizon provides a 

web-based user interface to all above OpenStack services. In [26], instead of having one 

layer for Storage, it is broken down into two layers: Block Storage and Object Storage. 

Block Storage offers storage volume for Compute layer while Object Storage stores the 

actual virtual disc files. Their architecture also has a Network layer to provide virtual 

networking for the Compute layer. All components in both architectures follow a shared-

nothing policy, meaning each component can be installed on any server. 

The OpenNebula architecture proposed in [25] and [27] has three layers: Drivers, 

Core, and Tools. Drivers do the communication with the underlying operating system. VM 
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creation, startup and shutting down are parts of this layer’s functionality. The core is a 

centralized layer that manages the VM life cycle. To manage VMs, Tools offers different 

interfaces for communication with users. Authors in [16] keep the Core and Drivers layers 

and propose Scheduler to replace Tools. Scheduler decides about VM placement. This 

layer keeps track of all the incoming requests in order to send an appropriate deployment 

command to the Core layer, based on those requests. They also have an Interface layer to 

communicate with users. 

All above IaaS solutions are VM-based, thus, their interfaces should change to support 

the communication rooted in conferencing concepts (e.g., start, stop and modify the 

conferencing substrates). Moreover, they support scalability in terms of computing 

resources, storage, and networking. However, as a conferencing IaaS, there is a need to 

scale resources in terms of conferencing concepts (e.g., the number of participants) to 

collaborate with the conferencing PaaS. 

(iv) Service Composition and Discovery 

Service composition is a well-researched topic as several solutions and alternatives 

have been proposed to cater to different situations [28], [29], [30]. Service composition can 

be done in a static or dynamic way [31]. In a static composition, the basic services as part 

of the composition are selected in advance and their aggregation takes place at the design 

time. In contrast, dynamic composition allows to select and replace the basic services 

during the runtime. The composition can also be done manually, semi-automated or 

automatically [31]. In manual composition, the service provider should define and create 

an abstract composite process and manually bind the services to the abstract process. Some 

web service standard languages such as BPEL [32] or OWL-S [33] can be used to create 

the abstract process. In automatic composition, the new composite service specification 

can be generated by selecting adequate services based on the specified requirements [31]. 

Semi-automatic composition leverages both manual and automatic approaches. Workflow-

based and template-based compositions are other composition planning techniques [34]. In 

the workflow-based composition, the process is depicted as an acyclic directed graph with 

control and data flow. This technique requires the developers’ extensive domain 

knowledge and is time-consuming. In the template-based composition, templates describe 
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the outline of activities required to solve the problem. Templates are parameterized and use 

variables that allow customization based on the users’ needs and preferences. In fact, the 

templates lead to creating an executable workflow. 

Ref. [35] proposes a cloud service broker to facilitate the deployment of cloud 

application topologies from multiple cloud providers. The authors also propose a multi-

criteria optimization algorithm to select the basic services to be composed. The algorithm 

sets cost efficiency as the main objective. Authors in [36] consider a wide range of 

objectives to design their cloud broker selection mechanism, such as user constraints, 

financial, energetic, geographic or operator contractual preferences. Ref. [37] considers 

multimedia conferencing requirements for designing the service broker. The authors here 

propose an architecture for substrate service publication and discovery. Their service 

broker acts between the substrate providers and the conferencing IaaSs and offers some 

REST APIs as the interfaces between them. 

2.3.2. Algorithmic Related Work 

In this section, the related algorithmic works are reviewed. First, we review the 

resource allocation solutions proposed so far for cloud-based multimedia conferencing. 

This is followed by a discussion of the other cloud-based solutions. This discussion 

includes multimedia solutions which are not multimedia conferencing. After that, we will 

present the general cloud resource allocation solutions that are not bounded to multimedia 

and multimedia conferencing applications. The solutions which are based on Network 

Function Virtualization (NFV) [38] are also reviewed. NFV is a technology that enables 

dynamic provisioning of network services. However, these solutions are discussed because 

NFV is also considered as a candidate technology for provisioning other services such as 

multimedia services [39]. Finally, the traditional approaches for multimedia conferencing 

are reviewed. 

(i) Resource Allocation for Multimedia Conferencing in the Cloud 

There are some algorithmic and architectural works done in multimedia conferencing 

in the cloud. Negralo et al. [40] present algorithms for scaling resources based on the real-

time demands by using load balancing and the addition or removal of virtual machines 
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(VMs). Reaching a predefined threshold for CPU or bandwidth usage triggers scaling. Gao 

et al. [41] also work on cost-efficient video transcoding in the cloud. They minimize the 

overall storage and computing cost by partially using offline and online transcoding. The 

main focus of these works is cost efficiency and they do not consider QoS.  

Hajiesmaili et al. [42] model the video conferencing cost in multiparty cloud video 

conferencing architecture. The main focus in this work is minimizing the operational cost 

by finding the best assignment of users to VMs. Besides minimizing the cost, they aim to 

reduce the conferencing delay as well. However, this work does not consider the resource 

allocation problem in case of having fluctuations in the number of participants. Abdallah 

et al. in [43] survey other architectural works on delay-sensitive conferencing video 

services. They present some related applications such as Cloud Gaming, Virtual Reality 

(VR) and Augmented Reality (AR) and their requirements for conferencing services. They 

also review the architectural designs for the management of such services. In addition, they 

briefly talk about optimization techniques. None of the reviewed papers meet the 

requirement of scalability in terms of considering fluctuations in the number of 

participants.  

(ii) Non-Conferencing Related Cloud Resource Allocation Solutions 

Several researchers have proposed solutions for resource allocation to multimedia 

services in the cloud. However, they do not focus on multimedia conferencing. Xavier et 

al. in [44], [45] propose resource allocation algorithms for audio and video services in the 

content delivery network (CDN). The proposed solutions scale the resources at the VM-

level while attempting to minimize the cost. They also consider meeting the users’ quality 

of experience in their algorithms. Gao et al. in [46] present a resource allocation algorithm 

for transcoding as a cloud service. In this work, they try to maximize the service profit 

while achieving their performance requirements such as service processing delays. 

Although these works consider scalability, fine-grained resource allocation and efficient 

use of resources are not considered. 

He et al. in [47] and Dong et al. in [48] consider fluctuation in the number of audio 

and video sources. In these two works, they consider numerous users as video broadcasters 
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which live stream their video content such as their mobile camera feed or online game 

scenes. The authors in [47] propose a generic cloud framework that considers the viewers’ 

quality of experience (QoE) and cloud resource cost. They only consider transcoding as a 

media handling service in their study. The authors in [48] propose an algorithm that makes 

a tradeoff between QoE of users and the total cost for a media service provider. None of 

these two works consider having a video mixing service. It means that in these works, the 

videos are just streamed from a source to a destination and never mixed with other video 

sources. 

Several cloud resource allocation solutions consider meeting the QoS requirements 

and cost efficiency. Considering the future demands of the application also can play an 

important role in meeting the QoS. Some of these solutions consider the future demands of 

the application while others only take real-time demands into account. Therefore, we 

categorized them into two group. 

(iii) General Cloud Resource Allocation Solutions 

There are several cloud-based resource allocation solutions with different objectives 

such as reducing the cost or meeting the QoS requirements. We categorize them into 

existing PaaS resource allocation solutions, and IaaS resource allocation solutions. 

a) PaaS Resource Allocation Solutions  

Anselmi et al. [49] model the resource allocation problem of PaaS as a Generalized 

Nash Equilibrium problem. Their scaling model relies on the number of VMs that host the 

applications which are offered as SaaS. Their proposed game-theoretic approach tries to 

manage the capacity of a PaaS provider among multiple competing SaaSs at runtime. 

Gomez et al. [50] introduce a PaaS framework that enables provisioning of cloud-based 

services and applications by using the blueprints. The blueprint in this work refers to the 

technical description of an application and all its dependencies (e.g., required resources 

and deployment geolocations). Their platform supports both horizontal and vertical scaling 

and relies on different IaaSs. Hu et al. [51] present an adaptive resource management 

algorithm. Their proposed PaaS dynamically allocates and de-allocates the application 
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instances based on the fluctuation of resource demands. Their algorithm monitors the 

performance statistics to tune the scaling decision.  

 Machado et al. [52] present a PaaS framework that supports the deployment of multi-

tier and stateful applications while assuring their availability. In this work, they use 

different profiles to represent the requirements of applications such as response time and 

budget. Satoh [53] also proposes a resource allocation mechanism for applications in the 

cloud. This approach considers the runtime data and it tries to minimize the required 

resources by reducing the redundant functions and data of the applications. None of the 

aforementioned works take the future demand for the applications into account. Moreover, 

the scaling decisions in these solutions lead to adding a new instance of an application or 

a VM. Therefore, their scaling decision may not suitable for cost-efficiency objective.  

Babaioff et al. [54] present a scheduling and pricing framework for cloud resources 

based on the predicted demands and completing a job within a deadline. The proposed 

solution updates the prediction with every new request. Also, their architecture provides 

some internal APIs which enable plugging the algorithmic modules such as demand 

prediction. Bunch et al. [55] present a pluggable auto-scaling mechanism for PaaS. Their 

solution considers different resource pricing model offered by IaaS. They use an 

exponential smoothing algorithm to forecast the future demands for a specific period. The 

algorithm runs periodically and predicts the future demands based on the requests over the 

last 𝑡 seconds. Roy et al. [56] also developed a model-predictive algorithm for workload 

forecasting. They use Autoregressive-Moving-Average method for their workload 

prediction. While [55] considers the uncertainty in the prediction model, [56] has no 

consideration for misprediction. These solutions also can only support scalability at the 

VM-level granularity and do not consider real-time demands. 

b) IaaS Resource Allocation Solutions 

An online resource allocation solution is proposed by Mashayekhy et al. in [57]. Their 

solution runs as soon as a request by a user arrives or a resource is released. Their objective 

is to allocate resources in terms of VMs while minimizing the cost for both IaaS providers 

and users. Shen et al. in [58] and Han et al. in [59] also propose a resource allocation 
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mechanism with the objective of minimizing the wastage of resources by considering the 

real-time demands for resources. The scaling decisions of all these mechanisms result in 

the addition or removal of VMs. Moreover, the main focus of these works is cost efficiency 

and they do not consider the QoS requirements.  

The future demand is taken into account in other IaaS resource allocation solutions. 

Xavier et al. in [60] consider the similarity of future demands with the historical VM 

allocation data. In this work, they proactively allocate required VMs hosting the required 

components such as an encoder, decoder, and transcoder. The resource allocation in this 

work is also in terms of VMs. Gong et al. [61] also propose an elastic resource scaling 

solution that considers future resource demands as well as real-time demands. The aim of 

this work is to minimize the cost of resources. They derive a pattern window from the 

historic resource usage and use that in their demand prediction of a window time-slot 

ahead. While [60] considers QoS, [61] does not consider this requirement.  

(iv) NFV Resource Allocation Solutions 

There are several works done in NFV resource allocation domain. Herrera and Botero 

in [62] present a comprehensive survey on NFV architecture and its resource allocation 

problems. They define different optimization strategies for NFV resource allocation, 

followed by emerging challenges. The reviewed works are focused on optimizing the 

Virtual Network Functions (VNFs) placement in the network and not focused on scaling 

based on the fluctuating demands.  

Other researchers such as Fei et al. in [63] and Wang et al. in [64] focus on scaling the 

VNFs and considering the fluctuations in the demands of a service. In [63], they propose a 

proactive approach for provisioning VNFs by using traffic prediction. The goal of this work 

is to instantiate fewer VNFs to reduce cost. Also, they use online learning to intelligently 

scale VNFs to cope with traffic fluctuations. The authors in [64] propose an online 

deployment of VNF chains and dynamic scaling in response to changes in traffic. Similar 

to [63], the goal of [64] is to reduce the cost by deploying a minimum number of VNFs. 

However, they also consider VNF placement and minimizing network congestion. The 

scaling in these works is in terms of a VNF instance and they do not consider increasing or 
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decreasing the resources of existing VNFs. Dieye et al. in [39] introduce a cost-efficient 

proactive VNF placement for CDNs. In this work, the location of end-users as destinations 

are known in advance while the location of their surrogate servers (i.e., media sources) are 

not known. Similar to [63] and [64], they do not consider scaling in an elastic manner of 

resources in the existing VNFs. 

(v) Traditional Resource Allocation for Conferencing 

There are some resource allocation solutions for peer-to-peer (P2P) conferencing and 

centralized multimedia conferencing [65]. Yuen and Chan [66] reduce worst-case video 

transmission delay from different video sources to users. They propose an algorithm to 

select peers as mixers to achieve minimum overall delay. However, their algorithm does 

not account for media handling response time. Chen et al. [67] also propose a P2P multi-

party video conferencing solution to achieve a low end-to-end delay. They optimize the 

streaming rates of all peers subject to network bandwidth constraints. Their study reduces 

the end-to-end delay without tackling the specifics of media handling services. Multipoint 

Control Unit (MCU) [68] is a media handling component that can include different media 

handling functionalities. Traditionally, all requests are handled by a single MCU, where 

resources are allocated in a static manner. Thus, this approach is not scalable and uses 

resources inefficiently.  

2.4. Conclusion 

As it was discussed in this chapter, there are some existing works done close to this 

research area. However, none of them satisfy all the requirements of multimedia 

conferencing applications. Table 2.1 and 2.2 summarize the evaluation of the related work 

with respect to the mentioned requirements. The check marks in these tables indicate that 

the requirement is met in the related work. 
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Table 2.1. Summary of the architectural related work 

 

Publish 

and 

discovery 

Composition 

High level PaaS 

northbound 

interface 

Conference 

rooted IaaS  

interface 

Elasticity, 

Efficient 

use of 

resource 

Scalability 
Meeting 

the QoS 
A

rc
h
it

ec
tu

ra
l 

R
el

at
ed

 W
o
rk
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Chapter 3 

 

3. A Cloud-based Architecture for 

Multimedia Conferencing  

 

3.1. Introduction 

This chapter proposes a holistic conferencing cloud architecture that provides novel 

application programming interfaces (APIs) to simplify the provisioning of the conferencing 

applications for a wide range of application providers (experts vs. non-experts). It also 

describes the process of composing a complex conferencing service from the basic 

conferencing services (e.g., signaling, video mixing, and compressing). Service 

composition can be done in orchestration and choreography approaches. The choreography 

defines the sequences and conditions where different independent services exchange data 

while orchestration defines the sequences and conditions where one service invokes other 

services [69]. In this chapter, we entitled the basic conferencing services as Conferencing 

Substrate. The Proposed architecture allows the application providers to utilize the offered 

conferencing services without having to deal with the complexities of conferences.  
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This architecture is based on the business model in [2], which introduces six roles: 

connectivity provider, broker, conferencing substrate provider, conferencing infrastructure 

provider, conferencing platform provider and conferencing service provider. This work 

reuses and extends this business model by adding a new role, entitled as the conferencing 

application provider. It also assumes that the conferencing infrastructure provider plays the 

role of the substrate provider too. In this architecture, the infrastructure provider exposes 

the conferencing substrates as services (SubaaS) to the platform (i.e., PaaS) provider. The 

PaaS provider offers high-level APIs to create innovative conferencing services and it 

enables the on-the-fly composition of SubaaS into full-fledged conference services. The 

conferencing application providers reuse the conferencing services offered as SaaS in 

building new applications. They also use PaaS to update the running conferences in their 

applications at runtime (e.g., switching from audio conference to audio/video conference) 

without stopping the ongoing conferences. 

The rest of this chapter is as follows. First, the motivating scenario for this work is 

described. Later, the architectural principles are presented followed by the proposed 

architecture. Then, the service composition will be discussed. Finally, we discuss the 

implementation architecture, followed by the measurements and conclusion of this chapter.  

3.2. Motivating Scenario 

Fig. 3.1 depicts the motivating scenario. There are conferencing application providers 

that use conferencing services offered as SaaS to develop their applications. Three 

conferencing applications are provisioned: (1) an online game that allows dial-in audio 

conferencing between the game players, (2) a distance learning application that enables 

dial-out audio conferencing between students and teachers, and (3) an online meeting 

application that offers dial-out video conferencing with floor control. The conferencing 

service providers in the scenario use the conferencing PaaS to provision the conferencing 

services these applications are based on. One service provider offers Conferencing Service 

“A” that supports both dial-in and dial-out audio conferences. The distance learning and 

the game applications utilize Service A. Another conferencing service provider offers a 

dial-out video conference service with floor control, i.e., Service B. This second service is 

used by the online meeting application. 



28 

 

The conferencing SaaSs create new conferences when they receive corresponding 

requests from the conferencing applications. For example, Service A creates a dial-in audio 

conference when it receives a request from the game application. To run the conference, 

the PaaS finds the appropriate SubaaSs (i.e., dial-in signaling and audio mixer in this 

example), composes them, and requests the relevant IaaS(s) to create and activate an 

adequate instance of each substrate (e.g., the audio mixer with the capability of supporting 

500 users). The SubaaSs involved in a given composed conference application may belong 

to different substrate/IaaS providers. As the players join and leave a conference, PaaS 

scales the conference up and down in terms of the number of participants. Then, the 

conferencing IaaS should scale the corresponding instances up and down in terms of the 

virtualized hardware (e.g., CPU, RAM, and Storage) and software (e.g., the number of 

running instances of each substrate). Scaling in both layers is done in an elastic manner. 

3.3. Proposed Conferencing Architecture  

In this section, the architectural principles are presented. Then, the architectural 

components and service development APIs are discussed in detail, followed by an 

illustrative scenario. 

Conferencing 

SaaSs

Conferencing

Applications

Conferencing IaaSs

Conferencing IaaS 3

(Floor Control)

Conferencing PaaS

Conferencing Service A

(Dial-in/Dial-out Video 

Conference)

Conferencing Service B

(Dial-out Video Conference 

with Floor Control)

Conferencing 

Service 

Providers

Online MeetingDistance LearningOnline Game

Conferencing 

Application 

Providers

Conferencing IaaS 1

(Dial-in Signaling,

Dial-out Signaling)

Conferencing IaaS 2

(Audio Mixer, Video 

Mixer)

…

 

Fig. 3.1. Scenario for conferencing application provisioning in the cloud 
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3.3.1. Architecture Principles 

The first principle is to adopt the orchestration approach for the SubaaS composition 

because it provides PaaS with a greater control on the substrates and their interactions. In 

fact, orchestration allows a central entity to control different services and their interactions. 

The second principle is to use high-level PaaS/IaaS interfaces rooted in the conferencing 

substrates. This principle enables PaaS to request IaaSs for scaling conferences in terms of 

conference concepts (e.g., the number of participants) rather than VM or the container 

resources. The third principle is to leverage the existing PaaSs and IaaSs. This allows 

reusing the existing solutions for the conferencing PaaS and IaaS implementation. The last 

principle is that the conferencing IaaSs expose substrates as RESTful web services.  

3.3.2. General Architecture 

The proposed cloud-based conferencing architecture, as shown in Fig. 3.2, includes 

two main layers (i.e., PaaS and IaaSs) and a broker. The figure also shows the conferencing 

service providers, the conferencing applications, and the conferencing application users 

referred to as the conference participants. Note that PaaS may need to communicate with 

multiple IaaSs to provision a given conferencing service. 

(i) PaaS Components: 

The PaaS layer consists of six components, which deal with two key facets: 1) 

conferencing service provisioning and utilizing, and 2) conference management. 

a) Conferencing Services Provisioning and Usage 

This facet covers conferencing SaaSs development, deployment, and management in 

addition to conferencing SaaSs utilizing. It includes four components. The Conferencing 

Service Provisioning APIs component offers high-level APIs to the conferencing service 

providers, for easy provisioning of new conferencing SaaSs. It also allows the SaaSs 

providers to make their services available to the application developers via publishing them 

into a PaaS local service repository.   
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The Conferencing Service Utilizing APIs provides high-level APIs for conferencing 

application providers, to discover (from the local service repository), reuse, and control the 

existing conferencing SaaSs. 

The Management and Governance component manages the conferencing services and 

monitors their QoS and SLAs during service execution. It deploys and executes new 

services in the Service Hosting and Execution component, upon receiving the requests from 

the conferencing Service Provisioning APIs.  

The Service Hosting and Execution component hosts the conferencing services. It 

allocates necessary PaaS resources (e.g., server runtime and database drivers) and prepares 

the execution environment before hosting.  

Note that the Conferencing Service Provisioning and Utilizing APIs are the extensions 

of the application provisioning front-end available in regular PaaS architectures. The 
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Fig. 3.2. Overall cloud-based conferencing architecture 
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Management and Governance, as well as the Service Hosting and Execution components 

are reused from the conventional PaaS architectures.  

b) Conference Management 

This facet concerns the management of the actual conferences (i.e., the virtual rooms 

where people can meet and communicate). It encompasses conference creation as well as 

the management of the created conferences (e.g., scaling the size of a conference to support 

more participants). The main component of this facet is Conference Orchestration with the 

following five tasks: First, it determines the necessary substrate types and their associated 

requirements by using, for instance, syntactic matching with the categorized API 

parameters. This task starts upon receiving the execution or modification request for a 

specific conferencing SaaS. Second, based on the determined types and requirements, it 

discovers the most suitable conferencing SubaaSs from the broker. The existing algorithms 

for cloud service selection, such as [70], can be reused in this context. Third, it orchestrates 

conferences from the selected SubaaSs and executes them. Note that conferences are 

executed in this component. In contrast, the conferencing SaaSs that create conferences are 

executed in the Service Hosting and Execution component. Fourth, it manages the 

composed conferences. For example, it can add the video mixing ability to a conference or 

remove it from it. Fifth, it monitors the running conferences to make decisions if any 

scaling is required. For instance, if the number of participants in a conference increases, it 

decides to scale the conference size. Thus, it requests the conferencing IaaSs to scale the 

corresponding substrates to cope with the new workloads. 

Another component under this facet is the Conferencing IaaS Handler, which is in 

charge of communications between the conferencing PaaS and the conferencing IaaSs. For 

instance, a scaling request initiated by the Conference Orchestration component is sent to 

the corresponding conferencing IaaSs through the Conferencing IaaS Handler. Note that 

Conference Orchestration is a novel component while Conferencing IaaS Handler is an 

extension of IaaS communication component in conventional PaaS architectures.  
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(ii) IaaS Components: 

The IaaS layer consists of five components, dealing with two key facets: 1) resource 

management and 2) SubaaS management. 

a) Resource Management 

This facet is in charge of providing the required resources in order to run a substrate. The 

Virtualized Hardware is one of the components in this facet. It has a pool of typical 

virtualized IaaS resources such as CPU, Network, and Storage. The second component of 

this facet is Substrate Manager with three main tasks: First, it creates and hosts resources 

in order to run the substrates. These resources can be a VM or a container [71] that uses 

virtualized hardware to host a substrate. Each substrate can be hosted on one or many VMs 

or containers (e.g., two instances of the same substrate may be activated in two different 

machines). In addition, each VM or container may host more than one substrate. The 

second task is modifying the allocated resources upon receiving the scaling request for a 

substrate. For instance, to scale up a running substrate, it can add some virtualized hardware 

to the VM that hosts the target substrate. The third task is inserting and updating the 

information of all running substrates in a repository called Active SubaaS Info.  

b) SubaaS Management 

This facet includes the managing functionalities to offer substrates as services. The 

first component of this facet is the Active SubaaS Info. It is a repository that keeps 

information about all running SubaaSs. For instance, for each running SubaaS, it keeps the 

related conference ID, IP of the VM(s) or container(s) hosting that substrate, etc. 

Another component of this facet is SubaaS Controller. This component has two main 

tasks. First, it decides how and when to scale a running substrate, based on the Service 

Level Agreements (SLAs) between the PaaS and IaaS (e.g., end-to-end delay should be 

less than 400 msec). Upon receiving the scaling request from the PaaS and its required 

QoS, it uses the stored information in the Active SubaaS Info repository to make the scaling 

decisions. The resource allocation algorithm and video mixing procedure that we will 

present in the next chapter (chapter 5) are used for this purpose. Second, it maintains a 

repository of all available substrates in the IaaS. It selects a suitable substrate from this 
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repository when it receives a request to create and start a substrate. It then instructs the 

Substrate Manager to create the actual resource. Moreover, it publishes the information of 

SubaaSs in the broker. 

The third component of this facet is Conferencing PaaS Handler, which is in charge 

of all communications between the PaaS and IaaS layers. This component has two main 

tasks: First, it receives and dispatches the PaaS requests (e.g., to create a substrate and scale 

up a substrate) to the appropriate IaaS components and forwards the IaaS replies to the 

PaaS. Second, it handles the conference participants’ requests (e.g., joining a conference). 

The participants’ requests are sent from the conferencing applications to the PaaS, which 

forwards them to the conferencing IaaS. The Conferencing PaaS Handler, in collaboration 

with the Active SubaaS Info repository, identifies the appropriate substrates and forwards 

the requests to them. This feature increases the level of abstraction for the substrates 

working in a single conference. Moreover, there is no need to update the participants on 

any changes in the substrates’ hosting resources.  

(iii) Broker: 

The Broker lists the SubaaSs offered by different IaaSs. The SubaaSs description is 

semantic-based to allow for rich descriptions and queries. It includes high-level information 

such as the type of service, QoS parameters, and cost. In this paper, we reuse the description 

model and the broker publication and discovery interfaces from [37]. 

3.3.3. Conferencing Service Development APIs 

Three principles are followed to design the proposed APIs. The first principle is 

leveraging basic conferencing concepts (e.g., conference, participant, media, and floor) in 

the API design. This helps in achieving an abstraction level higher than conferencing 

components (e.g., signaling, media mixer, and media transcoder) and their complex 

interactions. The second principle is categorizing API parameters, which helps service 

providers to easily understand conference mandatory and optional aspects, required API 

parameters for each aspect and dependencies among parameters. The third principle is the 
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use of RESTful design. It is standard-based, lightweight and flexible for data representation, 

which allows describing the APIs in a generic way. 

Table 3.1 delineates four API examples. It shows some of the REST resources along with 

an example operation for each. The request parameters and the response contents are also 

listed. Showing the categorization of API parameters, Table 3.2 highlights that a service 

provider has to specify one conference model, at least one media and the conferencing 

technology. It also shows the conditional dependencies of parameters. For example, for 

WebRTC-based conferencing [72], the signaling protocol must be specified. In this table, 

the parameters that the service providers can change during the runtime are italicized.  

3.3.4. Service composition   

As per our first design principle, the conferencing services are composed of SubaaSs 

using the orchestration approach. The Conference Orchestration component of the PaaS 

plays the role of the central entity that invokes and controls the composing SubaaSs.  

In addition to the composition approach, two other composition aspects are considered: 

binding dynamicity and automation level [31]. Since the PaaS discovers, selects, and 

activates the composing SubaaSs on the fly, dynamic binding to IaaSs (i.e., SubaaS 

Table 3.1. Examples of conferencing service development APIs 

REST 

Resource 
Operation 

HTTP action and 

resource URI 
Request body parameters 

Most important 

info in response 

List of 

Conferences 

Create 

conference 
POST: /conferences 

Conference model, Media, 

Conference technology, 

floor control, conference 

size, QoS requirements 

ID and URI of 

the created 

conference 

resource 

List of 

participants 

Add 

participant 

POST: /conference/ 

{conferenceId}/ 

participants 

Participant description: 

name, URI 

ID and URI of 

the new 

participant 

resource 

List of floors Add floor 
POST: /conferences 

/{conferenceId} /floors 

Floor description: chair, 

floor participants 

ID and URI of 

the newly 

created floor 

resource 

Specific sub-

conference 

Remove 

subconference 

DELETE: /conferences 

/{conferenceId} 

/subconferences 

/{subconferenceId} 

None 

Success or 

failure 

indication 
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providers) is required. As for the automation level, the semi-automated approach is adopted 

to take advantage of more mature and widely used techniques, such as workflow.  

In this work, the conferencing PaaS provider develops a generic workflow template for 

the composite conference, considering the various substrate types that may be required. It 

uses a workflow automation tool (e.g., Activiti [73]) to ease and speed up the process. When 

the Conference Orchestration component selects the SubaaSs to be composed (i.e., at 

runtime), it creates an instance of the workflow template and then configures the instance 

with the selected and activated substrate instances. Thus, the conference is dynamically 

bound to its composing substrate services. This dynamic binding makes it possible and easy 

to change the substrates used by an ongoing conference at runtime if needed. Note that a 

Table 3.2. Categorization of API parameters 

 
Categories of 

Parameters 
Example Values 

Mandatory 

Aspects 

Conference 

Model 

Pre-arranged 

conference 

Dial-in conference 

Dial-out conference 

Ad-hoc conference 

Media At least one of audio, video, and text 

Conferencing 

Technology 

SIP-based 

Signaling 

protocol 

Default protocol: SIP. No 

need to specify 

Audio 

encodings 

Default encoding: NULL. It 

should be specified 

Video 

encodings 

Default encoding: NULL. It 

should be specified 

WebRTC-based 

Signaling 

protocol 

Default protocol: NULL. It 

should be specified 

Audio 

encodings 

Default encoding: G.711 

and Opus. Can specify 

additional 

Video 

encodings 

Default encoding: H.264 

and VP8. Can specify 

additional 

Hybrid (SIP + 

WebRTC based) 

Mandatory protocols and encodings from 

both technologies apply. Can specify 

additional 

Optional 

Aspects 

Floor control 
At least one floor control policy, e.g., chair-moderated or 

round-robin 

Subconference Enabled or not 
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PaaS provider may define multiple workflow templates and then select the most suitable 

one based on the required substrate types and the rest of the users’ requirements. 

3.3.5. Illustrative Scenario 

The illustrative scenario consists of (i) an online game application where players can talk 

for unlimited time but can have private text chat for only 5 minutes per hour, (ii) a service 

provider that offers dial-in audio conferencing as SaaS with text chat for a limited time and 

(iii) a conferencing PaaS that subscribes to three conferencing IaaSs: A, B and C, which 

offer dial-in signaling, audio mixing and instant messaging SubaaSs respectively. The 

scenario illustrates how the conferencing PaaS creates a conference when the game 

application sends a request to the conferencing SaaS and how the conferencing IaaSs 

allocate the resources. 

Fig. 3.3 shows the interactions. For brevity, the game application is omitted in the figure. 

Using the Conferencing Service Utilizing APIs, the game application developer finds the 

offered conferencing services and requests for conferencing SaaS A. When conferencing 

SaaS A receives the game application request for creating a conference, it invokes the create 

conference API (step 1). The API handling is delegated to the Conference Orchestration 

component, which determines necessary substrate types (step 2) and finds appropriate 

 

Fig. 3.3. Conference creation and modification steps 
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SubaaSs through the broker (step 3). In this scenario, the dial-in signaling and the audio 

mixing SubaaSs are selected from IaaSs A and B respectively (step 4).  

Next, the PaaS requests the IaaSs, via the Conferencing IaaS Handler, to activate the 

substrates (steps 5 to 12). For activation, the Conferencing PaaS Handler component in the 

IaaS receives the request and forwards it to the SubaaS Controller. The latter selects the 

requested substrate’s code from its repository and sends the required information to the 

Substrate Resource Manager to allocate the required resources (e.g., it selects the audio 

mixer code that can handle 200 participants and asks the Substrate Resource Manager to 

create and run a new VM to accommodate 200 participants, install the substrate code on the 

VM, and run the code to initialize and activate the audio mixer as a substrate).   

 After activating the substrates, the Conference Orchestration binds the SubaaSs in the 

composing template (selected in step 2) and then executes the new dial-in audio conference 

(step 13). The orchestrated conference represents a full-fledged conference. Finally, the ID 

of the full-fledged conference is returned to the game (step 14).  

It is assumed that the conferencing service enables private text chat after 30 minutes. 

When the timer expires, the service invokes the addMedia API to add instant messaging to 

the conference for 5 minutes (step 15). Thus, the Conference Orchestration discovers the 

appropriate SubaaS from the broker (step 16). It selects IaaS C, activates the instant 

messaging substrate and modifies the conference workflow to add instant messaging (step 

17 to 22). On the new substrate, an individual conference is created for 5 minutes and the 

existing participants are added to it (step 23 to 26). A notification is sent to the game 

application (step 27) and the participants can start exchanging text messages. For 

optimization purposes, the messaging SubaaS can be added to the conference when created 

and it can be enabled and disabled when needed. Meanwhile, the messaging SaaS can be 

discovered and added at runtime if, for instance, the original one is no more available. The 

scenario is showing the latter case. 

3.4. Implementation and Measurements 

An implementation architecture is first presented. Next, the developed prototype is 

described. 
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3.4.1. Implementation Architecture 

Fig. 3.4 shows the implementation architecture including Conferencing PaaS, 

Conferencing IaaS, and the SubaaS Broker. 

(i) Conferencing PaaS  

In the Conferencing Service Provisioning APIs component, two sets of REST APIs are 

developed: Conferencing SaaS Development APIs and Conferencing SaaS Deployment 

APIs. These are used for service creation and deployment respectively. The Conferencing 

Service Utilizing APIs have been also implemented as REST APIs. Management and 

Governance and Service Hosting and Execution components are not discussed here as they 

are reused from the conventional PaaS architectures.  

The Conference Orchestration component uses a repository to store the workflows of 

composing templates. The Conference Manager in this component receives the northbound 

requests for running conferences, selects an appropriate template from the repository, and 

determines the required substrates for the conference. It then sends that information to the 

SubaaS Selector and the Substrate Orchestration Engine.  
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Fig. 3.4. Implementation architecture 
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The SubaaS Selector chooses the most suitable conferencing SubaaS from the SubaaS 

Broker, given the substrate requirements. The discovery mechanism and the interfaces 

between these two are reused from the existing work [37]. The Substrate Orchestration 

Engine uses the chosen template to compose the selected substrates and deploy it in the 

Conference Execution Engine that hosts the running conferences. The Conference Scaling 

Decision Maker monitors the running conferences and requests scaling when needed.  

(ii)  Conferencing IaaS 

The Conferencing PaaS Handler includes two components: Conferencing PaaS Requests 

Handler and Conferencing Participants Request Handler. These are used to process the 

requests initiated by the PaaS and by the Conference Participants (i.e., the users of 

conferencing applications), respectively. These requests are of three types: (1) to create and 

activate a conference; (2) to scale a specific conference (e.g., change the conference size); 

and (3) to join and leave a conference. The first two are initiated by the PaaS while the third 

is used by the participants. Both handlers are implemented using REST APIs.  

The conference creation and activation requests are sent to the SubaaS Manager in the 

SubaaS Controller component. The SubaaS Manager uses the Substrate Selector to choose 

the appropriate substrates for creating the new conference. Also, it uses the SubaaS 

Publisher to publish the existing SubaaSs to the Broker.  

The conference scaling requests are forwarded to the Scaling Manager in the SubaaS 

Controller component. It relies on a Scale Decision Maker to decide how to scale the 

conference. The decision maker first fetches the information about the conference-related 

SubaaSs from the Active SubaaS Info (e.g., the IP of the hosting VM(s)/container(s) and 

the information of the server(s) hosting those substrates, such as available RAM, CPU, etc). 

Then, based on this information and the new scaling requirements, the decision maker 

determines which substrate(s) should be changed and how (i.e., scale up/out/down). It then 

instructs the appropriate component to do it (i.e., Up-Scaler, Out-Scaler, and Down-Scaler). 

For instance, if the requirement is to update an audio conference with 50 users to support 

100 users and the current server hosting the audio mixing substrate does not have enough 
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resources, the decision is to scale out the audio mixing substrate on another server. Thus, a 

new VM or container will create on another server to host the audio mixer substrate. 

For the Substrate Manager, we use the OpenStack Compute (Nova) layer. It creates and 

updates VMs/Containers to host the running substrates. It allocates or deallocates resources 

based on the incoming requests from the SubaaS Manager and the Scaling Manager. It also 

keeps the Active SubaaS Info up-to-date after each operation. 

3.4.2. Prototype 

The prototype scenario includes a service provider offering dial-in audio conferencing 

service and a game application utilizing that service. It also includes the conferencing PaaS 

and two conferencing IaaSs – both providing dial-in signaling and audio mixer substrates. 

In this prototype, the Cloud Foundry PaaS is used to provide the implementation of 

typical PaaS components. We also extend it to implement our novel component (i.e., 

Conference Orchestration). For Substrate Orchestration Engine and Conference Execution 

Engine, we use Activiti [74], a light-weight workflow and Business Process Management 

(BPM) platform. Conference Manager and Conferencing IaaS Handler are implemented 

using Express.js framework [75]. Advanced REST Client [76] is also used to simulate SaaS 

APIs invocation by the game.  

For the conferencing IaaS, OpenStack [77] is used. Conferencing PaaS Handler is 

implemented as a Java application with REST-based APIs to communicate with the PaaS. 

The open source framework Asterisk [78] is used for signaling, media handling, and floor 

control substrates. To publish a SubaaS information, we implement a subset of the model 

proposed in [37]. Our published SubaaS information is shown in table 3.3. For the Scaling 

Manager, we use the proposed resource allocation mechanism in chapter 4.  

3.4.3. Validations and Measurements 

To validate our architecture, we run the implementation according to the steps presented 

in Fig. 3.3. Fig. 3.5 shows the Activiti orchestration process to create a dial-in audio 

conference. The workflow execution corresponds to steps 5 to 14 in Fig. 3.3. Implementing 
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the dial-in audio conference service using Activiti proved the simplicity of service creation, 

which is very useful for non-expert developers. Indeed, while expert conferencing service 

providers can use offered APIs to create their provisioned services, non-expert providers 

can use an orchestration tool to provision their services. Fig. 3.6 shows the parameters sent 

back to the game application after the workflow execution.  

Three experimental environments are considered for performance measurements: 1) A 

Non-Cloud Conferencing (NCC) environment, where resources are allocated beforehand. 

2) A Monolithic IaaS Provider (MIP) environment, where an IaaS offers multiple substrates 

in a single SubaaS (i.e., the SubaaS is composed of multiple coupled substrates). Thus, the 

IaaS hosts all substrate instances on the same VM. This is the same if several SubaaSs from 

the same IaaS run on the same VM. 3) A Non-Monolithic IaaS Provider (NMIP) 

environment, where IaaS offers every single substrate as a separate service. In NMIP, the 

IaaS hosts substrate instances on separate VMs.   

Table 3.3. Published information of a SubaaS into the broker in our implementation 

Categories of 

Parameters 
Example Values 

Type of Service 

Signaling 

Signaling Protocol 
Acceptable signaling protocols  

(e.g., SIP) 

Conference Model 
Acceptable conference models  

(e.g., Dial-in, Dial-out, Ad-hoc) 

Media Handling 

Audio Mixer 
Acceptable audio encodings  

(e.g., G.711) 

Video Mixer 
Acceptable video encodings  

(e.g., H.264) 

Conference 

Control 

Floor Control 

Policy 

Supported control policies  

(e.g., round-robin) 

Floor Chairs 
Maximum number of acceptable chairs 

(e.g., 5) 

Service Endpoint URI 
The domain or IP of the service, along with the port 

number (e.g., http://audiomixer.com:263) 

Service Limit 

Maximum 

number of 

accepting 

participants 

Zero means there is no limit on maximum number of 

accepting participants 

Service 

Integration 

Templates 

Workflows 
The bpmn20.xml files that describes how this service can 

integrate with some other known services 
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The following four metrics are used: (1) Resource Allocation – the total amount of 

allocated resources, such as memory and CPU, to accommodate all participants, (2) Scale 

Time – the time to add resources to scale the conference, (3) Conference Start Time – the 

time to get a conference ready upon the receipt of a request and (4) Participant Joining 

Time – the time to add a participant to a running conference.  

To analyze the allocated resources, we consider a conferencing application with 

considerable fluctuation. A good example of such application is a massively multiplayer 

online game (MMOG) which offers the audio/video conferencing. This kind of application 

may include thousands or even millions of players who share their audio and video in the 

logic of the game. For example, the study in [3] reported that the number of users in World 

of Warcraft (a famous online game) fluctuates between 1.5 and 2.5 million over 10 hours. 

Fig. 3.7 shows the allocated amount of memory (i.e., RAM) for a conference when the 

number of participants fluctuates between 1 and 3000. To simulate this fluctuation, we 

 

Fig. 3.5. Dial-in audio conference creation and activation workflow 

 

Fig. 3.6. Conference information which passed to the game application  
Fig. 6 Conference Information which Passed to the Game Application 
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increase the conference size by 200 participants every 10 minutes. The results are based on 

the observed resource usage per participant. The Scale Decision Maker in IaaSs scales the 

VMs up and out while maintaining the QoS requirements. Two QoS requirements are 

considered: 1) the end-to-end delay which includes the audio and video mixing time should 

not take more than 400 msec and 2) the amount of allocated resources should be minimized. 

The VMRA resource allocation algorithm presented in chapter 4 is used for this prototype.  

In NCC, there are always some idle and non-utilized resources because of upfront 

resource provisioning. Hence, we do not show the NCC allocated resources in Fig. 3.7. As 

it is depicted in this figure, MIP scales better than NMIP (i.e., it allocates fewer resources) 

for smaller conferences whereas NMIP wins for bigger conferences. In NMIP, the 

substrates are hosted on separate VMs. Thus, for smaller conferences, it leads to more VMs 

and more non-utilizable resources (e.g., the resources consumed by the operating system) 

than in MIP. The bigger the size of a conference, the more resources the substrates required 

to perform well. However, they do not require the same thing; e.g., a signaling substrate 

may need less extra resources than the mixer because it is only used in the first phase of 

the conference. In MIP, because of having monolithic SubaaS, the rate of adding resources 

is the same for all substrates. This results in more scaling out decisions and therefore more 

VMs. Indeed, by applying the VMRA allocation algorithm, the resources exceed its 

maximum extra amount for scaling up, which makes scaling out a better decision. By 

contrast, in NMIP, the resources are allocated to each substrate based on their need, 

resulting in less scaling out decisions. This makes NMIP achieve better scalability because 

of the fewer number of VMs and better resource utilization than in MIP.  

 

Fig. 3.7. Resource Allocation Evaluation 
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Regarding CPU usage, we used a 2.6 GHz single core CPU for each VM. The CPU 

utilization per VM fluctuated between 20% and 80% for each VM in both scenarios. This 

fluctuation is based on the number of users that are connected to the VM. This shows that 

VMs’ resources are not fully used, in both MIP and NMIP. Therefore, CPU utilization for 

small conferences is better in MIP, since it has a fewer number of VMs to accommodate 

users in comparison with NMIP. Similarly, when the size of the conference is big, NMIP 

has better results because of its fewer VMs usage. 

For the Scale Time metric, we observe the scaling performance of the system under two 

conditions. The first condition demonstrates the behavior of the system when the 

conference starts with the minimum required amount of resources, i.e., the least possible 

substrate instances (Fig. 3.8). The second condition demonstrates the behavior of the 

system under resource over-provisioning situation, i.e., the conference starts with more 

substrate instances than required (Fig. 3.9). Note that the second experiment is exclusively 

aimed for demonstrating the impact of the number of substrates on the scaling time. 

Therefore, in that experiment, the SLA violations are not taken into account; i.e., the 

amount of allocated resources is not minimized. The provided set of experiments helps the 

conference service providers to evaluate the tradeoff between over-provisioning and 

(sub)optimal substrate allocation. 

      

 

Fig. 3.8. Total Time for Scaling the Size of a Conference with Single Participant to a Conference with 2 up 

to 3000 Participants 
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The scaling time under the first condition for both MIP and NMIP scenarios are depicted 

in Fig. 3.8. In this experiment, we first run a conference with one participant. This 

conference starts with the minimum required resources (i.e., one VM in MIP and two VMs 

in NMIP). By increasing the size of the conference, the required resources are added to the 

existing VMs (i.e., those hosting the substrates). If the required QoSs cannot be satisfied 

by adding resources to the existing VMs, (e.g., the end-to-end delay is more than 400 

msec), the Scaling Manager in the IaaS starts new VMs for hosting another instance of 

required substrates. We scale the size of the conference between 1 and 3000 participants in 

this experiment. The scaling time accounts for several parameters, including the time for 

creating a new VM, the time for adding resources (i.e., RAM in this experiment) to the 

existing VMs and reconfiguring the system (e.g., updating the list of available audio 

mixers), and the time for adding all the participants. Basically, the scaling time from 10 to 

100 participants, for instance, is the total time for moving from a running conference with 

10 participants to a running conference with 100 participants. 

As shown in Fig. 3.8, for adding a large number of participants, the scaling time in MIP 

is lower than that of NMIP. The main reason is, as discussed earlier, MIP creates more 

instances/VMs than NMIP when the number of participants is large. This makes MIP able 

to add participants in parallel to several substrate instances/VMs. Besides, although 

reconfiguring the system with more instances has some overhead, the gain from load 

balancing makes the scaling time in MIP lower than in NMIP.  

  

(a) (b) 

Fig. 3.9. Conference Scaling Time by Having Different Number of VMs for (a) MIP and (b) NMIP 
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Also, MIP gives better results when a limited number of participants is added (scaling 

between 1 through ~825 in this graph). Adding resources to the existing VMs in both 

scenarios takes the same time, i.e., it is the exact same process. However, the overhead 

time of reconfiguring the system with more VMs in NMIP leads to having a longer scaling 

time. Once MIP starts to create new VMs, the time for creating these VM leads to an 

increase in the scaling time in MIP (in the middle part of the figure). Based on the results, 

no matter how many VMs are created, it does not noticeably affect the scaling time in MIP 

and NMIP because several VMs can be created in parallel.  

The case of over-provisioning (Fig. 3.9) shows that, in both MIP and NMIP, the scaling 

time for a limited number of participants (up to ~800 participants) is less when the number 

of VMs is less. In contrast, when the number of participants to be added is large, having a 

conference that is hosted on more VMs results in less scaling time because the participants 

can join multiple instances/VMs in parallel. Therefore, we can conclude that having more 

resources does not always lead to having less scaling time in the conferencing domain. In 

fact, in conferencing, the collaboration between different substrate instances hosted on 

different VMs causes some overhead. Although increasing the number of substrate 

instances and balancing the loads between them leads to some saving in scaling time, the 

overhead of reconfiguring the system might be more than the gain. 

Fig. 3.10(a) compares the conference start time in the three studied environments (i.e., 

NCC, MIP, and NMIP). It shows that NCC takes the least time to start a new conference, 

which is obvious due to the absence of virtualization overhead. And, since in NMIP the 

substrate instances are hosted on separate VMs and they need to connect to each other over 

the network, it takes more time than it does in MIP. However, since starting a conference 

happens just once, this time is endurable in the Cloud scenarios. Participant joining time is 

also the least in the NCC as shown in Fig. 3.10(b). Cloud-based scenarios take more time 

because of the notification overhead between IaaSs, PaaS and the game server. However, 

this time length remains acceptable (can be seen as the waiting time to join the conference) 

and is not noticeable by end users. In addition, the participant joining time of the two cloud-

based scenarios are close as IaaSs can notify PaaS in parallel.  
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3.5. Conclusion 

This chapter presents a novel holistic architecture for multimedia conferencing 

applications. This architecture covers both PaaS and IaaS layers of cloud. The proposed 

architecture simplifies the provisioning of the conferencing applications for expert and non-

expert application providers by providing novel APIs. It also supports scaling the 

conferencing applications in an elastic manner. The conferencing API examples and the 

categorization of their parameters are presented in this chapter. The implemented prototype 

and the experiments show the feasibility and validation of the proposed architecture. 

Although in cloud-based scenarios the conference start time and the participant joining 

time are more than those in NCC, the cloud-based conferencing architecture helps to scale 

the system easily and avoids the over-provisioning or under-provisioning of resources. The 

results of scaling duration and allocated resources help the conferencing service providers 

with better provisioning of their services. For instance, MIP is a better choice for 

provisioning small conferencing services (e.g., to support 300 users) as it results in less 

resource usage and less scaling time than it does in NMIP. However, for a conferencing 

service with 1200 users, NMIP gives better scaling time and lower resource consumption. 

In the case of big scenarios (e.g., 3000 users or more), there is a tradeoff between using 

fewer resources (i.e., NMIP) and having less scaling time (i.e., MIP). 
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Fig. 3.10. Average (a) Conference Start Time (b) Participant Joining Time  
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Chapter 4 

 

4. A Resource Allocation Mechanism for 

Multimedia Conferencing Applications 

with Video Mixing 

 

4.1. Introduction 

In the previous chapter, we proposed a holistic cloud-based architecture for 

multimedia conferencing applications. In the conferencing IaaS of our proposed 

architecture, we assumed that there is an efficient resource allocation mechanism that can 

optimize the allocation of actual resources (e.g., CPU, RAM, and Storage). This chapter 

proposes a cloud-based resource allocation mechanism for conferencing applications with 

video mixing. The proposed solution optimizes resource allocation and scales resources in 

terms of the number of participants while guaranteeing QoS. Fig. 4.1 depicts the assumed 

business model. It has four main roles: conferencing application providers, conferencing 

service providers, media handling service providers, and conferencing IaaS providers. In 

this model, conferencing applications rely on a conferencing service that is offered as a 

SaaS. Media handling services are also offered to conferencing service providers as SaaSs. 

The actual resources for media handling services are provided by geographically 



49 

 

distributed IaaSs. As it is shown in this figure, the proposed resource allocation mechanism 

runs in the IaaS.  

We entitled the proposed algorithm in this chapter as VMRA (Video Mixing Resource 

Allocator). In designing the VMRA, we consider the conferencing applications with video 

mixing. It allocates or deallocates resources for conferencing applications based on the 

fluctuation in the number of participants. Besides efficient resource utilization, it caters to 

the QoS, with respect to the video mixing response time. It performs a fine-grained scaling 

of resources to improve efficiency in resource utilization. We analyze VMRA theoretically 

by modeling it as an optimization problem. Then, we design the heuristic that can reach 

the sub-optimal solution for the large-scale scenarios in an acceptable time. 

The rest of this chapter is as follows. First, it presents the VMRA by discussing its 

system model. Then, it discusses the designed heuristic. After that, it presents the 

simulation parameters and settings of VMRA followed by the validation results. We 

conclude this chapter at the end.  

Conferencing 

Application Provider Distance Learning as a Service MMOG as a Service
…

Conferencing 

Service Provider Conferencing as a Service

Media Handling 

Service Provider Video Mixing as a Service Transcoding as a Service Compressing as a Service …

Conferencing 

IaaS 

Provider

Resource Allocator Resource Allocation Mechanisms for Media Handling Services

 

Fig. 4.1. Cloud-based conferencing business model 
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4.2. VMRA System Model 

The system model of VMRA includes cooperation, video mixing, and mathematical 

models. In our mathematical model, we define VMRA as an Integer Linear Programming 

(ILP) problem.  

4.2.1. Cooperation Model  

We consider a large-scale geographically distributed cloud infrastructure to support 

conferencing applications and video mixing as a service, consisting of users, separate zones 

and an IaaS in each zone 𝑧, as depicted in Fig. 4.2. We illustrate users scattered across a 

large geographical area, wanting to join a conferencing application, such as MMOG. We 

assume that in each zone 𝑧, there is a data center providing IaaS, where each data center 

consists of a number of servers (𝑁𝑧), hosting VMs. Furthermore, we assume that zones are 

interconnected in a full mesh manner. The same assumption applies to VMs in a data 

center, as shown in Fig. 4.2.  

Users in each zone will connect to their local data center to join a conferencing 

application. Each user is considered as a video source, sending video and requesting video 

mixing service. The challenge lies in allocating the resources for video mixing to achieve 

optimal resource utilization while guaranteeing QoS requirements. 

 

Fig. 4.2. Communication model 
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4.2.2. Video Mixing Model 

VMRA decides to add resources to existing VMs or create a new VM when a video 

source is added to a data center. Adding resources is done in fine granularity. This implies 

that VMRA will add minimal required resources in an elastic manner. It will also balance 

the load between all the VMs in a data center. After provisioning appropriate resources, a 

video source will join a VM, that is, a video mixer and video mixing will start. The video 

mixing process is illustrated in Fig. 4.3. 

Our video mixing model follows the Fork/Join parallelism technique [79]. All video 

mixing requests in a data center fork off to several other mixing processes, which are 

concurrently executed in each VM, until they finally join into a single mixed video. VMs 

mix their video sources in parallel. Therefore, the required time for this step depends on 

the maximum number of video sources connected to any VM (𝑉𝑧) in zone 𝑧.  

Each VM will send the result to other VMs in the same data center. This intra-zone 

video exchange time is in 𝑇𝑖𝑛𝑡. Next, each VM mixes the incoming videos from other VMs 

with the result of its own mixed video source. The time for this step depends on the total 

number of VMs in the data center.  

 

Fig. 4.3. An example of our video mixing model 
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Here, mixed video of a data center is ready and sent to all other data centers. This inter-

zone video exchange time is in 𝑇𝑒𝑥𝑡. Then, VMs will start mixing the incoming videos from 

other zones with the one of their own zone. Here, the required time depends on the total 

number of zones and the mixed video across all zones is ready to be sent back to the users. 

4.2.3. Mathematical Model 

This subsection presents our VMRA problem formulation, which is modeled as an ILP 

problem. It presents the problem statement followed by the objectives and constraints. 

(i) Problem Statement 

Given a data center with 𝑁𝑧 servers and 𝑀𝑧 users (video sources), let 𝑇𝑚𝑖𝑥(𝑘) and 𝑅𝑚𝑖𝑥(𝑘) 

represent the time and the resource required to mix 𝑘 video sources, respectively. Also, let 

𝑇𝑖𝑛𝑡 and 𝑇𝑒𝑥𝑡 denote the time to exchange a video across VMs and zones, respectively. 𝑅𝑂 

are the resources dedicated to VM operation, hence, they cannot be utilized for video 

mixing. There are thresholds 𝑇 on QoS, pertaining to the maximum acceptable video 

mixing response time, and 𝑅 on server resource capacity, respectively. Find the minimum 

number of VMs, while efficiently using resources and respecting QoS. 

We model this as an ILP problem, where we assume a video mixer to be analogous to a 

VM. Tables 4.1 and 4.2 delineate the inputs and variables of our problem, respectively.  

(ii) Objectives 

We assume the operational cost of a VM, in terms of non-utilizable resources, 

supersedes the cost of resources required for handling the video mixing request of a 

participant, as in (1). Furthermore, we assume homogeneous costs of video mixing 

resources across servers. Therefore, the operational cost 𝑅𝑂, associated with a VM, inhibits 

the introduction of a new VM, in the event of a new participant arrival. That is, a new VM 

is only instantiated if an incoming request cannot be handled by increasing the resource of 

an existing VM.  

𝑅𝑂 ≫ (𝑅𝑚𝑖𝑥 (𝑘+1) − 𝑅𝑚𝑖𝑥(𝑘)) (1) 
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Equation (2) depicts our multiple objectives. Primarily, we minimize the allocated 

resources across all zones, by minimizing the number of VMs. On the other hand, the time 

to mix videos in zone 𝑧 depends on the maximum number of users connected to a VM (𝑉𝑧). 

We balance the load between VMs to decrease the overall video mixing time. Note that 

these are competing objectives. Therefore, we prioritize minimizing the number of VMs 

by normalizing 𝑉𝑧 with the maximum number of users in zone 𝑧. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  { ∑∑𝑥𝑖,𝑗 + 
𝑉𝑧
𝑀𝑧

𝑀𝑧

𝑗=1

𝑁𝑧

𝑖=1

} (2) 

Table 4.1. Problem inputs 

Input   Definition 

𝑍   number of zones 

𝑁𝑧   number of servers in zone 𝑧 

𝑀𝑧   number of users, i.e., video sources in zone 𝑧 

𝑇𝑖𝑛𝑡   time to send a video between VMs in a zone  

𝑇𝑒𝑥𝑡   time to send a video between zones, 𝑍 = 1 ⇒ 𝑇𝑒𝑥𝑡= 0 

𝑇𝑚𝑖𝑥(𝑘)   time to mix 𝑘 video sources, 𝑇𝑚𝑖𝑥(1) = 0 

𝑇   QoS threshold (acceptable mixing response time) 

𝑅𝑚𝑖𝑥(𝑘)   required resources for mixing 𝑘 video sources in a VM 

𝑅𝑂   non-utilizable VM operating resources 

𝑅   threshold on the maximum amount of resources on a server 

𝛽   large enough constant  

 

Table 4.2. Problem variables 

Variable   Definition 

𝑋 
𝑁𝑧 ×𝑀𝑧 binary matrix, 

where 
  𝑥𝑖,𝑗 = {

1,  𝑖𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖 ℎ𝑜𝑠𝑡𝑠 𝑉𝑀 𝑗
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑌 
  𝑀𝑧 ×𝑀𝑧 binary matrix, 

where 
  𝑦𝑗,𝑘 = {

1,  𝑖𝑓 𝑢𝑠𝑒𝑟 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑉𝑀 𝑗
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑉𝑧   Maximum number of users that are connected to a VM in zone 𝑧 

𝑈   A vector where 𝑢𝑗 is the number of users connected to VM 𝑗 

𝐶   𝑁𝑧 ×𝑀𝑧 matrix, where   c𝑖,𝑗 = {
𝑢𝑗,  𝑖𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖 ℎ𝑜𝑠𝑡𝑠 𝑉𝑀 𝑗

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 



54 

 

(iii) Constraints 

VMs and users cannot be split across multiple servers and VMs, respectively. Equation 

(3) ensures that a VM exists on a single server. Similarly, (4) allows a user to connect to a 

single VM. Furthermore, if there are users connected to a VM, that VM should exist on 

one server, as depicted in (5) and (6). 

∑𝑥𝑖,𝑗 ≤ 1

𝑁𝑧

𝑖=1

 1 ≤ 𝑗 ≤ 𝑀𝑧 (3) 

∑𝑦𝑗,𝑘 = 1

𝑀𝑧

𝑗=1

 1 ≤ 𝑘 ≤ 𝑀𝑧 (4) 

∑𝑦𝑗,𝑘 ≤ 𝛽 ⋅ (∑𝑥𝑖,𝑗

𝑁𝑧

𝑖=1

)

𝑀𝑧

𝑘=1

 1 ≤ 𝑗 ≤ 𝑀𝑧 (5) 

∑𝑦𝑗,𝑘 ≥∑𝑥𝑖,𝑗

𝑁𝑧

𝑖=1

𝑀𝑧

𝑘=1

 1 ≤ 𝑗 ≤ 𝑀𝑧 (6) 

Video mixing required resources, that is, the VMs operating resources and their 

connected number of users is bounded by the server resource capacity 𝑅, in (7).   

   𝑅𝑂 ⋅ (∑𝑥𝑖,𝑗

𝑀𝑧

𝑗=1

) +  𝑅
𝑚𝑖𝑥(∑ (𝑥𝑖,𝑗

𝑀𝑧
𝑗=1 ⋅ ∑ 𝑦𝑗,𝑘)

𝑀𝑧
𝑘=1 )

≤ 𝑅    1 ≤ 𝑖 ≤ 𝑁𝑧 (7) 

Note that the product ∑ (𝑥𝑖,𝑗
𝑀𝑧
𝑗=1 ⋅ ∑ 𝑦𝑗,𝑘)

𝑀𝑧
𝑘=1  in (7) is non-linear. Therefore, we linearize 

(7) by replacing it with constraints (8)-(13).  

∑𝑦𝑗,𝑘 = 𝑢𝑗

𝑀𝑧

𝑘=1

 1 ≤ 𝑗 ≤ 𝑀𝑧 (8) 

𝑐𝑖,𝑗 ≤ 𝑀𝑧 ⋅ 𝑥𝑖,𝑗 1 ≤ 𝑖 ≤ 𝑁𝑧 ,1 ≤ 𝑗 ≤ 𝑀𝑧 (9) 
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𝑐𝑖,𝑗 ≤ 𝑢𝑗 1 ≤ 𝑖 ≤ 𝑁𝑧  ,1 ≤ 𝑗 ≤ 𝑀𝑧 (10) 

𝑐𝑖,𝑗 ≥ 𝑢𝑗 −𝑀𝑧(1 − 𝑥𝑖,𝑗) 1 ≤ 𝑖 ≤ 𝑁𝑧 ,1 ≤ 𝑗 ≤ 𝑀𝑧 (11) 

𝑐𝑖,𝑗 ≥ 0 1 ≤ 𝑖 ≤ 𝑁𝑧 ,1 ≤ 𝑗 ≤ 𝑀𝑧 (12) 

𝑅𝑂 ⋅ (∑𝑥𝑖,𝑗

𝑀𝑧

𝑗=1

) +  𝑅
𝑚𝑖𝑥(∑ 𝑐𝑖,𝑗

𝑀𝑧
𝑗=1 )

≤ 𝑅 1 ≤ 𝑖 ≤ 𝑁𝑧 (13) 

The maximum number of users, 𝑉𝑧, in a zone 𝑧 influences the video mixing time. 

Equation (14) finds 𝑉𝑧, for each zone.  

   ∑ 𝑦𝑗,𝑘 ≤ 𝑉𝑧

𝑀𝑧

𝑘=1

 1 ≤ 𝑗 ≤ 𝑀𝑧 (14) 

Video mixing response time for a zone 𝑧, depends on the maximum number of users 

connected to a single VM in that zone ( 𝑇𝑚𝑖𝑥(𝑉𝑧)). Note that VMs should mix the output of 

video mixing from other VMs too, therefore, the video mixing response time will also be 

influenced by the total amount of VMs across all servers in 𝑧. This time is given 

by 𝑇
𝑚𝑖𝑥(∑ ∑ 𝑥𝑖,𝑗

𝑀𝑧
𝑗=1

𝑁𝑧
𝑖=1 )

, with an inter-zone exchange time of 𝑇𝑖𝑛𝑡. Furthermore, VMs should 

mix the incoming videos from all other zones, time for which is represented by 𝑇𝑚𝑖𝑥(𝑍), 

with an intra-zone exchange time of 𝑇𝑒𝑥𝑡. Equation (15) ensures that this total video mixing 

response time for each zone 𝑧, abides by the QoS threshold 𝑇. 

   𝑇𝑚𝑖𝑥(𝑉𝑧) +  𝑇𝑖𝑛𝑡 +  𝑇
𝑚𝑖𝑥(∑ ∑ 𝑥𝑖,𝑗

𝑀𝑧
𝑗=1

𝑁𝑧
𝑖=1 )

+ 𝑇𝑒𝑥𝑡 + 𝑇𝑚𝑖𝑥(𝑍) ≤ 𝑇 ∀1 ≤ 𝑧 ≤ 𝑍 (15) 

VMRA executes in each zone separately. However, because video mixing as a service 

relies on multiple IaaSs, the total number of zones will influence VMRA’s decision. Based 

on (15), different response times across zones are attributed to the different values of 

𝑇𝑚𝑖𝑥(𝑉𝑧) and 𝑇
𝑚𝑖𝑥(∑ ∑ 𝑥𝑖,𝑗

𝑀𝑧
𝑗=1

𝑁𝑧
𝑖=1 )

. Zone 𝑧 will send its mixed video to other zones and wait to 

receive from them. Waiting time in (16) will add to the video mixing response time of 
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zones that perform video mixing faster than the other zones. Thus, the video mixing 

response time will be equal to the maximum response time across all zones. 

{
 
 

 
 

𝑀𝐴𝑋 

{
 

 (𝑇𝑚𝑖𝑥(𝑉𝑝) + 𝑇𝑚𝑖𝑥(∑ ∑ 𝑥𝑖,𝑗
𝑀𝑝
𝑗=1

𝑁𝑝
𝑖=1

)
) −

(𝑇𝑚𝑖𝑥(𝑉𝑧) + 𝑇𝑚𝑖𝑥(∑ ∑ 𝑥𝑖,𝑗
𝑀𝑧
𝑗=1

𝑁𝑧
𝑖=1 )

)
}
 

 

    

0, 𝑖𝑓 𝑀𝐴𝑋 ≤ 0

 ∀1 ≤ 𝑝 ≤ 𝑍 (16) 

4.3. VMRA Heuristic 

Based on (1), VMRA always processes a new mixing request by adding required 

resources to the existing VMs unless it cannot satisfy the QoS requirement or there are not 

enough free resources on the server. In this case, VMRA instantiates a new VM and 

balances the load between VMs in the data center. Load balancing helps to minimize the 

maximum number of connected users to each VM. We achieve this by employing MinMax 

our objective, that is, the minimization of the maximum number of users on VMs and 

consequently, based on (15), it decreases the total response time.  

VMRA checks the available resources when it decides to instantiate a new VM. 

Moreover, it checks the possibility of satisfying QoS requirement, by adding a new VM. 

Our heuristic is as described in Algorithm 4.1. We consider the constants and variables 

shown in Table 4.1 and Table 4.2 as the input to this algorithm. 

Algorithm 4.1. Video mixing resource allocation (VMRA) 

Input:  

𝑀𝑎𝑥_𝑀 = M; // Max number of users that can be served in DC 
𝛼 = 0; // number of VMs 
𝛽 = 1; // number of used servers 
𝑅𝛽 = 𝑅; // available resources on server 𝛽 
Remain_User = 0; // auxiliary variable to scatter users between VMs 
Output: 𝛼, 𝑈,𝑀𝑎𝑥_𝑀 
1. For each m  M do 

Phase 1: Test if there is a VM with lower users than 𝑉𝑧 

2. If (𝑅𝛽  ≥  R
mix(1)

) Then 

3.   For j =1 →  𝛼  do 

4.     If (𝑢𝑗< V
Z 

) Then 

5.         𝑢𝑗 ← 𝑢𝑗 + 1 

6.     Break, serve next m 

7.    end for 

8. end if 
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Phase 2: Create first VM in DC 

9. If (𝛼==0) Then 

10.   𝛼 ←  1 

11.   𝑢1 ← 1 

12.   𝑉𝑧  ← 1 

13. end if 

Phase 3: Test response time by increasing 𝑉𝑧 without adding VM 

14. Else if (𝑅𝛽 ≥ R
mix(1)

AND Response time(𝑉𝑧 ← 𝑉𝑧 + 1, 𝛼)≤ 𝑇)Then 

15.   𝑢1 ← 𝑢1 + 1  

16.   𝑉𝑧 ← 𝑉𝑧 + 1 

17. end else if 

Phase 4: Test response time by adding a new VM on the same server 

18. Else if (𝑅𝛽  ≥ R
mix(1) 

+ R
O
) Then 

19.   If (Response time(𝑉𝑧 ← ⌈
𝑚

𝛼+1
⌉, 𝛼 ←  𝑎 + 1)≤ 𝑇) Then 

20.     𝛼 ←  𝑎 + 1 

21.    Remain_User ← m 

22.    For j = 𝛼 → 1 do 

23.         𝑢𝑗 ← Remain_User / j 

24.         Remain_User ← Remain_User − 𝑢𝑗 

25.    end for 

26.    𝑉𝑧 ← ⌈
𝑚

𝛼
⌉ 

27.   end if 

28.   Else 

29.     𝑀𝑎𝑥𝑀 ← 𝑚 − 1 

30.     Break, DC cannot serve m users 

31.   end else 

32. end else if 

Phase 5: Test response time by adding new VM on the other server 

33. Else If ( (N
z
 -𝛽 > 0) AND (𝑅𝛽  ≥  R

mix(1) 
+ R

O
)) Then 

34.   If (Response time(𝑉𝑧 ← ⌈
𝑚

𝛼+1
⌉, 𝛼 ←  𝑎 + 1)≤ 𝑇) Then 

35.    𝛽 ←  𝛽 + 1 

36.    𝛼 ←  𝑎 + 1 

37.    Remain_User← m 

38.    For j = 𝛼 → 1 do 

39.         𝑢𝑗 ← Remain_User / j 

40.         Remain_User ← Remain_User − 𝑢𝑗 

41.    end for 

42.    𝑉𝑧 ← ⌈
𝑚

𝛼
⌉ 

43.   end if 

44.   Else 

45.     𝑀𝑎𝑥𝑀 ← 𝑚 − 1 

46.    Break, DC cannot serve m users 

47.   end else 

48. end else if  

49. Else 

50.   𝑀𝑎𝑥𝑀 ← 𝑚 − 1 

51.   Break, DC cannot serve m users 

52. end for each 

Return 𝛼, 𝑈,𝑀𝑎𝑥_𝑀 
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In phase 1, VMRA tries to find a VM with lowest number of connected users. If VMRA 

finds such a VM, it will add required resources to that VM and assigns the new user to it. 

In phase 2, the first user wants to join. So, VMRA will create the first VM and assign that 

user to it. VMRA will reach phase 3 if all the VMs have the same number of users. Here, 

VMRA checks the available resources and the feasibility of satisfying QoS requirements, 

if it assigns a new user to one of the existing VMs. This assignment is crucial as it 

increases 𝑉𝑧, thus, impacting the video mixing time.  

If increasing 𝑉𝑧 causes sacrificing QoS, VMRA decides to instantiate a new VM on the 

same server or on other servers based on available resources, in phase 4 and 5, respectively. 

If there are available resources, but VMRA cannot find any feasible solution to satisfy QoS, 

it will stop accepting new users in both phases 4 and 5. 

This algorithm has a nested loop and its time complexity is based on the number of 

iterations of each loop. Therefore, the time complexity of our VMRA algorithm 

is 𝑂(𝑀𝑧 . 𝛼). 

4.4. Validations and Measurements  

In this section, we present the simulation results of VMRA resource allocation 

algorithm. First, the comparisons baselines are presented. Then, it describes the simulation 

environment and settings followed by the results and a conclusion for this section. 

4.4.1. Comparison Baselines 

We compare VMRA with (i) popular traditional MCU [68], for video mixing, (ii) Nan 

et al. [80], cost minimization queuing model in cloud, for a single class service, and (iii) 

cloud-based MCU (CMCU), which avoids upfront resource costs. Since these models do 

not support multi-zone video mixing, we assume that each model is implemented in a zone 

and exchange mixed video amongst each other until all sources are mixed.  

4.4.2. Environment and Settings 

We assume a MMOG, where player’s video is shared in the logic of the game and 

developed a custom simulator in JAVA. We simulate multiple data centers and game 
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players as conferencing participants. VMRA heuristic runs on each data center part in our 

simulator. Players (conference participants) send their video mixing requests to the local 

data center and receive the result from it. The total number of game players across all zones 

fluctuates since they can join or leave the game whenever they want to. For our simulation, 

we assume a snap-shot of the number of players in each zone. Our simulation parameters 

are depicted in Table 4.3. 

4.4.3. Validations and Measurements 

We simulate VMRA heuristic to check supported number of participants, resource 

utilization and video mixing response time. 

(i) Number of Users 

It is evident from Fig. 4.4, that VMRA can serve more users in a single zone in 

comparison to other baselines. This is because VMRA has the leverage to increase 

resources whenever it reaches the QoS threshold in contrast to the queuing model, where 

the number of computation nodes is fixed. VMRA also performs better than MCU and 

CMCU. Due to their centralized nature, both MCU and CMCU models leverage a single 

server entity and consequently are not equipped to handle a large number of users. 

When we increase the number of zones, we have to account for the inter-zone 

communication time of mixing videos. As a result, to satisfy video mixing response time 

threshold, video mixing as a service can serve a lower number of users in each zone, while 

the number of zones increases. Although there is a tradeoff between the number of zones 

and the number of users that can be served in each zone, total number of users that can be 

served across all zones will increase, as depicted in Fig. 4.5. In addition, VMRA shows a 

better growth rate, thus it shows better scalability, in terms of the number of users, in 

comparison to the other models.  

Table 4.3. Simulation parameters 

Parameter Value Parameter Value Parameter Value 

𝑍 1-6 𝑇𝑚𝑖𝑥(𝑘) 7 msec 𝑅𝑚𝑖𝑥(𝑘) 20 MB (RAM) 

𝑁𝑧 3 𝑇 300 msec 𝑅𝑂 400 MB (RAM) 

𝑀𝑧 1-500 𝑇𝑖𝑛𝑡 10 msec 𝑅 10240 MB (RAM) 

𝛽 M+1 𝑇𝑒𝑥𝑡 15 msec   
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(ii) Resource Utilization and Video Mixing Response Time 

Required resources for video mixing depends on the maximum number of served users. 

Accordingly, we study two different scenarios, each with a different number of video 

mixing requests: (i) Meet-By-All - In this scenario, we assume that there exists a maximum 

number of users, which can be served by all the resource allocation models in a zone while 

respecting QoS. (ii) Meet-By-Some - In this scenario, we assume for all models, the 

number of users to be the maximum supported by VMRA while respecting QoS. In this 

scenario, we relax the QoS constraint for the other models, giving them the leverage to 

support a higher number of users.  

a) Resource Utilization: Meet-By-All Scenario  

Fig. 4.6(a) and 4.6(b), depict the average and the maximum allocated resources over the 

total available resources in a data center, respectively. In MCU, because of the upfront 

resource over-provisioning, there are always some idle resources, which remain unutilized. 

However, because the allocated resources in MCU are always at 100%, we do not show it 

in the resource allocation figures. Other baselines allocate resources as needed. VMRA has 

better results compared to the other baselines, in both average and maximum cases in this 

scenario. This is because the maximum number of users in this scenario is equal to the 

number of users that MCU can support and just one computation entity is enough to serve 

them. However, the queuing model, based on our simulation settings, always uses 3 servers 

to accommodate users. Whereas, VMRA uses 2 VMs to accommodate the same number of 

users, which leads to the allocation of fewer resources, compared to the queuing model and 

 

Fig. 4.4. Maximum participants that can be served 

in a zone 

 

Fig. 4.5. Total number of participants that can be 

served across all zones 
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more resources, compared to MCU and CMCU. However, because the total available 

resources in VMRA are more than those of MCU and CMCU, the allocated resource 

percent is lower in comparison to both. 

b) Video Mixing Response Time: Meet-By-All Scenario  

The average video mixing response time for the Meet-By-All scenario is shown in Fig. 

4.7. As it can be seen, the queuing model shows better video mixing response time than 

VMRA. This is because the objective of our model is maximizing resource utilization while 

respecting QoS. Intuitively, for lower response time, we should allocate more resources; 

however, this is in contradiction to our objective. So, in VMRA, as long as video mixing 

response time is lower than QoS threshold, it does not reduce video mixing response time. 

On the other hand, MCU and CMCU models have a higher video mixing response time, in 

comparison to VMRA. This is directly attributed to the centralized architecture of these 

models. Interestingly, the video mixing response time for MCU and CMCU are the same. 

 

(a) 

 

(b) 

Fig. 4.6. (a) Average, (b) Maximum allocated resources in a datacenter in Meet-By-All scenario 
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Fig. 4.7. Average video mixing response time in Meet-By-All scenario 
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It shows cloud has an effect only on the amount of allocated resources in CMCU and not 

on the video mixing response time.  

c) Resource Utilization: Meet-By-Some Scenario 

Recall, our model can serve the maximum number of users, as shown in Fig. 4.5. Hence, 

in this scenario, we have as many users as VMRA can serve. As depicted in Fig. 4.8(a) and 

4.8(b), the resource allocation of the queuing model performs better compared to VMRA. 

This is because, VMRA will add more resources to accommodate as many users as 

possible, within the QoS threshold, while queuing model serves requests by leveraging a 

fixed number of servers.  

d) Video Mixing Response Time: Meet-By-Some Scenario  

Previous results show queuing model allocates a lower amount of resources in Meet-

By-Some scenario compared to VMRA. However, this model is not suitable for video 

mixing as a service after comparing the corresponding video mixing response time. This is 

because the queuing model sacrifices QoS to serve the same number of users, compared to 

VMRA. As shown in Fig. 4.9, if we choose resource allocation based on the queuing model 

for video mixing as a service in cloud we have a high violation in terms of QoS. Based on 

our simulation results, if we serve as many users as VMRA can support using the queuing 

resource allocation model, QoS will be sacrificed between 66% and 72%. The same holds 

true when comparing with CMCU. In fact, VMRA allocates more resources, compared to 

queuing model and CMCU, to satisfy QoS for more users.  

 

(a) 

 

(b) 

Fig. 4.8. (a) Average, (b) Maximum allocated resources in a datacenter in Meet-By-Some scenario 
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It is important to note that Fig. 4.6 and Fig. 4.8 reveal that to accommodate a larger 

number of users for video mixing, it is desirable to have more data centers with fewer 

resources. Furthermore, as evident from the results, our novel VMRA addresses the 

specific needs of video mixing as a service, which cannot be handled by generic cloud-

based resource allocation models.  

4.5. Conclusion 

This chapter presents VMRA, a novel cloud-based resource allocation algorithm for 

multimedia conferencing applications with video mixing. VMRA scales resources in an 

elastic manner while meeting the QoS requirements and considering the fluctuation in the 

number of participants. We mathematically formulated the problem and also proposed the 

heuristic to solve the large-scale scenarios in an acceptable time. Simulation results show 

that VMRA outperforms other resource allocation techniques for video mixing because it 

considered both resource efficiency and video mixing QoS requirements. VMRA is suitable 

for conferencing applications with video mixing service. However, other media handling 

services such as compressing may be used in a conferencing application. Since each media 

handling service has different requirements, the VMRA may not be suitable for such 

conferencing applications. In addition, VMRA just considers reducing the servers’ resource 

cost and does not consider reducing the network cost. These limitations of VMRA will be 

solved in chapter 5.   

 

Fig. 4.9. Average video mixing response time in Meet-By-Some scenario 
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Chapter 5 

 

5. A Resource Allocation Mechanism for 

Multimedia Conferencing Applications 

with Video Mixing and Compressing 

 

5.1. Introduction 

The previous chapter proposed VMRA, a novel resource allocation mechanism to 

optimize resource allocation in terms of the number of participants while guaranteeing QoS 

for conferencing applications with video mixing. As it was mentioned before, VMRA has 

some limitations. For instance, it does not consider the requirements of other media 

handling services such as compressing while allocating the resources. In addition, it does 

not consider reducing the network cost. This chapter proposes another cloud-based 

resource allocation mechanism for conferencing applications to solve the limitations of 

VMRA. We entitled this algorithm as CRAM (Cloud-based Resource Allocation for 

Multimedia conferencing). In designing the CRAM, we consider the conferencing 

applications with video mixing and compressing together. Similar to VMRA, the CRAM 

algorithm allocates or deallocates resources for conferencing applications based on the 

fluctuation in the number of participants. Besides efficient servers’ resource utilization, 

CRAM considers reducing the network cost as well. It also caters to the QoS, with respect 

to both media handling response times and network latency. To reduce the network cost 

and latency, CRAM algorithm selects adequate locations for allocating resources. We 
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analyze CRAM theoretically by modeling it as an optimization problem. Then, we design 

the heuristic that can reach the sub-optimal solution for the large-scale scenarios in an 

acceptable time. 

The rest of this chapter is as follows. First, it presents the CRAM algorithm by 

discussing its system model. Then, it discusses the designed heuristic, followed by a 

conclusion of this chapter at the end.  

5.2. CRAM System Model 

In CRAM, besides video mixing, we consider using the compressing service. In 

addition, we consider reducing both network and servers’ resources costs. CRAM system 

model includes the general assumptions that we made in this work and the mathematical 

model. In our mathematical model, we define CRAM as an ILP problem. 

5.2.1.  General Assumptions 

There are some assumptions that are considered to model the problem. We categorize 

them into two sections. 

(i) Assumptions on Conferencing Applications  

We assume that conferencing applications run in a large scale geographically distributed 

cloud. Also, we consider multiple conferencing participants who want to join a conferencing 

application and share their videos with each other. Moreover, participants are 

simultaneously considered as video sources and destinations. It is assumed that the 

conferencing application requires the video streams from all participants to be mixed and 

sent to each of them.  

(ii) Assumptions on Media Handling Services 

Media handling services can be placed in any data center, as long as the participants’ 

required QoS (such as latency) is satisfied. It is assumed that each media handling service 

is hosted on a VM. To connect media handling services, we consider different cost and 

latency for each network link.  
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Similar to VMRA (presented in the previous chapter), our video mixing model follows 

the Fork/Join parallelism technique [79]. Therefore, the video mixing process for all 

participants depends on all video mixer instances. In this work, we assume the video mixing 

time in a video mixer depends on the number of input streams of that mixer. Note that all 

video mixers across different servers need the results from each other to complete the 

mixing process. Thus, the total mixing time depends on the number of video mixers and 

network latency. 

5.2.2. Mathematical Model 

This section presents the CRAM problem formulation, which is modeled as an ILP 

problem. 

(i) Problem Statement 

Given 𝑆 and 𝑈 as sets of servers and participants (i.e., video sources and destinations) 

respectively, let 𝑇𝑚(𝑘) and 𝑅𝑚(𝑘) represent the time and the resource required to mix or 

compress 𝑘 video sources, respectively. Note that we assume 𝑇𝑚(𝑘) and 𝑅𝑚(𝑘) are linear 

functions of 𝑘. Also, let 𝑇𝑎,𝑏 and 𝑃𝑎,𝑏 denote the time and cost to exchange a video from 

location 𝑎 to 𝑏, respectively. Each compressor instance can reduce the size of video by %𝛾. 

The  𝑇𝑎,𝑏 and 𝑃𝑎,𝑏 are reduced by %𝛾 if there is a compressor at location 𝑎. In addition, 𝑅𝑂 

are the resources which cannot be utilized for video mixing or compressing (e.g., OS 

required resources). There are thresholds 𝑇 on QoS, pertaining to the maximum acceptable 

end-to-end delay, and 𝑅𝜀
𝑠 on resource capacity of server 𝑠. The problem is finding the 

minimum number of VMs and minimum network cost, while respecting QoS. Also, finding 

the optimal order of using media handling services to efficiently use resources is part of the 

problem. 

We model this as an ILP problem, where we assume a media handling service to be 

analogous to a VM. Tables 5.1 and 5.2 delineate the inputs and variables of our problem, 

respectively.  
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(ii) Objectives 

We assume the operational cost of a VM, in terms of non-utilizable resources, supersedes 

the cost of resources required for media handling services request of a participant, as in (1). 

Table 5.1. Problem inputs 

Input  Definition 

𝑆 set of servers 

𝑈 set of users, i.e., video sources and destinations 

𝑀 set of video mixer instances 

𝐶 set of compressor instances 

𝑉 set of all VMs, where 𝑉 = {𝐶 ∪𝑀} 
𝑇𝑚(𝑘) time to mix or compress 𝑘 video sources 

𝑅𝑚(𝑘) required resources to mix or compress 𝑘 video sources in a VM 

𝑅𝑂 non-utilizable VM operating resources 

𝑇𝑎,𝑏 time to send a video between location a and b  

𝑃𝑎,𝑏 cost to send a video between location a and b 

𝑃𝑠 cost of provisioning a VM on server 𝑠, 𝑠 ∈ 𝑆 

𝛾 compress rate, 0 < 𝛾 < 100 

𝑅𝜀
𝑠 threshold on the maximum amount of resources in server 𝑠 
𝑇 QoS threshold (acceptable mixing response time) 

𝛽 large enough constant 
 

 

Table 5.2. Problem variables 

Variable   Definition 

𝐷 
(4|𝑈| − 2) × (4|𝑈| −

2) binary matrix, where 
  𝑑𝑎,𝑏 = {

1, 𝑖𝑓 𝑎′ ′𝑖𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 

 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ′𝑏′
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐸 
|𝑈| × (3|𝑈| − 2) binary 

matrix, where 
  𝑒𝑎,𝑏 = {

1, 𝑖𝑓 𝑢𝑠𝑒𝑟 ′𝑎′ 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑜𝑟 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 

𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑉𝑀 ′𝑏′
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑋 
|𝑆| × (3|𝑈| − 2) binary 

matrix, where 
  𝑥𝑠,𝑣 = {

1,  𝑖𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 ′𝑠′ ℎ𝑜𝑠𝑡𝑠 𝑉𝑀 ′𝑣′
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑌 

|𝑈| × (3|𝑈| − 2) matrix where, 𝑦𝑎,𝑏 is the required time to transmit a video 

stream from user ′𝑎′ to VM ′𝑏′ and the total required time for media handling 

services to reach location ′𝑏′ 

𝑍 
|𝑆| × (3|𝑈| − 2) 

matrix, where 
  𝑧𝑠,𝑣 = {

𝑔𝑣 ,  𝑖𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 ′𝑠′ ℎ𝑜𝑠𝑡𝑠 𝑉𝑀 ′𝑣′
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐺 A vector where 𝑔𝑣 is the number of users connected to the VM 𝑣 

𝐹 

|𝑈| × (3|𝑈| − 2) ×
(3|𝑈| − 2) binary matrix, 

where 

𝑓𝑖,𝑣
𝑢 = {

1, 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑢′ ′𝑖𝑠 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑉𝑀 𝑣′ ′𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑉𝑀 ′𝑖′
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Furthermore, we assume homogeneous costs of video mixing and compressing resources 

on each server. Therefore, the operational cost 𝑅𝑂, associated with a VM, inhibits the 

introduction of a new VM, in the event of a new participant’s arrival. That is, a new VM is 

only instantiated if an incoming request cannot be handled by increasing the resources of an 

existing VM.  

𝑅𝑂 ≫ (𝑅𝑚 (𝑘+1) − 𝑅𝑚(𝑘) ) (1) 

Equation (2) depicts our multiple objectives which are aiming at minimizing the overall 

cost. We aim to minimize the cost of allocated resources by minimizing the number of VMs. 

Moreover, we want to minimize the network cost. We use 𝑥𝑠,𝑣 to represent a VM 𝑣 which 

is hosting on server 𝑠. Also, 𝑑𝑎,𝑏 represents a video stream connection from source 𝑎 to the 

location 𝑏. The network cost between location 𝑎 and  𝑏 is shown by 𝑃𝑎,𝑏.  

𝑚𝑖𝑛 {∑∑𝑥𝑠,𝑣 × 𝑃𝑠 + ∑ ∑ 𝑑𝑎,𝑏 × 𝑃𝑎,𝑏 

𝑏∈𝑈∪𝑉𝑎∈𝑈∪𝑉𝑣∈𝑉𝑠∈𝑆

} (2) 

In this work, we assume the cost of sending a video from one location to another location 

in both directions are the same (i.e., 𝑃𝑎,𝑏 = 𝑃𝑏,𝑎). Note that we know the locations of 

participants and servers. Therefore, to find the cost of sending a video from a participant to 

a VM, or from a VM to another VM, we use equations (3) and (4). 

𝑃𝑢,𝑣 = 𝑃𝑣,𝑢 =∑(𝑥𝑠,𝑣 × 𝑃𝑠,𝑢)

𝑠∈𝑆

  𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(3) 

𝑃𝑣1,𝑣2 = ∑ ∑(𝑥𝑠1,𝑣1 × 𝑥𝑠2,𝑣2 × 𝑃𝑠1,𝑠2)

𝑠2∈𝑆𝑠1∈𝑆

  𝑣1, 𝑣2 ∈ 𝑉 (4) 

Since equation (4) is not linear, we linearize it through equations (4-1) and (4-4). We use 

a binary auxiliary variable 𝑗𝑠1,𝑠2 for linearizing this equation.  

𝑗𝑠1,𝑠2 ≤ 𝑥𝑠1,𝑣1 
 𝑣1 ∈ 𝑉 

 𝑠1, 𝑠2 ∈ 𝑆 
(4-1) 

𝑗𝑠1,𝑠2 ≤ 𝑥𝑠2,𝑣2 
 𝑣2 ∈ 𝑉 

 𝑠1, 𝑠2 ∈ 𝑆 
(4-2) 
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𝑗𝑠1,𝑠2 ≥ 𝑥𝑠1,𝑣1 + 𝑥𝑠2,𝑣2 − 1 
 𝑣1, 𝑣2 ∈ 𝑉 

 𝑠1, 𝑠2 ∈ 𝑆 
(4-3) 

𝑃𝑣1,𝑣2 = ∑ ∑(𝑗𝑠1,𝑠2 × 𝑃𝑠1,𝑠2)

𝑠2∈𝑆𝑠1∈𝑆

  𝑣1, 𝑣2 ∈ 𝑉 (4-4) 

(iii) Constraints 

Based on the set 𝑈, we can define two sets for video mixers (𝑀) and compressors (𝐶). 

We know that each video mixer has at least two video streams as input. Therefore, set 𝑀 

can be defined such that |𝑀| = |𝑈| − 1 and 𝑀 = {𝑚1, 𝑚2, … ,𝑚|𝑈|−1 }. Also, we assume 

we can have compressors between participants and mixers as well as between mixers. 

Therefore, set 𝐶 can be defined such that |𝐶| = |2𝑈| − 1 and 𝐶 = {𝑐1, 𝑐2, … , 𝑐|2𝑈|−1 }. 

Since each VM hosts just one media handling service, we define a set for all possible virtual 

machines as 𝑉 where 𝑉 = {𝐶 ∪ 𝑀}. These sets are used in the following equations. 

We consider each participant has only one directed connection for sending the video 

stream and receiving the mixed video. Equations (5) and (6) ensure that there is only one 

directed connection from participants to VMs, and from VMs to participants, respectively.  

∑𝑑𝑢,𝑣 = 1

 𝑣∈𝑉

  𝑢 ∈ 𝑈 (5) 

∑𝑑𝑣,𝑢 = 1

 𝑣∈𝑉

  𝑢 ∈ 𝑈 (6) 

Note that 𝑑𝑎,𝑏 is a directed connection where 𝑎 and b are the head and tail, respectively. 

Moreover, participants need the mixed video from all others in the conference. Therefore, 

there is no direct connection between participants. Equation (7) ensures this constraint. 

∑∑𝑑𝑖,𝑗
 𝑗∈𝑈

= 0

 𝑖∈𝑈

  (7) 

To complete the video mixing process, there should be at least one VM, which is the tail 

of a direct or indirect connection to all original sources of video streams (i.e., participants). 

After finishing the whole video mixing process, the final mixed video stream should be sent 
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to the participants from the mixers or compressors that have the whole mixing result. 

Equations (8) and (9) find the direct and indirect connection between all participants and all 

VMs. Equation (10) ensures that there is no indirect connection to any VM which has no 

direct connection. In addition, equations (11) and (12) consider all possible indirect 

connections from a participant𝑢 to the VM 𝑣 through all other VMs. Based on these 

connections, equation (13) ensures that the final video streams comes from the VMs which 

are directly or indirectly connected to all participants. Note that 𝑒𝑎,𝑏 is an indirect connection 

where 𝑎 and 𝑏 are the head and tail, respectively.  

𝑒𝑢,𝑣 ≥ 𝑑𝑖,𝑣 + 𝑒𝑢,𝑖 − 1 
 𝑖, 𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(8) 

𝑒𝑢,𝑣 ≥ 𝑑𝑢,𝑣 
 𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(9) 

𝑒𝑢,𝑣 ≤ ∑ 𝑑𝑘,𝑣
𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(10) 

𝑒𝑢,𝑣 ≤∑𝑓𝑖,𝑣
𝑢

𝑖∈𝑉

+ 𝑑𝑢,𝑣  𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(11) 

𝑓𝑖,𝑣
𝑢 ≤ 

𝑑𝑖,𝑣 + 𝑒𝑢,𝑖
2

 
 𝑖, 𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(12) 

𝑑𝑣,𝑢 ≤
∑ 𝑒𝑝,𝑣𝑝∈𝑈

|𝑈|
 

 𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(13) 

As described before, each media handling service has its own functionality. The 

compressors can just reduce the video size. Therefore, the total number of input and output 

streams are the same. This constraint is considered in equation (14). In addition, 

compressors can help to reduce the size of video and in consequence, reduce the network 

cost and transmission time. In this work, we assume there is no need to have two consecutive 

compressors. Thus, there is no direct connection between two compressor instances. 

Equation (15) ensures this constraint. 

∑ 𝑑𝑘,𝑐
𝑘∈𝑈∪𝑉

= ∑ 𝑑𝑐,𝑘
𝑘∈𝑈∪𝑉

  𝑐 ∈ 𝐶 (14) 
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∑∑𝑑𝑖,𝑗
 𝑗∈𝐶

= 0

 𝑖∈𝐶

  (15) 

On the other hand, mixers are responsible to mix video streams. Therefore, at least one 

video mixer should be directly or indirectly connected to all participants as the tail. This 

constraint is ensured in equation (16). 

∑ ⌊
∑ 𝑒𝑢,𝑚𝑢∈𝑈

|𝑈|
⌋

𝑚∈𝑀

≥ 1  (16) 

Since equation (16) is not linear, we linearize it through equations (16-1) and (16-2) by 

using ℎ𝑚 as an auxiliary variable.  

∑ ℎ𝑚
𝑚∈𝑀

≥ 1  (16-1) 

ℎ𝑚 ≤ 
∑ 𝑒𝑢,𝑚𝑢∈𝑈

|𝑈|
  𝑚 ∈ 𝑀 (16.2) 

A VM, that is hosting a media handling service, cannot be split across multiple servers. 

Equation (17) ensures that a VM exists on a single server. Furthermore, if there are any 

input streams connected to a VM, that VM should exist on one server, as depicted in (18) 

and (19). Also, if there are any output streams from a VM, that VM needs to exist on a 

server as shown in (20) and (21). Note that 𝛽 is a big enough constant used for linearization 

purpose. 

∑𝑥𝑠,𝑣 ≤ 1

𝑠∈𝑆

  𝑣 ∈ 𝑉 (17) 

∑ 𝑑𝑘,𝑣 ≤ 𝛽 × (∑𝑥𝑠,𝑣
𝑠∈𝑆

)

𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 (18) 

∑ 𝑑𝑘,𝑣 ≥∑𝑥𝑠,𝑣
𝑠∈𝑆𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 (19) 
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∑ 𝑑𝑣,𝑘 ≤ 𝛽 × (∑𝑥𝑠,𝑣
𝑠∈𝑆

)

𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 (20) 

   ∑ 𝑑𝑣,𝑘 ≥∑𝑥𝑠,𝑣
𝑠∈𝑆𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 (21) 

The number of VMs and their resources are bounded by the servers’ capacities. Equation 

(22) ensures that the required resources for media handling services and operating system 

in VMs are bounded by the server resource capacity.  

   𝑅𝑂 × (∑𝑥𝑠,𝑣
𝑣∈𝑉

) +  𝑅𝑚(∑ (𝑥𝑠,𝑣𝑣∈𝑉 ×∑ 𝑑𝑘,𝑣)𝑘∈𝑈∪𝑉 ) ≤ 𝑅𝜀
𝑠     

 
 𝑠 ∈ 𝑆 (22) 

Note that the product ∑ (𝑥𝑠,𝑣𝑣∈𝑉 × ∑ 𝑑𝑘,𝑣)𝑘∈U∪V  in (22) is non-linear. Therefore, we 

linearize (22) by replacing it with constraints (22-1)-(22-6).  

∑ 𝑑𝑘,𝑣 = 𝑔𝑣
𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 (22-1) 

   𝑧𝑠,𝑣 ≤ |𝑈| × 𝑥𝑠,𝑣  𝑠 ∈ 𝑆 , 𝑣 ∈ 𝑉 (22-2) 

𝑧𝑠,𝑣 ≤ 𝑔𝑣  𝑠 ∈ 𝑆  , 𝑣 ∈ 𝑉 (22-3) 

   𝑧𝑠,𝑣 ≥ 𝑔𝑣 − |𝑈| × (1 − 𝑥𝑠,𝑣)  𝑠 ∈ 𝑆, 𝑣 ∈ 𝑉 (22-4) 

𝑧𝑠,𝑣 ≥ 0  𝑠 ∈ 𝑆, 𝑣 ∈ 𝑉 (22-5) 

   𝑅𝑂 × (∑𝑥𝑠,𝑣
𝑣∈𝑉

) +  𝑅𝑚(∑ 𝑧𝑠,𝑣𝑣∈𝑉 ) ≤ 𝑅  𝑠 ∈ 𝑆 (22-6) 

The whole mixing procedure time, depends on the video mixing, compressing, and the 

time required for video transmission over the network. To satisfy the QoS requirement, the 

mixing procedure time for all participants should be less than or equal to 𝑇. Equations (23) 

to (25) ensure that this end-to-end time for all participants, abides by the QoS threshold 𝑇.  
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𝑦𝑢,𝑣 ≥ 𝑑𝑖,𝑣 × 𝑇𝑖,𝑣 + 𝑦𝑢,𝑖 + 𝑇𝑚(∑ 𝑑𝑘,𝑣𝑘∈𝑈∪𝑉 ) 
 𝑖, 𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(23) 

𝑦𝑢,𝑣 ≥ 𝑑𝑢,𝑣 × 𝑇𝑢,𝑣 
 𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(24) 

𝑦𝑢,𝑣 + 𝑑𝑣,𝑢 × 𝑇𝑣,𝑢 ≤ 𝑇 
 𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(25) 

We assume that the required time and cost for sending a video from one location to 

another location in both directions are the same (i.e., 𝑇𝑎,𝑏 = 𝑇𝑏,𝑎 and 𝑃𝑎,𝑏 = 𝑃𝑏,𝑎). To find 

the cost of sending a video from a participant to a VM, or from a VM to another VM, we 

use equations (26) and (27). 

𝑃𝑢,𝑣 = 𝑃𝑣,𝑢 =∑(𝑥𝑠,𝑣 × 𝑃𝑠,𝑢)

𝑠∈𝑆

  𝑣 ∈ 𝑉 

 𝑢 ∈ 𝑈 
(26) 

𝑃𝑣1,𝑣2 = ∑ ∑(𝑥𝑠1,𝑣1 × 𝑥𝑠2,𝑣2 × 𝑃𝑠1,𝑠2)

𝑠2∈𝑆𝑠1∈𝑆

  𝑣1, 𝑣2 ∈ 𝑉 (27) 

Since equation (27) is not linear, we linearize it through equations (27-1) and (27-2). We 

use a binary auxiliary variable 𝑘𝑠1,𝑠2 for linearizing this equation.  

𝑘𝑠1,𝑠2 ≤ 𝑥𝑠1,𝑣1 
 𝑣1 ∈ 𝑉 

 𝑠1, 𝑠2 ∈ 𝑆 
(27-1) 

𝑘𝑠1,𝑠2 ≤ 𝑥𝑠2,𝑣2 
 𝑣2 ∈ 𝑉 

 𝑠1, 𝑠2 ∈ 𝑆 
(27-2) 

𝑘𝑠1,𝑠2 ≥ 𝑥𝑠1,𝑣1 + 𝑥𝑠2,𝑣2 − 1 
 𝑣1, 𝑣2 ∈ 𝑉 

 𝑠1, 𝑠2 ∈ 𝑆 
(27-3) 

𝑃𝑣1,𝑣2 = ∑ ∑(𝑘𝑠1,𝑠2 × 𝑃𝑠1,𝑠2)

𝑠2∈𝑆𝑠1∈𝑆

  𝑣1, 𝑣2 ∈ 𝑉 (27-4) 

5.3. CRAM Heuristic 

CRAM allows determining the number of VMs for mixers and compressors needed in 

order to serve a set of media handling requests. In addition, it identifies the servers that will 
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host these VMs, together with the resulting service composition. These aspects are covered 

with the objective of minimizing the overall costs while meeting QoS thresholds for 

multimedia conferencing applications. Note that to reach the lower media handling 

processing time, CRAM always assigns video streams to the VMs which have fewer 

connected streams on each server. Also, to respect the QoS threshold, CRAM may decide 

for using compressors. Note that using compressors leads to lower video resolution. 

However, in a dense network or when participants are very far from each other, it may help 

to abide the latency threshold. 

Finding the best possible servers to host VMs can be mapped to the NP-hard facility 

location problem [81]. Besides finding the best servers to host VMs, our problem determines 

the best composition of media handling services. Solving our resource allocation problem 

for large-scale scenarios using exact algorithms is time-consuming. Thus, we introduce a 

heuristic to solve the problem efficiently and in a reasonable time. In this section, we 

propose the CRAM heuristic. It handles the composition of media handling services, 

together with the placement of the corresponding VMs. 

The CRAM heuristic first calculates the minimum required number of VMs for mixing 

all streams, regardless of participants’ locations. Then, it finds the possible servers with the 

minimum distance from all participants to host the mixers. Using these servers results in 

minimizing network latency and network cost. The CRAM heuristic also ensures that the 

available resources on these servers are enough to instantiate new VMs. Then, it checks the 

possibility of satisfying QoS requirements by having this minimum number of VMs hosting 

the mixers. If the QoS is not satisfied, the heuristic tries to increase the number of mixers 

(to reduce the mixing time) or add compressors (to reduce the transmission time). In these 

processes, our CRAM heuristic considers minimizing the cost as the main objective as well. 

Our solution is divided into four parts as described in Algorithms 5.1 to 5.4. We consider 

the constants and variables shown in Table 5.1 and Table 5.2 as the input to these algorithms. 

Also, to simplify the code, we assume the same resource capacity for all servers (i.e., 𝑅𝜀).  

Algorithm 5.1. Media Handling Resource Allocation  

Input:  

𝑈, 𝑆; // the sets of participants’ and servers’ locations, respectively 

𝑃𝑠 // cost of resources on a server 

𝑅𝑚(𝑘),  𝑇𝑚(𝑘), 𝑅𝑂; 
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𝑅𝜀; // the maximum capacity for all servers 

𝑅 ← 𝑅𝜀 ; // the set of available resources on each server  

𝑇𝜀; // the maximum acceptable end-to-end delay  

Output: 𝑀, 𝐶, 𝐷;//list of Mixers (𝑀), Compressors (𝐶) and the connections between 

participants/mixers/compressors (𝐷) 

 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑙𝑎𝑦; // maximum end-to-end delay 

Phase 1: Find the minimum number of mixers 

1. 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟 ← 0; 

2. ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 ← ∞; 

3. do 

4. 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟 ← 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟 + 1; 

5. 𝑀𝑎𝑥_𝑢𝑠𝑒𝑟 = 𝒄𝒆𝒊𝒍 ⌈
|𝑈|

𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟
⌉; 

6. If (ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 < 𝑇𝑀(𝑀𝑎𝑥_𝑢𝑠𝑒𝑟) + 𝑇𝑀(𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟)) Then 

7.    return null; //there is no possible solution for the given |U| 

8. end if 

9. ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 ← 𝑇𝑀(𝑀𝑎𝑥_𝑢𝑠𝑒𝑟) + 𝑇𝑀(𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟) 

10. while ((ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 ≥ 𝑇𝜀)  𝑂𝑅 (𝑅𝑂 + 𝑅𝑚(𝑀𝑎𝑥_𝑢𝑠𝑒𝑟) > 𝑅)) 

Phase 2: Select the best servers for hosting mixers 

11. 𝑣𝑚 ← 0; 

12. 𝑖 ← 0; 

13. 𝑆 ← 𝑫𝑺𝒐𝒓𝒕(𝑆, 𝑈);// sort servers based on minimum distance to the group of participants 

14. do 

15.    𝑖 ← 𝑖 + 1; 

16.    while (𝑅[𝑆[𝑖]] ≥ 𝑅𝑂 + 𝑅𝑚(𝑀𝑎𝑥𝑢𝑠𝑒𝑟)𝐀𝐍𝐃 𝑣𝑚 < 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟) do 

17.    𝑀[𝑆[𝑖]] ← 𝑀[𝑆[𝑖]] + 1;// number of mixers hosted on server 𝑖 
18.    𝑣𝑚 + +; 

19.    𝑅[𝑆[𝑖]] ← 𝑅[𝑆[𝑖]] − (𝑅𝑂 + 𝑅𝑚(𝑀𝑎𝑥_𝑢𝑠𝑒𝑟)); 

20.  end while 

21.    If (𝑖 == |𝑆| 𝐀𝐍𝐃 𝑣𝑚 < 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟) Then 

22.       return null; //not enough resources to support |U| 

23.    end if 

24. while (𝑣𝑚 < 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟) 

Phase 3: Check the need of compressor between mixers  

25. 𝑢𝑠𝑒𝑑_𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ← 𝑖; 
26. For j =1 →  𝑢𝑠𝑒𝑑_𝑠𝑒𝑟𝑣𝑒𝑟𝑠  do    

27. 𝑚𝑖𝑥_𝑡𝑖𝑚𝑒[𝑆[𝑗]] ← 0; // maximum mixing time for each server 

28. For n =1 →  𝑢𝑠𝑒𝑑_𝑠𝑒𝑟𝑣𝑒𝑟𝑠  do 

29.  𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ← 𝑇𝑀(𝑀𝑎𝑥_𝑢𝑠𝑒𝑟) + 𝑇𝑀(𝑀[𝑆[𝑗]]) + 𝑇𝑀(𝑢𝑠𝑒𝑑_𝑠𝑒𝑟𝑣𝑒𝑟𝑠) + 𝑇[𝑆[𝑗]][𝑆[𝑛]]; 

30.    if (𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ≥ 𝑇𝜀) Then 

31.       𝑡 ← 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒−𝑇𝜀; // required time to compress 

      //Create/assign a compressor between servers j and n 

32.       𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔(𝑗, 𝑆[𝑛], 𝑡, "𝑠𝑒𝑟𝑣𝑒𝑟"); 
33.           if (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 == 𝑁𝑢𝑙𝑙) Then 

34.              return null; // there is no possible solution  

35.           end if 

36.       𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ← 𝑇𝜀; 
37.    end if 

38.    If (𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 > 𝑚𝑖𝑥_𝑡𝑖𝑚𝑒[𝑆[𝑗]]) Then 

39.       𝑚𝑖𝑥_𝑡𝑖𝑚𝑒[𝑆[𝑗]] ←  𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒; // keep track of mixing time and network transmission time 

between all mixers 

40.    end if 

41. end for 

42. end for 
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Phase 4: Assign participants to mixers AND check the need of compressors 

43. 𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 ← 0; 

44. For u =1 → |𝑈| do 

45. 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ← 0; 

//find the closest server with a mixer that can accept a participant 

46. 𝑠 ← 𝑨𝑪𝑺(𝑢,𝑀); //acceptable closest server to the participant 𝑢 

47. 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ← 𝑚𝑖𝑥_𝑡𝑖𝑚𝑒[𝑆[𝑠]] + 2 × 𝑇[𝑈[𝑢]][𝑆[𝑠]]; 
48.    If (𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ≤ 𝑇𝜀) Then 

    //Assign the participant 𝑢 to a mixer on server 𝑠, (𝑠 ∈ 𝑆) 
49.    𝐷[𝑢][𝑆[𝑠]] ← 1; //connection from participant to server 

50.    𝐷[𝑆[𝑠]][𝑢] ← 1; //connection from server to participant 

51. end if 

52.    Else  

      //Create/assign a compressor between participant u and server s 

53.       𝑡 ← 𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 − 𝑇𝜀; // required time to compress 

54.       𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔(𝑢, 𝑆[𝑠], 𝑡, "𝑢𝑠𝑒𝑟");  
55.           if (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 == 𝑁𝑢𝑙𝑙) Then 

56.              return null; // there is no possible solution  

57.           end if 

58.       𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ← 𝑇𝜀; 
59.    end else 

60.   If (𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 > 𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦) Then 

61.       𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 ←  𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒;//maximum end-to-end delay 

62.   end if 

63. end for 

Return 𝑀,𝐶, 𝐷,𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 

Algorithm 5.1 is the main body of the CRAM heuristic. It takes as main inputs: (i) the 

list of participants and their locations, (ii) the list of servers and their locations, and (iii) the 

network transmission time and cost between different locations. This algorithm in 

collaboration with algorithms 5.2 to 5.4, finds the list of mixers, compressors, network 

connections, and the maximum end-to-end delay. This algorithm runs at the starting point 

of the conferencing application. In addition, it re-runs periodically to scale the system based 

on the fluctuations in the number of participants. 

Algorithm 5.1 has four main phases. In the first phase, it finds the minimum possible 

number of mixers that can mix the total number of video streams from all participants. To 

find this minimum number, it considers both the QoS threshold and the available resources 

on the servers.  

After finding the minimum number of mixers, in phase two, it places these mixers on the 

servers which are closer to the majority of participants. Also, it makes sure that the selected 
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server has enough resources to host VMs. To find the servers based on the minimum 

distances to the majority of participants, it uses Algorithm 5.2 (i.e., DSort) in phase two.  

After placing the mixers on the chosen servers, in phase three it checks the need of having 

compressors between mixers. Note that we consider full mesh topology between mixers on 

a server and also between servers which host mixers. If the total time of the mixing process 

and the network transmission time between two servers cannot abide the QoS threshold, a 

compressor will be added between these servers. To assign or create a compressor between 

two servers, Algorithm 5.3 (i.e., Compress) is used in this phase. At the end of phase three, 

all mixers and required compressors between them are placed. Moreover, the mixing time 

for each specific server will be known.  

In the last phase, participants are assigned to the closest mixer which can accept a new 

participant. The acceptable closest server is retrieved by using Algorithm 5.4 (i.e., ACS). 

Moreover, if the end-to-end delay is greater than the QoS threshold, it uses Algorithm 5.3 

to assign a compressor between the participant and the mixer. 

Algorithm 5.2. (DSort): Sort servers based on minimum distance to a group of participants   

Input:  

𝑆; // the sets of servers’ locations  

𝑈; // the sets of participants’ locations  

Output:𝑆𝑒𝑟𝑣𝑒𝑟 // sorted list of servers 

1. 𝑑𝑒𝑙𝑎𝑦[]; // an array to keep track of distance for each server 

2. For n =1 → |𝑆|  do 

3.   For u =1 → |𝑈|  do 

4.      𝑑𝑒𝑙𝑎𝑦[𝑛] ←  𝑑𝑒𝑙𝑎𝑦[𝑛] + 𝑇[𝑈𝑠𝑒𝑟[𝑢]][𝑆[𝑠]];  
5.   end for 

6. end for 

7. 𝑑𝑒𝑙𝑎𝑦2[] ←  𝑠𝑜𝑟𝑡(𝑑𝑒𝑙𝑎𝑦[]);// keep sorted distances in another array 

8. For 𝑖 = 1 → |𝑆|  do 

9.   For 𝑗 = 1 → |𝑆|  do 

10.      if (𝑑𝑒𝑙𝑎𝑦2[𝑖] == 𝑑𝑒𝑙𝑎𝑦[𝑗]) Then 

11.         𝑆𝑒𝑟𝑣𝑒𝑟[𝑖] ←  𝑗; // keep track of server n’s location 

12.         𝑑𝑒𝑙𝑎𝑦[𝑗] ← −1; //change to a negative value to make sure not using the same server more than 

once 

13.         break; 

14.      end if 

15.   end for 

16. end for 

Return 𝑆𝑒𝑟𝑣𝑒𝑟 
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Algorithm 5.2 sorts the servers based on their minimum distances to a group of 

participants. It takes the list of servers and participants and returns a list of sorted servers. 

This algorithm calculates the total distance from each server to all participants and uses a 

simple sort function (e.g., binary sort).  

Algorithm 5.3. (Compress): Create or assign a compressor 

Input: 𝑠𝑒𝑛𝑑𝑒𝑟// video sender (i.e., a participant or a server) 

𝑏 // the location of destination server 

𝑡 // minimum time that needs to be reduced by compression 

𝑠𝑡𝑟𝑖𝑛𝑔 // to find video sender is a participant or another server 

𝑃 // the matrix of video transmission costs over the network 

𝑇 // the matrix of video transmission times over the network 

𝑅𝑎𝑡𝑒𝑚𝑎𝑥  // the maximum acceptable compression rate (0 to 1) 

Output: 𝐶, 𝐷 // list of compressors and their connections  

𝑅𝑎𝑡𝑒 // compression rate for the requested compress 

1. if (𝑠𝑡𝑟𝑖𝑛𝑔 == "𝑠𝑒𝑟𝑣𝑒𝑟") Then 

2.    𝑎 ← 𝑆[𝑠𝑒𝑛𝑑𝑒𝑟]; // keep location of the server in 𝑎 

3. else 

4.    𝑎 ← 𝑈𝑠𝑒𝑟𝑠[𝑠𝑒𝑛𝑑𝑒𝑟]; keep location of the participant in 𝑎 

5. end if/else 

6. 𝑀𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑇[𝑎][𝑏] − 𝑡 − 𝑇𝑚(1); 

7. 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[]; list of possible servers that can host compressors between locations a and b 

8. 𝑓𝑙𝑎𝑔[] ← 0; // to keep the demand for adding a new compressor 

9. 𝑗 ← 0; 

Phase 1: Find possible servers to host compressors between 𝑎 and 𝑏 

10. For 𝑖 =1 → |𝑆|  do 

11.     if (𝑇[𝑎][𝑆[𝑖]] < 𝑀𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 AND 𝑅[𝑆[𝑖]] > 𝑅𝑚(1)) Then 

12.        𝑗 ← 𝑗 + 1; 

13.        𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑗] ← 𝑖; keep server 𝑖 as a possible server 

14.     end if 

15. end for 

16. if (|𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠| == 0) Then 

17.   return null; // there is no possible server to host compressors 

18. end if 

Phase 2: Find the corresponding cost for hosting or using compressors on each possible server found 

19. 𝐶_𝑅 ← 1 − 𝑅𝑎𝑡𝑒𝑚𝑎𝑥; //  

20. For 𝑖 =1 → |𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠|  do 

21.     𝑠 ← 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑖]  
22.     if (𝐶[𝑆[𝑠]] == 0) Then //no existing compressor on server 𝑠 
23.        if (𝑅[𝑆[𝑠]] < 𝑅𝑂 + 𝑅𝑚(1)) Then //not enough resources 

24.           Cost[𝑆[𝑠]] ←  ∞; 

25.           continue;   

26.        end if        

27.        Cost[𝑆[𝑠]] ←  𝑃[𝑎][𝑆[𝑠]]+(𝑅𝑚(1) + 𝑅𝑂) × 𝑃𝑠; 

28.        𝑓𝑙𝑎𝑔[𝑆[𝑠]] ← 1;  

29.     end if 

30.     Else 

31.        𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ← ∞; 

32.        For 𝑐 =1 → 𝐶[𝑆[𝑠]]  do  

33.        𝑚 ←  𝑐𝑜𝑚𝑝_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑠]][𝑐];//connected number of streams to the compressor 𝑐 on server 𝑠 
34.        if (𝑚 < 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚) Then 
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35.            𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ←  𝑚;  

36.        end if 

37.        end for 

38.        if (𝑇𝑚(𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 +1) + 𝑇[𝑎][𝑆[𝑠]] + 𝑇[𝑆[𝑠]][𝑏] × 𝐶_𝑅 ≤ 𝑇[𝑎][𝑏] − 𝑡) Then 

39.            Cost[𝑆[𝑠]] ←  𝑃[𝑎][𝑆[𝑠]]+(𝑅𝑚(1)) × 𝑃𝑠; 

40.        end if 

41.        Else 

42.            if (𝑅[𝑆[𝑠]] < 𝑅𝑂 + 𝑅𝑚(1)) Then //not enough resources 

43.                Cost[𝑆[𝑠]] ←  ∞; 

44.                continue;   

45.            end if        

46.            Cost[𝑆[𝑠]] ←  𝑃[𝑎][𝑆[𝑠]]+(𝑅𝑚(1) + 𝑅𝑂) × 𝑃𝑠; 

47.            𝑓𝑙𝑎𝑔[𝑆[𝑠]] ← 1; 

48.        end else 

49.     end else 

50.   end for 

Phase 3: Assign a compressor between locations 𝑎 and 𝑏 based on cost 

51. 𝐶𝑜𝑠𝑡2[] ←  𝑠𝑜𝑟𝑡(𝐶𝑜𝑠𝑡[]);// keep sorted cost in another array 

52. For 𝑗 = 1 → |𝐶𝑜𝑠𝑡|  do 

53.    if (𝐶𝑜𝑠𝑡2[1] == 𝐶𝑜𝑠𝑡[𝑆[𝑗]]) Then 

54.       𝑐ℎ𝑜𝑠𝑒 ← 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟[𝑗]; // chosen server to host the compressor between 𝑎 and 𝑏 

55.       break; 

56.    end if 

57. end for 

58. if(𝑠𝑡𝑟𝑖𝑛𝑔 == 𝑢𝑠𝑒𝑟)Then 

59. 𝐷[𝑠𝑒𝑛𝑑𝑒𝑟][𝑆[𝑐ℎ𝑜𝑠𝑒]] ←  1; connection from sender to server 

60. 𝐷[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑠𝑒𝑛𝑑𝑒𝑟] ←  1; connection from server to sender 

61. else 

62. 𝐷[𝑆[𝑠𝑒𝑛𝑑𝑒𝑟]][𝑆[𝑐ℎ𝑜𝑠𝑒]] ←  𝐷[𝑆[𝑠𝑒𝑛𝑑𝑒𝑟]][𝑆[𝑐ℎ𝑜𝑠𝑒]] + 1; 

63. end if/else 

64. 𝐷[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑏] ←  𝐷[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑏] + 1; 

65. 𝐶[𝑆[𝑐ℎ𝑜𝑠𝑒]] ← 𝐶[𝑆[𝑐ℎ𝑜𝑠𝑒]] + 𝑓𝑙𝑎𝑔[𝑆[𝑐ℎ𝑜𝑠𝑒]]; 
66. 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ← ∞; 

67. 𝑢𝑠𝑒𝑑_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ← 0; 

68. For 𝑐 =1 → 𝐶[𝑐ℎ𝑜𝑠𝑒]  do  

69.     𝑚 ←  𝑐𝑜𝑚𝑝_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑐]; // number of streams  

70.     if (𝑚 < 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚) Then 

71.         𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ←  𝑚;  

72.         𝑢𝑠𝑒𝑑_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ← 𝑐; 

73.     end if 

74. end for 

75. 𝑐𝑜𝑚𝑝_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑢𝑠𝑒𝑑_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟] ←
 𝑐𝑜𝑚𝑝_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑢𝑠𝑒𝑑_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟] + 1; 

Phase 4: Find the required compression rate for this stream 

76. 𝑁𝑒𝑤_𝑡𝑠,𝑏 ← 𝑇[𝑎][𝑏] − 𝑡 − 𝑇[𝑎][𝑆[𝑐ℎ𝑜𝑠𝑒]] − 𝑇𝑚(𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 +1); 

77. 𝑅𝑒𝑎𝑙_𝑅𝑎𝑡𝑒 ← (𝑇[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑏] − 𝑁𝑒𝑤_𝑡𝑠,𝑏)/𝑇[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑏]; 

Return 𝐶, 𝐷, 𝑅𝑒𝑎𝑙_𝑅𝑎𝑡𝑒 

 The CRAM heuristic considers video mixing and compressing as two main media 

handling services. The compressing process is described in Algorithm 5.3. It has three main 

inputs: (i) two locations that need a compressor in between, (ii) the minimum time that needs 
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to be reduced by compression, and (iii) the video mixing transmission times and costs 

between different locations. Note that our proposed compression algorithm does not have a 

fixed compression rate. It tries to compress as less as possible to have less impact on the 

video resolution. We also consider a maximum acceptable compression rate (i.e., 𝑅𝑎𝑡𝑒𝑚𝑎𝑥) 

as the input for this algorithm. 

The compression algorithm has four main phases. In phase one, it finds the servers that 

are close enough to the video sender and have resources to compress a video stream. 

According to the servers found, in phase two, it calculates the corresponding cost for 

assigning the compressing request for each server. The cost is calculated based on the 

server’s resource cost and the network transmissions cost. If the chosen server has no 

compressor on it, this phase considers the cost of creating a new compressor on the server 

in the total cost. However, if there is an existing compressor on the server, this phase checks 

if the compressor can accept another stream. It ensures by checking the satisfaction of the 

minimum time that needs to be reduced by compression. In case of satisfaction, there is no 

extra cost for creating a new VM and the server cost is calculated based on the required 

resources to compress one more stream. On the other hand, if it cannot satisfy, then another 

compressor needs to be created on this server and the cost of a new VM will be considered.  

According to the calculated cost to host a compressor for each server, phase three selects 

the server with the minimum cost and allocates the required resources for the compressor. 

Also, it creates a link from the sender to the compressor and from the compressor to the 

destination. If there is more than one compressor on the chosen server, it always assigns the 

video stream to a compressor with minimum connected streams. It helps to minimize the 

overall media handling time. At the end of this algorithm, in phase four it calculates the 

exact reduced time by compression and also finds the compression rate. 

Algorithm 5.4. (ACS): Find the acceptable closest server 

Input: 𝑀 // list of Mixers 

𝑢// a participant 

𝑆 // the sets of servers’ locations  

Output: 𝑠 //proposed server with mixer to host 𝑢 

Phase 1: Find acceptable servers 

1. 𝑗 ← 0; 

2. For 𝑖 =1 → |𝑆|  do 

3.   if (𝑀[𝑆[𝑖]] > 0) Then 

4.     For 𝑚 =1 → 𝑀[𝑆[𝑖]]  do 
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5.       if (𝑚𝑖𝑥𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑖]][𝑚] < 𝑚𝑎𝑥_𝑢𝑠𝑒𝑟) Then 

6.          𝑗 ← 𝑗 + 1; 

7.         𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑗] ← 𝑖; keep server 𝑖 as a possible server  

8.         break;  

9.       end if 

10.     end for 

11.   end if 

12. end for 

Phase 2: Find the closest server from the acceptable servers 

13. 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← ∞; 

14. 𝑠 ← 0; 

15. For 𝑖 =1 → |𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠| do 

16.      if (𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑇[𝑈[𝑢]][𝑆[𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑖]]]) Then 

17.         𝑠 ← 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑖]; //chosen server to assign the participant to a mixer 

18.          𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑇[𝑈[𝑢]][𝑆[𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑖]]]; 
19.      end if 

20. end for 

21. 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ← ∞; 

22. For 𝑚 =1 → 𝑀[𝑆[𝑠]]  do 

23.      if (𝑚𝑖𝑥𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑠]][𝑚] < 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚) Then 

24.         𝑚𝑖𝑥𝑒𝑟 ← 𝑚; // chosen mixer to support participant 

25.          𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ← 𝑚𝑖𝑥𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑠]][𝑚]; 
26. end for 

27. 𝑚𝑖𝑥𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑠]][𝑚𝑖𝑥𝑒𝑟] ← 𝑚𝑖𝑥𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑠]][𝑚𝑖𝑥𝑒𝑟] + 1; 

Return 𝑠 

Algorithm 5.4 is responsible to find the closest server which is hosting a video mixer to 

a participant. It has two main phases. In the first phase, it finds the servers with at least one 

video mixer whose total connected streams is less than a maximum possible connection 

calculated in the phase one of Algorithm 5.1. In phase two, it selects the one which is closest 

to the participant. Also, it selects the video mixer on this server with the minimum connected 

streams to be responsible for this mixing request. In addition, it increases the number of 

connected video streams for the selected video mixer. 

5.4. Validations and Measurements  

This section describes our evaluation scenarios and the simulation settings followed by 

the obtained results. 

5.4.1. Evaluation Scenarios and Simulation Settings 

We consider two different conferencing applications as our evaluation scenarios. (i) 

Massively Multiplayer Online Game (MMOG) and (ii) Online Distance Learning (ODL). 

In these scenarios, the conference participants are sharing their videos in the logic of the 
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application. The aim is to allow each participant to have a mixed video from all other 

participants. In MMOG, participants are from different geographical locations in the world. 

Thus, the end-to-end delay may be high. In contrast, in ODL, the number of participants is 

limited and they are distributed in a smaller area such as one country. For our simulation, 

we consider two different geographical distributions for participants as depicted in Fig. 5.1. 

(a) Homogeneous – participants are distributed over the whole area (i.e., world or country) 

with similar density. (b)  Heterogeneous – the majority of the participants are geographically 

distributed in the east and the west side of the area. These distributions can help to 

understand the behavior of the proposed solution when the participants are close or far from 

each other. 

For our simulations, we consider having servers in twenty cities over the world for 

MMOG and nine cities over the USA for ODL. For the network transmission time between 

servers, we use the information available at [82]. Fig. 5.2 shows the locations of considered 

servers. Also, we consider different number of participants for both scenarios. We assume 

a snapshot of the number of participants in this work. To study the impact of servers’ 

resources and network costs, we consider various settings with different simulation 

parameters. We assume that the network transmission cost between two locations is a linear 

function of the transmission time between them. In fact, the farther two locations are, the 

higher is the network cost between them. Also, for the media handling time and required 

(a) Homogeneous Geographical Distribution (b) Heterogeneous Geographical Distribution

Participants’ PopulationLow (0) High  

Fig. 5.1. Geographical distribution of participants in conferencing applications 

 

Fig. 5.2. Geographical distribution of the servers 
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resources, we consider our prototype experience in chapter 4. The simulation parameters 

and settings are depicted in table 5.3. In our evaluation, we account for the server resource 

in terms of used memory. However, the mathematical model and our heuristic are general 

enough to accommodate other types of resources as well.  

5.4.2. Results 

We solve our mathematical model to achieve optimality for the small-case scenario using 

LPSolve Java Library (http://lpsolve.sourceforge.net). For the medium-scale and large-scale 

scenarios (i.e., scenarios with a higher number of participants) deriving the optimal solution 

with the exact algorithms used by the solver is very time-consuming. Therefore, we only 

present the results of our heuristic that can support the number of participants in our 

simulation settings. However, the results in the small-case scenario allow us to validate our 

mathematical model. In addition, they show that our mathematical model enables the 

orchestration of media handling services and the possibility of composing these services on 

the fly. As an example of the result of the mathematical model for a small-case scenario, we 

ran our model while having 6 participants in Seattle and 2 participants in Toronto. The result 

shows a composition of one video mixer and one compressor. It allocates required resources 

for the video mixer in Seattle and for the compressor in Toronto.  

In ODL, we assume all participants are from the USA with homogeneous or 

heterogeneous geographical distributions. We run the CRAM heuristic for 100, 200, and 

Table 5.3. Simulation parameters and settings 

 MMOG ODL 

Number of servers 20 9 

Servers geographical distribution Over the world Over the USA 

Number of participants 100, 2000, 3000 100, 200, 500 

Participants’ geographical distribution 

Homogeneous: Equally distributed in each server’s location 

Heterogeneous: Half of users are in the western city and half 

are in the eastern one 

𝑇𝑚(𝑘) 6 msec per video source 

𝑅𝑚(𝑘) 20 MB (RAM)  per video source 

𝑅𝑜 400 MB (RAM) 

𝑅𝜀
𝑠 10240 MB (RAM)  per each server 

𝑇𝜀 400 msec 

𝑃𝑠 $0.1 per MB 

𝑇𝑎,𝑏 , 𝑃𝑎,𝑏 As in [1] 

Maximum acceptable compression rate 0.95 
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500 participants. Fig. 5.3 shows the total cost by considering both servers’ resources and 

network costs. By increasing the number of participants, the need for media handling 

services increases. This leads to allocating more resources and implies a higher 

communication traffic as well. Thus, as depicted in fig. 5.3, the total cost increases as a 

higher number of participants is considered. However, considering the same number of 

participants, the total cost in homogeneous geographical distribution is greater than that of 

the heterogeneous geographical distribution. The reason is that the heterogeneous 

geographical distribution favors the execution of some media handling services locally. By 

that, it leads to transmit a lower number of streams over the network and implies a lower 

total cost. 

Fig. 5.4 depicts the servers’ resources (i.e., RAM) that is allocated for media handling 

services. By increasing the number of participants, our heuristic allocates more resources to 

media handling services to cope with the requests. The amount of memory allocation for 

the same number of participants is greater in the case of heterogeneous geographical 

distribution. In fact, in the homogeneous geographical distribution of ODL, most of the 

participants can reach the mixers without the need of passing through the compressors. It 

leads to using fewer compressors in homogeneous and less memory allocation compared to 

heterogeneous.  

Fig. 5.5 shows the network cost. By increasing the number of participants, the traffic 

grows, implying a higher network cost. Unlike servers’ resources, the network cost is less 

in heterogeneous geographical distribution in comparison with homogeneous for the same 

number of participants. In fact, the aggregation of participants helps to decrease the network 

 

Fig. 5.3. CRAM heuristic total cost in ODL 
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communications and reduces the network cost. However, as it is depicted in Fig. 5.6, it 

causes more compression rate in heterogeneous in comparison with homogeneous 

geographical distribution for the same number of participants. In fact, the compressors 

should serve a higher number of participants in heterogeneous geographical distribution. 

Thus, it increases the compression rate to cope with the QoS threshold and reduces the 

network transmission time. The lines in the boxes indicate the median for the compression 

rate.  

On the other hand, in MMOG, we assume all participants are from different locations in 

the world. In this scenario, CRAM heuristic runs for 100, 2000, and 3000 number of 

participants. As depicted in Fig. 5.7, similar to the ODL, by increasing the number of 

participants, the total cost will increase as well. Also, the total cost for the same number of 

participants in heterogeneous geographical distribution is less than that of the homogeneous 

geographical distribution. Based on that, both evaluation scenarios show that regardless of 

the area size, the aggregation of participants can help reduce the total cost.  

 

Fig. 5.5. CRAM heuristic network cost in ODL 

 

 

 

Fig. 5.6. CRAM heuristic video compression 
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Fig. 5.7. CRAM heuristic total cost in MMOG 

 

Fig. 5.8. CRAM heuristic total memory 
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The memory allocations for different numbers of participants in MMOG is depicted in 

Fig. 5.8. Unlike the results of ODL, the memory allocation for MMOG in both 

homogeneous and heterogeneous geographical distributions are almost the same. The 

reason is that in MMOG, even in the homogeneous geographical distribution, the 

participants are far from each other. This leads to using several compressors. In fact, the 

aggregation of the participants into two locations does not help to reduce the required 

resources for compressing service. However, as it is depicted in Fig. 5.9, the aggregation 

can help to reduce the network cost in heterogeneous geographical distribution. Although 

the network cost is decreased by the aggregation, it leads to more compression rate as it is 

shown in Fig. 5.10. In other words, more participants end up with lower video resolution in 

comparison with homogeneous geographical distribution. 

For the composition, the CRAM heuristic orchestrates the required instances of media 

handling services for participants. Note that each participant may follow a specific media 

handling composition which differs from others. Fig. 5.11. shows an example of the created 

compositions for two different participants in different locations. As shown in the figure, 

CRAM may assign the participant from Seattle to a mixer which is hosted by a server in 

Seattle. Thus, this participant will receive the final mixed stream from that mixer as well. 

However, if CRAM allocates resources to the mixers in Seattle and a participant from 

Toronto wants to use the mixers, to respect the maximum latency, CRAM allocates a 

compressor in a location which reduces the total cost and assigns the participant from 

Toronto to it. Then, the result of compression is sent to the mixer in Seattle. For this specific 

 

Fig. 5.9. CRAM heuristic network cost in 
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example, CRAM allocates a compressor on the Seattle server as well. Therefore, the final 

results are compressed one more time and then it sends to the participant in Toronto.  

5.5. Conclusion 

This chapter presents another novel cloud-based resource allocation algorithm for 

multimedia conferencing applications. We consider the conferencing applications in this 

chapter with video mixing and compressing services. We proposed CRAM to allocate 

resources in an efficient manner for these applications. CRAM considers scaling the 

resources in an elastic manner while meeting the QoS requirements and considering the 

fluctuation in the number of participants. The proposed algorithm in this chapter considers 

reducing both servers’ resource cost and network cost. Also, it takes into account the end-

to-end delay as QoS requirements, considering both media handling service response time 

and network latency. We mathematically formulated the problem and also proposed the 

heuristics to solve the large-scale scenarios in an acceptable time. Our simulation results 

show that the number of participants and their geographical distribution have a significant 

impact on the servers’ resource cost, network cost, and the required compression rate for 

video streams. 

  

Seattle

Seattle (Server #14)

Toronto Toronto (Server #19)

Compressor

…

Participants on other locations

Mixer1Participant A

Seattle

Toronto

Participant A

Participant BParticipant B

 

Fig. 5.11. Two different media handling compositions for users in Seattle and Toronto 
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Chapter 6 

 

6. An Offline Scaling Mechanism for 

Multimedia Conferencing Applications 

 

6.1. Introduction 

As it was described before, the conferencing PaaS in collaboration with the 

conferencing IaaS are responsible to scale the conferencing applications. In chapters 4 and 

5, we proposed novel algorithms to allocate resources for conferencing applications in the 

IaaS layer. However, we still need to know when and for how many participants the 

conferencing applications should scale to meet the cost-efficiency objective and QoS 

requirements. This chapter presents a novel adaptive scaling algorithm for multimedia 

conferencing applications in the PaaS layer. The proposed scaling algorithm in the PaaS 

layer is responsible to find the best time for scaling these applications. In addition, it 

decides for how many participants the conferencing applications should scale to meet the 

cost-efficiency objective and QoS requirements. The proposed algorithm in this chapter 

enables the conferencing applications to scale in an elastic manner with respect to the 

number of participants. Also, it meets the QoS requirements while considering the future 

demands of the conferencing applications (i.e., future number of participants).  
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We entitled the proposed algorithm in this chapter as ADS (Adaptive and Dynamic 

Scaling). The main focus of ADS algorithm is on reducing the resource cost while 

considering the QoS requirements. ADS works in an offline manner and uses a prediction 

model to forecast the future number of participants. The dynamicity of ADS facilitates the 

on-demand scaling up or down of the conferencing applications. In addition, the scaling 

policies can change adaptively and in accordance with the fluctuating number of 

conference participants to ensure elasticity.  

The rest of this chapter is as follows. First, it presents the ADS by discussing its system 

model. Then, it discusses the designed heuristic for it. After that, it presents the simulation 

parameters and settings of ADS followed by the validation results. We conclude this 

chapter at the end.  

6.2. ADS System Model 

The system model of ADS includes cooperation and mathematical models. In our 

mathematical model, we define ADS as an ILP problem.  

6.2.1. Cooperation Model  

We consider a large-scale cloud environment to support the scaling of the conferencing 

applications. It consists of users as conference participants, a conferencing PaaS and, 

multiple conferencing IaaSs. The conference participants across a large geographical area 

want to join a conferencing application, such as MMOG. We assume there is a service level 

agreement (SLA) between the conferencing application provider and the PaaS, where the 

QoS requirements are defined. One such requirement is the maximum acceptable delay for 

a participant to join the conference (𝜃). Moreover, we assume there is a SLA between the 

conferencing PaaS and the conferencing IaaSs, where another set of QoS requirements are 

defined. One such QoS requirement is the time to provision resources in the IaaSs (𝛿). 

When a conference participant wants to join the conference, the required resources 

should be provisioned within 𝜃 time slots. In addition, when the scaling request is sent to 

the IaaSs, it takes 𝛿 time slots for resources to be provisioned. The challenge lies in finding 
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the best time to send the scaling request. Moreover, this entails finding the required amount 

of resources to achieve the optimal resource cost while guaranteeing QoS requirements. 

6.2.2. Mathematical Model 

This section presents our ADS problem formulation, which is modeled as an ILP 

problem. It presents the problem statement followed by the objective and constraints. 

(iv) Problem Statement 

Given 𝑛 time slots of equal durations, let 𝐴 and 𝐷 represent the sets of expected arrivals 

and departures of conference participants, respectively. Such that, there will be a maximum 

of 𝑎𝑖 ∈ 𝐴 and 𝑑𝑖 ∈ 𝐷 participants, joining and leaving the conference during time slot 𝑖, 

respectively. It is assumed that 𝐴 and 𝐷 are available before the conference is started. Also, 

there is a threshold 𝜃 pertaining to the maximum acceptable delay before a participant can 

join the conference. We assume that 𝜃 is a multiple of time slots. Upon sending of the 

scaling request from the PaaS to the conferencing IaaSs, it is assumed that the required 

resources will be allocated within the time lag 𝛿. We assume that 𝛿 is a multiple of time 

slots and the 𝛿s for scaling up and scaling down are equal. Moreover, we assume the IaaS 

does not accept parallel scaling requests for the same conferencing service. Therefore, we 

assume there is at least 𝛿 time slots between two consecutive scaling requests. To simplify 

the problem, we consider the same 𝛿 for all IaaSs. In addition, we assume 𝛿 < 𝜃. The goal 

is to find the optimal scaling schedule, such that the total amount of allocated resources in 

terms of the number of participants is minimized over the conference duration. 

We model this as an ILP problem where we assume that each conference participant 

needs the same amount of resources to join the conference. Tables 6.1 and 6.2 delineate 

the inputs and variables of our problem, respectively.  



91 

 

 

(v) Objectives 

We assume that the cost of using resources at each time slot depends on the total number 

of participants in the conference at that time slot. Our objective is to minimize the cost 

while considering other QoS requirements. We consider the provisioned resources in terms 

of the number of participants and the remaining time of the conference after provisioning 

the resources. The resource allocation and de-allocation for time slot 𝑖, for which the 

request is sent to IaaSs at time slot 𝑗 are represented as 𝑥𝑖,𝑗 and 𝑦𝑖,𝑗, respectively. Since the 

result of the scaling request will be ready after 𝛿 time slots, the remaining time of the 

Table 6.1. Problem Inputs 

Input Definition 

𝑛 Total number of time slots in the entire conference duration 

𝐴 
A set of expected arrivals of conference participants, such that during time slot 𝑖, a 

maximum 𝑎𝑖 ∈ 𝐴 participants join the conference, 1 ≤ 𝑖 ≤ 𝑛 

𝐷 
A set of expected departures of conference participants, such that during time slot 𝑖, 

a maximum 𝑑𝑖 ∈ 𝐷 participants leave the conference, 1 ≤ 𝑖 ≤ 𝑛 

𝐿 
A set of number of conference participants, such that during time slot 𝑖, a maximum 

of 𝑙𝑖 ∈ 𝐿 participants are in the conference for more than 𝜃 time slots, 1 ≤ 𝑖 ≤ 𝑛 

𝛿 

The time lag, stipulated in the conferencing IaaS SLA for the response to the 

resource provisioning request. 

𝛿 > 1 time slot, otherwise the problem is trivial. 

𝜃 Maximum acceptable delay for preparing the conference service 

𝑀 A big enough constant 

 

Table 6.2. Problem Variables 

Variable Definition 

𝑋 
𝑛 × 𝑛 matrix, where 𝑥𝑖,𝑗 is the actual number of participants allocated to the service 

at time slot 𝑖 whose corresponding request is sent from PaaS to the IaaS at time slot 𝑗 

𝑌 

𝑛 × 𝑛 matrix, where 𝑦𝑖,𝑗 is the actual number of participants de-allocated from the 

service at time slot 𝑖 whose corresponding request is sent from PaaS to the IaaS at 

time slot 𝑗 

𝑅 

A vector of binary variables, where  𝑟𝑗 =

{
1, 𝑖𝑓 𝑃𝑎𝑎𝑆 𝑠𝑒𝑛𝑑𝑠 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡𝑜 𝐼𝑎𝑎𝑆 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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conference after sending the scaling request at time slot 𝑗 will be 𝑛 − (𝑗 + 𝛿). Equation (1) 

depicts our objective. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {∑∑(𝑥𝑖,𝑗 − 𝑦𝑖,𝑗) × (𝑛 − (𝑗 + 𝛿))

𝑛−𝛿

𝑗=1

𝑛

𝑖=1

} (1) 

(vi) Constraints 

To respect the maximum acceptable delay (i.e., threshold 𝜃), the allocated resources, in 

terms of conference participants, between time slot 𝑖 and 𝑖 + 𝜃 should be greater than or 

equal to the expected number of participants arriving at time slot 𝑖. In other words, in the 

SLA between PaaS and the application providers, the conferencing PaaS guarantees that 

there will be no user waiting for more than 𝜃 time slots to be served before the conference 

ends. Equations (2) and (3) enforce this constraint. Note that the resources can be reserved 

before or after arrivals of users. It means that the scaling request time (i.e., 𝑗 in these 

equations) can be from the moment that conference was started until the end of the 

conference. 

∑ 𝑥𝑖,𝑗

𝑖+𝜃−𝛿

𝑗=1

≥ 𝑎𝑖 ∀ 1 ≤ 𝑖 ≤ (𝑛 − 𝜃) (2) 

∑𝑥𝑖,𝑗

𝑛−𝛿

𝑗=1

≥ 𝑎𝑖 ∀ (𝑛 − 𝜃) < 𝑖 ≤ 𝑛 (3) 

If there are some participants in the conference and PaaS provides them their required 

service, the conference size cannot be scaled down more than the number of participants 

who are remaining in the conference. In fact, the conference size cannot shrink before 

participants leave the conference, as in equations (4), (5) and (6). 

∑𝑦𝑖,𝑗

𝑛−𝛿

𝑗=1

≤ 𝑑𝑖 ∀ 1 ≤ 𝑖 ≤ 𝛿 (4) 

∑ 𝑦𝑖,𝑗

𝑛−𝛿

𝑗=𝑖−𝛿

≤ 𝑑𝑖 ∀ 𝛿 + 1 ≤ 𝑖 ≤ 𝑛 (5) 

∑ 𝑦𝑖,𝑗

𝑖−𝛿−1

𝑗=1

= 0 ∀ 𝛿 + 1 < 𝑖 ≤ 𝑛 (6) 
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The maximum amount of scaling down requests at each time slot cannot be more than 

the maximum of total allocated resources before that time slot. This is guaranteed in 

equation (7). 

∑∑𝑥𝑖,𝑡

𝑗

𝑡=1

𝑛

𝑖=1

≥∑∑𝑦𝑖,𝑡

𝑗

𝑡=1

𝑛

𝑖=1

 ∀ 1 ≤ 𝑗 ≤ 𝑛 (7) 

Based on 𝐴 and 𝐷, the set 𝐿 can be defined, such that there will be a maximum of 𝑙𝑖 ∈

𝐿 participants in time slot 𝑖, who can be in the conference for more than 𝜃 time slots. 

Therefore, at each time slot, the prepared conference size should at least have the required 

resources for the participants who have been in the conference for more than 𝜃 time slots. 

Equation (8) represents this constraint. 

∑∑𝑥𝑖,𝑡

𝑗−𝛿

𝑡=1

𝑛

𝑖=1

−∑∑𝑦𝑖,𝑡

𝑗−𝛿

𝑡=1

𝑛

𝑖=1

≥ 𝑙𝑗 ∀ 𝛿 < 𝑗 ≤ 𝑛 (8) 

The conferencing IaaSs can accept the new scaling request from the PaaS after the 

previous request has been processed completely. Therefore, two consecutive scaling 

requests from the conferencing PaaS must be separated by 𝛿, as depicted in (9). 

∑ 𝑟𝑗

𝑖+𝛿−1

𝑗=𝑖

≤ 1 ∀ 1 ≤ 𝑖 ≤ 𝑛 − 𝛿 (9) 

Moreover, any changes in the conference size made at time slot 𝑗, should be mapped to 

their scaling request at the same time slot as shown in equations (10) and (11). We 

assume 𝑀 is a big enough constant in these equations. 

𝑀 × 𝑟𝑗 ≥ 𝑥𝑖,𝑗  ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛 (10) 

𝑀 × 𝑟𝑗 ≥ 𝑦𝑖,𝑗 ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛 (11) 

To avoid unnecessary resource allocation or de-allocation, there should be no scaling 

requests over the last 𝛿 time slots of the conference. In fact, such a request, if made, will 

take effect after the end of the conference. Through equation (12), we ensure that such 

requests are not sent. 

𝑟𝑗 = 0 ∀ 𝑛 − 𝛿 < 𝑗 ≤ 𝑛 (12) 
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6.3. ADS Heuristic 

Based on the proposed mathematical model, reaching the optimal solution for the large-

scale scenarios is very time-consuming. Therefore, we propose an ADS heuristic as well 

to reach a sub-optimal solution in a reasonable time. The ADS heuristic tries to find the 

best schedule for scaling requests while respecting the SLAs. Algorithm 6.1 delineates the 

ADS heuristic. It iterates over the set of time slots throughout the conference. We consider 

the constants shown in Table 6.1 as the inputs of this algorithm. Also, the output of the 

ADS algorithm is an integer array 𝑆 with 𝑛 elements. Each 𝑠𝑖 ∈ 𝑆 represents the required 

scaling amount at time slot 𝑖. ADS heuristic has two main phases. In the first phase, it tries 

to find the minimum possible conference size and the best time for scaling the conference. 

In the second phase, it makes sure that all scaling requests are separated by at least 𝛿 time 

slots.  

Since the cost depends on the amount of the provisioned resources and their usage over 

time, ADS heuristic is designed with the objective of reserving the least resources, as late 

as possible. The latest time should respect 𝛿 and 𝜃. Also, the minimum amount should 

respect the number of participants who are in the conference. Therefore, in phase 1, ADS 

tries to find the minimum size of the conference and the best time to send the scaling 

request. Based on the inputs, conference scaling takes 𝛿 time slots. Therefore, at each time 

slot 𝑖, ADS should consider the total conference size of  𝛿 time slots ahead. Also, new 

participants can wait up to 𝜃 time slots to join the conference. Thus, ADS can consider it 

as well and checks the total conference size up to 𝜃 time slots ahead. In consequence, since 

the objective is to find the minimum cost, ADS considers the minimum conference size 

between time slots 𝑖 + 𝛿 and 𝑖 + 𝜃.  

In phase 2, ADS heuristic ensures that the consecutive scaling requests are separated by 

more than 𝛿 time slots. Moreover, it keeps track of the previous scaling request and its 

corresponding conference size. ADS compares the previous conference size with the result 

of phase 1 to decide about the scaling amount as the output of the algorithm. A positive 

value in the output means the request is to scale up, while a negative one means to scale 

down. 
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Algorithm 6.1. ADS Heuristic  

Input:  

𝑛, 𝛿, 𝜃, 𝐴, 𝐷; // same as the inputs of Table 6.1 

Output: 𝑺; // an schedule set of scaling decisions 

64. old_size ← 0 // previously provisioned size of the conference 

65. new_size ← 0 // conference size that should be provided for the future 

66. For each 𝑖 ∈ 𝑛 do 

67.        min_size ←  ∞ 

68.        best_t ← 0 

Phase 1: Find the best possible time for sending the scaling request 

69.        For t = 𝑖 +  𝛿 → 𝑖 + 𝜃 do  

70.               total_size← 0 

71.               For p=1→ t do 

72.                      total_size ← total_size + 𝑎𝑝 − 𝑑𝑝 

73.               end for 

74.               If (min_size ≥ total_size) Then 

75.                      min_size ← total_size 

76.                      best_t ← t − 𝛿 

77.               end if 

78.        end for 

Phase 2: Set the amount of scaling request for the best found time and move 𝑖 to the next available time for 

sending a request to the IaaSs 

79.        new_size ← min_size 

80.        𝑆[𝑏𝑒𝑠𝑡_𝑡] ← new_size − old_size 

81.        old_size ← new_size 

82.   𝑖 ← best_t + 𝛿 − 1; // -1 because it is in the loop and 𝑖 for next cycle will be (best_t− 𝛿) 

83. end for each 

Return 𝑆 

6.4. Validations and Measurements 

In this section, we will describe our evaluation scenarios and the simulation settings, 

followed by comparison results.  

6.4.1. Evaluation Scenarios and Simulation Settings 

As the evaluation scenarios, we consider two different conferencing applications. (i) 

Massively Multiplayer Online Game (MMOG) and, (ii) Online Political Party Discussion 

(OPPD). In both scenarios, the users as the conference participants, are sharing their videos 

and audios in the logic of the application. In MMOG, users join and leave the game from 

all over the world. Thus, there is a significant fluctuation in the number of participants. In 

contrast, in OPPD, since the participants are limited, the fluctuation of the conference size 

is small. 
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For our simulation, we randomly generate the number of participants joining and 

leaving the conference at each time slot. To cover all possibilities, we keep the same 

conference size over a part of this time. This means that either no one joins or leaves the 

conference, or the number of users joining the conference is equal to the number of users 

leaving at each time slot, over that part. In our simulation, we divide the conference 

duration to 100 time slots. Also, we assume the resource provisioning time and the 

acceptable delay are 3 and 4 time slots, respectively. In addition, we set the fluctuation of 

the number of users to up to 1500 and 300 in MMOG and OPPD, respectively. Simulation 

parameters and settings are depicted in Table 6.3. 

6.4.2. Results 

We implement the ADS algorithm in JAVA. Also, we use the LPSolve engine [83] to 

find the ADS optimal solution for our mathematical model. We compare the results of our 

algorithm with that of the optimal solution and the expected conference size. Also, we use 

a greedy algorithm as the baseline of our comparison. Since there is no similar heuristic in 

the literature that meets all of our requirements, this allows us to assess how our heuristic 

performs with respect to a simple greedy approach. The greedy algorithm operates on a 

periodic basis with a period equal to 𝛿. At time slot 𝑡 (with 𝑡 𝑚𝑜𝑑 𝛿 = 0), it derives the 

maximum number of participants between time slots 𝑡 + 𝛿 and 𝑡 + 2𝛿. It then scales the 

conference accordingly. By that, the greedy approach is capable of satisfying the threshold 

of user’s acceptable delay. Fig. 6.1 and 6.2, depict the created conference size for MMOG 

and OPPD applications, respectively. As these figures show, both our optimal and heuristic 

solutions can scale the conference size up and down. The scaling is elastic and it respects 

the SLAs. 

Table 6.3. Simulation Parameters and Settings 

General Parameters Value MMOG Settings OPPD Settings 

𝑛 100 

𝐴 and 𝐷 

Fluctuation 
0-1500 

𝐴 and 𝐷 

Fluctuation 
0-300 

𝛿 3 

𝜃 4 

𝑀 1000000 
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Although in our scenarios, users can wait up to 𝜃 time slots to join the conference, there 

could be a cost for the delay as QoS violation. Fig. 6.3 and 6.4 show the total resource 

allocation and QoS violation costs of our scaling mechanism for MMOG and OPPD, 

respectively. As shown in these figures, the ADS heuristic outperforms the greedy 

algorithm from a resource-efficiency perspective. It leads to a solution that is closer to 

optimality with respect to the solution of the greedy algorithm, implying lower resource 

cost. However, this comes at the cost of a higher QoS violation. By comparing the solutions 

obtained from different algorithms, we notice that the greedy approach implies the least 

cost of QoS violation. It is followed by our ADS heuristic, while the ADS optimal solution 

leads to the highest QoS violation cost. These results highlight the trade-off that exists 

between the resource efficiency and QoS. 

 

Fig. 6.1. Conference Size Comparison in MMOG 

 

 

Fig. 6.2. Conference Size Comparison in OPPD 
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Fig. 6.3 and 6.4 also show that the cost of the ADS heuristic for provisioning resources 

in OPPD and MMOG has an 18% and a 35% gap from the optimal solution, respectively. 

It means that the ADS heuristic can perform better when scaling conferences with lower 

fluctuations.  

6.5. Conclusion 

This chapter presents ADS, a novel scaling algorithm for cloud-based multimedia 

conferencing applications. The ADS produces the cost-efficient scaling schedule while 

considering the QoS requirements and the future demands of the conferencing applications. 

The main objective of ADS is minimizing the resource cost and it performs in an offline 

manner. We mathematically formulated the problem and also proposed the heuristic to solve 

the large-scale scenarios in an acceptable time. Simulation results show the elasticity of 

ADS mechanism for conferencing services. Moreover, we show that the proposed ADS 

heuristic outperforms a simple greedy algorithm from a resource-efficiency perspective. 

Although ADS considers the future demands of the conferencing applications, it does not 

consider the uncertainty in the prediction. In addition, it only minimizes the resource cost 

while meeting the QoS requirements. But it does not consider reducing the QoS violation 

cost. These limitations of ADS will be solved in chapter 7.  

  

 

Fig. 6.3. Costs of Resources and QoS 

Violation in MMOG 

 

 

Fig. 6.4. Costs of Resources and QoS 
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Chapter 7 

 

7. An Online Scaling Mechanism for 

Multimedia Conferencing Applications 

 

7.1. Introduction 

In the previous chapter, we proposed ADS, an adaptive and dynamic scaling algorithm 

for conferencing applications. As it was mentioned before, the ADS works in an offline 

manner. Moreover, although it considers the future demand of the conferencing 

application, it does not take into account the uncertainty in the prediction model. In 

addition, the main focus of ADS is on reducing the resource cost and does not consider the 

QoS violation cost. This chapter proposes another novel scaling algorithm for multimedia 

conferencing applications in the PaaS layer to solve the limitations of the ADS. We entitled 

the proposed algorithm as AOS (Adaptive and Online Scaling). AOS performs in an online 

manner and finds the best time for scaling the conferencing applications. In addition, it 

decides for how many participants the conferencing applications should scale to meet the 

cost-efficiency objective and QoS requirements. Besides reducing the resource cost, AOS 

considers reducing the QoS violation cost as well. In addition, it takes into account the 

uncertainty of the prediction model. Similar to ADS, the AOS also enables scaling the 
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conferencing applications in an elastic manner and in terms of the number of conference 

participants. 

The rest of this chapter is as follows. First, it presents the AOS by discussing its system 

model. Then, it describes the designed AOS heuristic. After that, it presents the simulation 

parameters and settings of AOS followed by the validation results. We will conclude this 

chapter at the end. 

7.2. AOS System Model 

In AOS, besides reducing the resource cost, reducing the QoS violation cost is part of 

the objective. In addition, it takes into account the uncertainty in the prediction model. 

Despite ADS that works in an offline manner, AOS is designed to work online. Similar to 

ADS, the AOS system model includes the cooperation and mathematical models. In the 

mathematical model, we define AOS as an ILP problem. 

7.2.1. Cooperation Model 

We consider a large-scale cloud environment to support the scaling of the conferencing 

services. The conference participants across a large geographical area request to join a 

conferencing application, such as MMOG. We assume there is an SLA between the 

conferencing application provider and the PaaS, where the QoS requirements are defined. 

One such requirement is the maximum acceptable delay for a participant to join the 

conference (𝜃). Moreover, we assume there is an SLA between the conferencing PaaS and 

conferencing IaaSs, where another set of QoS requirements are defined. One such QoS 

requirement is the time to provision resources in the IaaS (𝛿). 

According to the defined SLAs, when a conference participant requests to join the 

conference, the required resources should be ready. Otherwise, PaaS should pay the QoS 

violation cost for waiting time of each participant. Moreover, the maximum acceptable 

waiting time is 𝜃. In addition, when the scaling request is sent to the IaaSs, it takes 𝛿 time 

for the resources to be provisioned and a new scaling request will have to wait for the 

realization of the previous request. Therefore, choosing the time to send the scaling request 
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can be challenging as it affects QoS violation and resource costs. On one hand, if resources 

are not ready when a participant joins the conference, the participant will have to wait 

which implies QoS violation costs for the PaaS. On the other hand, if resources are 

allocated prior to the arrival of the participant, additional unnecessary resource costs may 

be incurred. 

7.2.2. Mathematical Model 

This subsection presents the AOS problem formulation, which is modeled as an ILP 

problem. 

(iv) Problem Statement 

Given 𝑛 time slots of equal duration as the total conference time, let 𝐹 represent a time 

frame in the conference that spans over |𝐹| time slots, where |𝐹| is less than 𝑛. Also, let 𝐴𝐹 

and 𝐷𝐹 represent the sets of real-time arrivals and departures of conference participants 

during a time frame 𝐹, respectively. Such that, there will be 𝑎𝑖 ∈ 𝐴𝐹 and 𝑑𝑖 ∈

𝐷𝐹 participants joining and leaving the conference during time slot 𝑖, respectively. Since 𝐴𝐹 

and 𝐷𝐹 are in real-time, the corresponding values are not known in advance. It is assumed 

that there is a prediction model which can predict the arrivals and departures of the 

conference participants for one time frame ahead, with the accuracy of 𝜀% and the 

prediction intervals of ±𝛾%. That is, 𝜀% of predictions concur with the real-time number 

of participants while mispredictions are within 𝛾%. Let 𝐴𝐹
′  and 𝐷𝐹

′  represent the sets of 

predicted arrivals and departures of conference participants during a time frame 𝐹, 

respectively. Such that, there will be a prediction of 𝑎′𝑖 ∈ 𝐴𝐹
′  and 𝑑′𝑖 ∈ 𝐷𝐹

′  participants 

joining and leaving the conference during time slot 𝑖 in 𝐹, respectively. It is assumed that 

the values of 𝐴𝐹, 𝐷𝐹, 𝐴𝐹
′ , and 𝐷𝐹

′  for all previous time frames are saved in 𝐴𝑃, 𝐷𝑃, 𝐴′𝑃, 

and 𝐷′𝑃 sets, respectively. 𝐴𝐹
′  and 𝐷𝐹

′  are generated during the conference and use the values 

of 𝐴𝑃 and 𝐷𝑃 to tune the prediction. 

We assume that the scaling process has no effect on the conferencing services during 

runtime. That is, adding or releasing of resources during runtime is supported. We also 

assume that 𝛿 and 𝜃 are multiples of time slots and 𝛿s for adding resources (i.e., scaling 
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up/out) and releasing resources (i.e., scaling down/in) are equal. We consider this to simplify 

the problem. 

In a cloud environment, IaaSs do not accept parallel scale up and scale down requests for 

a specific resource (i.e., a virtual machine or a container) [25]. Therefore, we assume the 

IaaS does not accept parallel scaling requests for the same conferencing service. 

Consequently, there are at least 𝛿 time slots between two consecutive scaling requests. In 

our problem, we consider the same 𝛿 for all IaaSs. Hence, we do not choose the best offered 

time between different available IaaSs. In addition, we assume 𝛿 < 𝜃 to simplify the 

problem. Moreover, since we consider the prediction knowledge for a time frame, we 

assume 𝛿 and 𝜃 are less than |𝐹|. These assumptions ensure the feasibility of using the 

predicted information to make the scaling decisions over one time frame. 

The goal is to find an optimal online scaling schedule, such that, the total cost of allocated 

resources and QoS violations are minimized over the conference duration. We model the 

problem as an ILP problem, where we assume that each conference participant needs the 

same amount of resources to join the conference. Tables 7.1 and 7.2 delineate the inputs and 

variables of our problem, respectively.  

(v) Objectives 

We assume that the cost of using resources at each time slot depends on the total number 

of participants in the conference at that time slot. Also, we assume that the cost of QoS 

violation at each time slot depends on the total number of participants waiting to join the 

conference. Our objective is to minimize the total resource allocation and QoS violation 

costs while considering QoS requirements. We aim to reach this objective by minimizing 

these costs over each individual prediction time frame while accounting for the decisions 

made in the previous time frames.  

We consider that the resources and QoS violation costs are evaluated in terms of the 

number of participants. The resource allocation cost is calculated based on the remaining 

time of the conference after provisioning the resources. We use 𝑥𝑖,𝑗 and 𝑦𝑖,𝑗 to represent a 

request sent at time slot 𝑗 to allocate and de-allocate resources for time slot 𝑖, respectively. 
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Since the result of the scaling request will be ready after 𝛿 time slots, the remaining time of 

the conference after the request takes effect will be 𝑛 − (𝑗 + 𝛿). Let 𝐶𝐹
𝑅 represent the total 

resource allocation cost over a prediction time frame. Equations (1) and (2) depict 𝐶𝐹
𝑅 for a 

Table 7.1. Problem Inputs 

Input  Definition 

𝑛 Total number of time slots in the entire conference duration 

|𝐹| The duration of a time frame  

𝐴𝐹 
A set of real-time arrivals of conference participants in time frame 𝐹, such that in 

time slot 𝑖, 𝑎𝑖 ∈ 𝐴𝐹 participants join the conference 

𝐷𝐹 
A set of real-time departures of conference participants in time frame 𝐹, such that in 

time slot 𝑖, 𝑑𝑖 ∈ 𝐷𝐹 participants leave the conference 

𝐴𝑃 
A set of actual arrivals of conference participants during past time frames, such that 

in time slot 𝑖, 𝑎𝑖
𝑃 ∈ 𝐴𝑃 participants joined the conference 

𝐷𝑃 
A set of actual departures of conference participants during past time frames, such 

that in time slot 𝑖, 𝑑𝑖
𝑃 ∈ 𝐷𝑃 participants left the conference 

𝐴′𝐹 
A set of predicted arrivals of conference participants in time frame 𝐹, such that 

during time slot 𝑖, 𝑎′𝑖 ∈ 𝐴𝐹
′  participants are predicted to join the conference 

𝐷′𝐹 
A set of predicted departures of conference participants in time frame 𝐹, such that 

during time slot 𝑖, 𝑑′𝑖 ∈ 𝐷𝐹
′  participants are predicted to leave the conference 

𝐴′𝑃 
A set of predicted arrivals of conference participants during past time frames, such 

that in time slot 𝑖, 𝑎′𝑖
𝑃 ∈ 𝐴′𝑃 participants were expected to join the conference 

𝐷′𝑃 
A set of predicted departures of conference participants during past time frames, 

such that in time slot 𝑖, 𝑑′𝑖
𝑃 ∈ 𝐷′𝑃 participants were expected to leave the conference 

𝐿𝐹 
A set of the number of conference participants, such that in time slot 𝑖, maximum 

𝑙𝑖 ∈ 𝐿𝐹 participants had been in the conference for more than 𝜃 time slots 

𝑋𝑃 
A set of allocated resources in the past time frames, such that 𝑥𝑖,𝑗

𝑃 ∈ 𝑋𝑃 represents 

the allocated resource for time slot 𝑖 whose request was sent at time slot 𝑗 

𝑌𝑃 

A set of de-allocated resources in the past time frames, such that  𝑦𝑖,𝑗
𝑃 ∈ 𝑌𝑃 

represents the de-allocated resource for time slot 𝑖 whose request was sent at time 

slot 𝑗  

𝑃𝑡−1 
The gap between existing number of participants and allocated resources before a 

time frame starts at time slot 𝑡  

𝛿 
The time lag, stipulated in the conferencing IaaS SLA for meeting the resource 

provisioning request. 𝛿 > 1 time slot, otherwise the problem is trivial 

𝜃 The acceptable delay for preparing the conference service 

𝜀 The accuracy rate of the prediction model 

𝛾 The prediction interval of the prediction model 

𝛽 
The weighting coefficient between resource cost and QoS violation cost in the 

objective 

𝑀 Large enough constant 
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time frame which starts at time slot 𝑡. Since each resource allocation or de-allocation takes 𝛿 

time slots, we do not consider requests in the last 𝛿 time slots of the conference duration 

(i.e., in the last time frame) in these equations.  

𝐶𝐹
𝑅 = ∑ ∑ [𝑥𝑖,𝑗 − 𝑦𝑖,𝑗] × [𝑛 − (𝑗 + 𝛿)]

𝑡+|𝐹|

𝑗=𝑡

𝑡+|𝐹|

𝑖=𝑡

 

(1) 

∀ 𝑖, 𝑗 |  1 ≤ 𝑡 ≤ 𝑖, 𝑗 ≤ 𝑡 + |𝐹| < 𝑛 − 𝛿 − |𝐹| 

𝐶𝐹
𝑅 =∑∑[𝑥𝑖,𝑗 − 𝑦𝑖,𝑗] × [𝑛 − (𝑗 + 𝛿)]

𝑛−𝛿

𝑗=𝑡

𝑛

𝑖=𝑡

 

(2) 

∀ 𝑖, 𝑗 |   𝑛 − 𝛿 − |𝐹| ≤ 𝑡 ≤ 𝑖, 𝑗 ≤ 𝑛 − 𝛿 

The resource de-allocation can exceed the resource allocation in one time-frame. This 

might happen when there are some allocated resources in previous time frames and some 

participants are leaving in the current time frame. Therefore, the value of resource allocation 

cost can be negative or positive in a time frame. The positive value indicates that more 

resources are allocated in a time frame while the negative value shows that more resources 

are released.  

The QoS violation cost at each time slot is calculated based on the difference between 

the total required resources and total provisioned resources up to that time slot. Let 𝑐𝑘
𝑄

 

represent the QoS violation cost at time slot 𝑘. Equation (3) depicts 𝑐𝑘
𝑄

 for a time frame that 

Table 7.2. Problem Variables 

Variable  Definition 

𝑋 

|𝐹| × |𝐹| matrix, where 𝑥𝑖,𝑗 is the allocated resources to the service, in terms of 

number of participants, at time slot 𝑖 whose request is sent from PaaS to the IaaS 

at time slot 𝑗 

𝑌 

|𝐹| × |𝐹| matrix, where 𝑦𝑖,𝑗 is the de-allocated resource from the service, in 

terms of number of participants, at time slot 𝑖 whose request is sent from PaaS to 

the IaaS at time slot 𝑗 

𝑅 
A vector of binary variables, where 

   𝑟𝑗 = {
1, 𝑖𝑓 𝑃𝑎𝑎𝑆 𝑠𝑒𝑛𝑑𝑠 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡𝑜 𝐼𝑎𝑎𝑆 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐶𝐹
𝑅 Total resource allocation cost in a time frame  

𝐶𝐹
𝑄

 Total QoS violation cost in a time frame 
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starts at time slot 𝑡. Each time frame may start while there are some provisioned resources 

in the previous time frames. Let  𝑃𝑡−1 in (3) denote the gap between real conference size 

and provisioned resources from the previous time frames. This gap shows the number of 

participants who are waiting to join the conference. Note that resource scaling will take 

effect 𝛿 time slots after sending the request. Thus, in the first 𝛿 time slots of each time frame, 

there is no change in the amount of existing resources and QoS violation cost only depends 

on the previous allocated resources and the expected demand. 

𝑐𝑘
𝑄
= {

 𝑃𝑡−1 +∑[𝑎𝑖
′ − 𝑑𝑖

′] − ∑ ∑[𝑥𝑖,𝑗 − 𝑦𝑖,𝑗]

𝑘−𝛿

𝑗=𝑡

𝑡+|𝐹|

𝑖=𝑡

𝑘

𝑖=t

 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,
 𝑖𝑓 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  

(3) 

∀ 𝑘 | 1 ≤ 𝑡 + 𝛿 ≤ 𝑘 ≤ 𝑡 + |𝐹| 

The value of 𝑃𝑡−1 is calculated based on equation (4). We assume all allocation and de-

allocation requests in previous time frames are saved as 𝑋𝑃 and 𝑌𝑃 sets, respectively. Such 

that, 𝑥𝑖,𝑗
𝑃 ∈ 𝑋𝑃 and 𝑦𝑖,𝑗

𝑃 ∈ 𝑌𝑃 represent the amount of allocated and de-allocated resources 

for time slot 𝑖 with the request sent at time slot 𝑗 in previous time frames, respectively.  

𝑃𝑡−1  = {
∑[𝑎𝑖

𝑃 − 𝑑𝑖
𝑃]

𝑡−1

𝑖=1

−∑∑[𝑥𝑖,𝑗
𝑃 − 𝑦𝑖,𝑗

𝑃 ] 

𝑡−1

𝑗=1

𝑡−1

𝑖=1

  

0,               𝑡 = 1  

  ∀ 𝑡 > 1 (4) 

The QoS violation cost cannot have negative values. In fact, if the resources are under-

provisioned, the PaaS should pay the QoS violation. However, in the case of the resource 

over-provisioning, there is no violation and the cost is 0. 

Our objective is depicted in equation (5). We use 𝐶𝐹
𝑄

 to represent the total QoS violation 

cost over a prediction time frame. Also, we use a coefficient 𝛽 as a weighting factor between 

resource cost and QoS violation cost in our objective. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝛽 × 𝐶𝐹
𝑅 + (1 − 𝛽) × 𝐶𝐹

𝑄
} (5) 
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(vi)  Constraints 

Since QoS violation cost in (3) is non-linear, we add two constraints to linearize it. These 

constraints are depicted in equations (6) and (7). 

𝑐𝑘
𝑄
≥ 0    ∀ 𝑘 | 1 ≤ 𝑡 ≤ 𝑘 ≤ 𝑡 + |𝐹| ≤ 𝑛 (6) 

𝑐𝑘
𝑄 ≥  𝑃𝑡−1 +∑[𝑎𝑖

′ − 𝑑𝑖
′] − ∑ ∑[𝑥𝑖,𝑗 − 𝑦𝑖,𝑗]

𝑘−𝛿

𝑗=𝑡

𝑡+|𝐹|

𝑖=𝑡

𝑘

𝑖=𝑡

 
(7) 

∀ 𝑘 | 1 ≤ 𝑡 + 𝛿 ≤ 𝑘 ≤ 𝑡 + |𝐹| ≤ 𝑛 

To respect the acceptable delay (i.e., threshold 𝜃), the allocated resources, in terms of 

conference participants, between time slot 𝑖 and 𝑖 + 𝜃 should be greater than or equal to the 

expected number of participants arriving at time slot 𝑖. In other words, in the SLA between 

PaaS and the application providers, the conferencing PaaS guarantees that there is a 

maximum [(1 − 𝜀)% × γ%] of participants waiting for more than 𝜃 time slots to be served 

before the conference ends. Equation (8) enforces this constraint. Note that resource 

allocation takes 𝛿 time slots, an aspect that needs to be taken into account in this equation. 

Moreover, resources can be reserved before or after participants’ arrivals. Thus, the scaling 

request time (i.e., 𝑗) can be anytime between the start of the time frame (i.e., time slot 𝑡) and 

its end. 

∑ 𝑥𝑖,𝑗

𝑖+𝜃−𝛿

𝑗=𝑡

≥ 𝑎′𝑖  

(8) 

∀ 𝑖 | 1 ≤ 𝑡 ≤ 𝑖 ≤ 𝑡 + |𝐹| − 𝜃 + 𝛿 ≤ 𝑛 − 𝛿 

If there are some participants in the conference and PaaS provides them their required 

service, the conference size cannot be scaled down more than the number of participants 

that are expected to remain in the conference. In fact, the conference size cannot shrink 

before participants leave the conference, as shown in equations (9), (10), and (11). Note, in 

(100 − 𝜀)% of times, the prediction is not correct. Also, there is a prediction interval 
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of ±𝛾%. Therefore, we consider mispredictions with +𝛾% interval to ensure this constraint 

is satisfied.  

∑ 𝑦𝑖,𝑗

𝑡+|𝐹|

𝑗=𝑡

≤ 𝑑′𝑖 − ⌈
𝛾 × (1 − 𝜀)

1 + 𝛾
× 𝑑′𝑖⌉ (9) 

 

∀ 𝑖 | 1 ≤ 𝑡 ≤ 𝑖 < 𝑡 + 𝛿 ≤ 𝑛 − 𝛿 

∑ 𝑦𝑖,𝑗

𝑡+|𝐹|

𝑗=𝑖−𝛿

≤ 𝑑′𝑖 − ⌈
𝛾 × (1 − 𝜀)

1 + 𝛾
× 𝑑′𝑖⌉ 

(10) 

∀ 𝑖 | 1 ≤ 𝑡 ≤ 𝑡 + 𝛿 ≤ 𝑖 ≤ 𝑡 + |𝐹| ≤ 𝑛 − 𝛿 

∑ 𝑦𝑖,𝑗

𝑖−𝛿−1

𝑗=𝑡

= 0 
(11) 

∀ 𝑖 |  1 ≤ 𝑡 ≤ 𝑡 + 𝛿 ≤ 𝑖 ≤ 𝑡 + |𝐹| ≤ 𝑛 − 𝛿 

The maximum amount of scaling down requests at each time slot cannot be more than 

the maximum of total allocated resources before that time slot. This is guaranteed in 

equation (12). The allocated and de-allocated resources in previous time frames also need 

to be considered in this equation. 

∑∑𝑥𝑤,𝑧
𝑃

𝑡−1

𝑧=1

𝑡−1

𝑤=1

+ ∑ ∑𝑥𝑖,𝑘

𝑗

𝑘=𝑡

𝑡+|𝐹|

𝑖=𝑡

≥ ∑∑𝑦𝑤,𝑧
𝑃

𝑡−1

𝑧=1

𝑡−1

𝑤=1

+ ∑ ∑𝑦𝑖,𝑘

𝑗

𝑘=𝑡

𝑡+|𝐹|

𝑖=𝑡

 
(12) 

∀ 𝑗 | 𝑡 ≤ 𝑗 ≤ 𝑡 + |𝐹| 

Based on 𝐴𝑃, 𝐷𝑃, 𝐴𝐹
′ , and 𝐷𝐹

′ , the set 𝐿𝐹  can be defined such that there will be a 

maximum of 𝑙𝑖 ∈ 𝐿𝐹 participants in time slot 𝑖, that had been in the conference for more 

than 𝜃 time slots. Therefore, at each time slot, the prepared conference size should at least 

have the required resources for the participants that have been in the conference for more 

than 𝜃 time slots. Equations (13) and (14) represent this constraint.  
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∑∑(𝑥𝑤,𝑧
𝑃 − 𝑦𝑤,𝑧

𝑃 )

𝑡−1

𝑧=1

𝑡−1

𝑤=1

+ ∑ ∑(𝑥𝑖,𝑘 − 𝑦𝑖,𝑘)

𝑗−𝛿

𝑘=𝑡

𝑡+|𝐹|

𝑖=𝑡

≥ 𝑙𝑗 (13) 

∀ 𝑗 | 𝑡 + 𝛿 ≤ 𝑗 ≤ 𝑡 + |𝐹| ≤ 𝑛  

∑∑(𝑥𝑤,𝑧
𝑃 − 𝑦𝑤,𝑧

𝑃 )

𝑡−1

𝑧=1

𝑡−1

𝑤=1

+ ∑ ∑(𝑥𝑖,𝑘 − 𝑦𝑖,𝑘)

𝑗

𝑘=𝑡

𝑡+|𝐹|

𝑖=𝑡

≥ 𝑙𝑗 (14) 

∀ 𝑗 | |𝐹| − 𝛿 < 𝑗 ≤ 𝑡 + |𝐹| ≤ 𝑛  

The conferencing IaaSs can accept the new scaling request from the PaaS when the 

previous request is processed completely. Therefore, two consecutive scaling requests from 

the conferencing PaaS must be separated by 𝛿, as depicted in (15). 

∑ 𝑟𝑗

𝑖+𝛿−1

𝑗=𝑖

≤ 1      ∀ 𝑖 | 1 ≤ 𝑡 ≤ 𝑖 ≤ 𝑡 + |𝐹| − 𝛿 + 1 ≤ 𝑛 − 𝛿 (15) 

Moreover, any changes in the conference size made at time slot 𝑗, should be mapped to 

their scaling request at the same time slot, as shown in equations (16) and (17). We 

assume 𝑀 is a large enough constant in these equations. 

𝑀 × 𝑟𝑗 ≥ 𝑥𝑖,𝑗        ∀ 𝑖, 𝑗 | 1 ≤ 𝑡 ≤ 𝑖, 𝑗 ≤ 𝑡 + |𝐹| ≤ 𝑛 (16) 

𝑀 × 𝑟𝑗 ≥ 𝑦𝑖,𝑗       ∀ 𝑖, 𝑗 | 1 ≤ 𝑡 ≤ 𝑖, 𝑗 ≤ 𝑡 + |𝐹| ≤ 𝑛 (17) 

To avoid unnecessary resource allocation or de-allocation, there should be no scaling 

request over the last 𝛿 time slots of the conference. In fact, such a request, if made, will take 

effect after the end of the conference. We ensure not to send such requests through equation 

(18). Note that this equation only affects the last time frame of the conference. 

𝑟𝑗 = 0        ∀ 𝑛 − 𝛿 < 𝑗 ≤ 𝑛 (18) 

To solve the problem, we operate over time frames dynamically throughout the 

conference period. The first time frame starts at time slot 𝑡 = 1. Throughout the conference, 
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for each time slot 𝑖, if solving the problem implies a scaling request, the next time frame 

starts at 𝑖 + 𝛿. Otherwise, the next time frame starts from time slot 𝑖 + 1. 

7.3. AOS Heuristic 

Based on the proposed mathematical model, reaching the optimal solution for the large-

scale scenarios is very time-consuming. Since the end to end delay is one of the main factors 

in the conferencing applications, reaching the scaling decision in terms of minutes and 

seconds are not acceptable [84]. Therefore, we propose an AOS heuristic to solve the 

problem in a reasonable time. The AOS heuristic operates over each individual time frame. 

It takes as main inputs: (i) the actual number of participants from previous time frames, (ii) 

the output of the heuristic over the last time frame, and (iii) the predicted number of 

participants for the current time frame. It finds a scaling schedule, together with the amount 

of resources for each scaling request while respecting SLAs. Algorithm 7.1 delineates the 

AOS heuristic. We consider some of the constants shown in Table 7.1 as the input of this 

algorithm. AOS algorithm has two outputs. The first one is an integer array 𝑆𝐹 with |𝐹| 

elements. Each 𝑠𝑖 ∈ 𝑆𝐹 represents the required scaling amount at time slot 𝑖. The second 

output is an integer value 𝑈𝐹, which represents the total amount of existing resources. 

Algorithm 7.1 iterates over each time frame throughout the conference while considering 

the total existing resources. Therefore, the second output of this algorithm (i.e., 𝑈𝐹) is used 

as an input for running the AOS heuristic over the next time frame.  

AOS heuristic has three main phases, as depicted in Fig. 7.1. In the first phase (Fig. 

7.1(a)), AOS heuristic targets to tune the misallocations caused by mispredictions in the 

previous time frame. Thus, it calculates the actual amount of resources needed before 

starting the current time frame. In the second phase (Fig. 7.1(b)), it identifies the minimum 

possible conference size and the best time for scaling the conference in the current time 

frame. This phase takes both resource and QoS violation costs into account to make a 

decision. In phase three (Fig. 7.1(c)), it ensures that all scaling requests are separated by at 

least 𝛿 time slots. In addition, this phase controls running the heuristic in the current time 

frame if enough time remains for having another scaling request. Otherwise, it stops the 
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Algorithm 7.1. AOS Heuristic  

Input:  

|𝐹|, 𝛿, 𝜃, 𝐴𝐹
′ , 𝐷𝐹

′ , 𝐴𝑃, 𝐷𝑃 , 𝐿𝐹  , 𝛽; // same as the inputs of Table 7.1 

𝑈(𝐹−1); // the 𝑈𝐹 output of previous time frame. If it is the first run of the AOS heuristic, the 𝑈(𝐹−1) = 0 

Output:  

𝑆;//a schedule set of scaling decisions 

𝑈𝐹; // total existing resources 

1. 𝑡 ← 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 // first time slot of the time frame. It is 1 for the first time frame 

2. 𝑈𝐹 ← 𝑈(𝐹−1)  

Phase 1: Find previous actual required resources  

3. actual_size ← 0  

4. If (𝑡 > 1) Then 

5.    For k = 1 → 𝑡 − 1 do  

6.          actual_size ← actual_size + 𝑎𝑘
𝑃 − 𝑑𝑘

𝑃 

7.    end for  

8. end if //end of phase 1 

Phase 2: Find the best possible time for sending the scaling request 

9. For each 𝑖 ∈ 𝐹 do 

10.    best_t ← 𝑡 
11.    min_size ←  ∞ // minimum required changes in the  conference size  

12.    min_cost←  ∞ 

13.    For k = 𝑖 +  𝛿 → 𝑖 + 𝜃 do  

14.      For p= 𝑡 → k do  

15.          actual_size ← actual_size + 𝑎′𝑝 − 𝑑′𝑝  

16.      end for 

17.      𝑙𝑀𝐴𝑋 ← 0 

18.      For z= 𝑘 → k+𝛿 do  

19.   If (𝑙𝑧 > 𝑙𝑀𝐴𝑋) Then 

20.           𝑙𝑀𝐴𝑋 ← 𝑙𝑧  

21.          end if 

22.      end for 

23.     result ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2(𝑎𝑐𝑡𝑢𝑎𝑙_𝑠𝑖𝑧𝑒, 𝑙𝑀𝐴𝑋 , 𝑈𝐹 , 𝛽) 
24.      If (min_cost> result[total_cost]) Then 

25.           min_cost ← result[total_cost]// total cost at time slot k 

26.           min_size← result[size]// resources at time slot k 

27.           best_t ← k − 𝛿 

28.      end if 

29.    end for // end of phase 2 

Phase 3: Set the amount of scaling request for the best found time and move 𝑖 to the next available time for 

sending request to the IaaSs 

30.    𝑆[𝑏𝑒𝑠𝑡_𝑡] ← min_size  

31.    𝑈𝐹 ← 𝑈𝐹 + min_size 

32.    𝑖 ← best_t + 𝛿 − 1; // -1 because it is in the loop and 𝑖 for next  cycle will be (best_t+ 𝛿) 

33.    If (𝑖 + 𝜃 + 𝛿 > |𝐹|) Then 

34.           Break // it ends running the heuristic for current time  frame since the predicted 

information is not enough  

35.    end if 

36. end for each 

Return 𝑆𝐹 , 𝑈𝐹 , 𝑄𝑜𝑆𝑐𝑜𝑠𝑡 
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AOS heuristic in the current time frame and consequently, the next time frame will start 

sooner.  

The AOS heuristic runs over the whole conference duration and tries to minimize the 

total resource and QoS violation cost. The resource cost depends on the amount of 

provisioned resources and their usage over time. Thus, to reduce the resource cost, AOS 

heuristic should reserve the least of resources, as late as possible. This reservation 

respects 𝛿, 𝜃, and the number of participants who were in the conference. On the other hand, 

minimizing the QoS violation cost leads to allocating resources as much as demanded and 

as soon as possible. The AOS heuristic aims to solve this challenge and find the best possible 

time and amount for resource allocation to minimize the total cost.  

AOS should consider the misallocations caused by mispredictions in the previous time 

frames. Therefore, in phase 1, it checks the actual required resources from the beginning of 

the conference until the start of the current time frame. This result is based on the real 

number of participants who had joined or left the conference in the past time frames. AOS 

will use this information to tune the possible previous misallocations in the new scaling 

requests at phase 2. 

…

…

Past time frames

Calculates total number of actually 

joined and left participants

Beginning of current time frame

Time……

(a) Phase 1

1 t t+|F|-1 n

…

… Time……

2- If there is no time for 

another scaling, break

1- Move to 𝛿 time slots ahead after last scaling

(c) Phase 3

1 t t+|F|-1 nk+δk
δ

… Time……

𝜃

𝛿

2- Find minimum resource 
and QoS violation cost

3- Scaling time (e.g., k) 
is 𝛿 time slot before

(b) Phase 2

…1 t t+|F|-1 ni+δ i+θ

1- Minimum decided size 
should support participants 
for next δ time slots 

ki

…

 

Fig. 7.1. AOS Heuristic Phase 
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In phase 2, AOS tries to derive the scaling solution that leads to the minimum total cost 

of resources and QoS violations. Also, in this phase, AOS finds the best time to send the 

scaling request and the best amount of resources to fulfill the requirements. This phase 

considers the total required resources and allocated resources in the previous time slots to 

tune possible misallocations. Based on the inputs, conference scaling takes 𝛿 time slots. 

Therefore at each time slot 𝑖, AOS should consider the total conference size of 𝛿 time slots 

ahead. Also, new participants can wait up to 𝜃 time slots to join the conference. Although 

waiting time increases the QoS violation cost, AOS can consider it as well and checks the 

total conference size up to 𝜃 time slots ahead. In consequence, AOS finds the minimum 

total cost between time slot 𝑖 + 𝛿 and 𝑖 + 𝜃. Moreover, to ensure that the minimum required 

size of the conference (i.e., 𝐿𝐹) is respected, for any time slot 𝑧 between 𝑖 + 𝛿 and 𝑖 + 𝜃, 

the minimum existing resources should at least support the participants in time slot 𝑧 + 𝛿.  

In phase 3, the AOS heuristic ensures that consecutive scaling requests are separated by 

more than 𝛿 time slots. Also, it keeps track of the best time for sending the scaling request 

and the scaling amount as the first output of the algorithm (i.e., 𝑆𝐹). The positive value in 

this array means the scaling up/out request while the negative one represents the scaling 

down/in request. In addition, this phase keeps track of the total amount of added and released 

resources during the current time frame in the second output of this heuristic (i.e., 𝑈𝐹) to be 

used for the next scaling requests. At the end of this phase, AOS checks the remaining time 

to the end of the current time frame. If the remaining time is less than (𝜃 + 𝛿) time slots, it 

means that there are not enough predicted information to be used for having another scaling 

request in the current time frame. In this case, the AOS heuristic will stop in the current time 

frame and a new one will start. 

The total cost for a single time slot is calculated in Algorithm 7.2. This algorithm 

calculates the minimum total cost with respect to the minimum required size of the 

conference and the weighting factor (i.e., 𝛽) between resource cost and QoS violation cost. 

The output of this algorithm is a set with two elements. The first element indicates the 

minimum possible cost. The second one has the required changes to the amount of 

resources. Algorithm 7.1 in phase 2 uses the output of this algorithm for deciding the best 

time and amount of resources to send the scaling request.  
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7.4. Validations and Measurements  

In this section, we will describe our evaluation scenarios and the simulation settings 

followed by comparison results.  

7.4.1. Evaluation Scenarios and Simulation Settings 

We consider three different conferencing applications as the evaluation scenarios. (i) 

Massively Multiplayer Online Game (MMOG), (ii) Online Distance Learning (ODL), and 

(iii) Online Political Party Discussion (OPPD). In all scenarios, the users, as the conference 

participants, are sharing their video and audio in the logic of the application. In MMOG, 

users join and leave the game from different geographical locations. Thus, there is a huge 

fluctuation in the number of participants. In contrast, in ODL and OPPD, since the 

participants are limited, there is less fluctuation in the conference size. Moreover, in 

MMOG, participants’ waiting time is more tolerated than it is in OPPD and ODL. This 

means that in MMOG, minimizing the resource cost is more important than minimizing the 

QoS violation cost. In contrast, in OPPD, reducing the QoS violation cost and minimizing 

the participants’ waiting time is much more important than the resource cost. In ODL, the 

resource cost and QoS violation cost are equally important. 

Algorithm 7.2. Find Minimum Cost and Required Changes 

Input: 

𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒; // expected conference size 

𝑙𝑀𝐴𝑋; // maximum participants from time slot 𝑘 to 𝑘 + 𝛿, who can be in the conference for more than 𝜃 time 

slots. 

𝑈𝐹 , 𝛽; // use 𝑈𝐹 to keep track of all existing resources 

Output:  

𝑟𝑒𝑠𝑢𝑙𝑡; // an array with three elements to keep total cost, QoS cost, and required conference size 

1. 𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] ← ∞, 𝑟𝑒𝑠𝑢𝑙𝑡[𝑠𝑖𝑧𝑒] ← 0;    

2. 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒 ← 𝑙𝑀𝐴𝑋 

3.   For 𝑘 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒 → 𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 do  

4.      resource_cost ← 𝑘 ∗ 𝛽 

5.      QoScost ← (𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 − 𝑘) ∗ (1 − 𝛽) 

6.      If (𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] > resourcecost  + QoScost  ) Then 

7.         𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] ← resourcecost  + QoScost 

8.         𝑟𝑒𝑠𝑢𝑙𝑡[𝑠𝑖𝑧𝑒] ← 𝑘 − 𝑈𝐹 

9.      end if  

10.   end for 

Return 𝒓𝒆𝒔𝒖𝒍𝒕 

 

 

Algorithm 7.2. Find Minimum Cost and Required Changes 

Input: 

𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒; // expected conference size 

𝑙𝑀𝐴𝑋; // maximum participants from time slot 𝑘 to 𝑘 + 𝛿, who can be in the conference for more than 𝜃 time 

slots. 

𝑈𝐹 , 𝛽; // use 𝑈𝐹 to keep track of all existing resources 

Output:  

𝑟𝑒𝑠𝑢𝑙𝑡; // an array with three elements to keep total cost, QoS cost, and required conference size 

11. 𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] ← ∞, 𝑟𝑒𝑠𝑢𝑙𝑡[𝑠𝑖𝑧𝑒] ← 0;    

12. 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒 ← 𝑙𝑀𝐴𝑋 

13.   For 𝑘 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒 → 𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 do  

14.      resource_cost ← 𝑘 ∗ 𝛽 

15.      QoScost ← (𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 − 𝑘) ∗ (1 − 𝛽) 

16.      If (𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] > resourcecost  + QoScost  ) Then 

17.         𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] ← resourcecost  + QoScost 

18.         𝑟𝑒𝑠𝑢𝑙𝑡[𝑠𝑖𝑧𝑒] ← 𝑘 − 𝑈𝐹 

19.      end if  

20.   end for 

Return 𝒓𝒆𝒔𝒖𝒍𝒕 

 

 

Table 7.3. Simulation Parameters and SettingsAlgorithm 7.2. Find Minimum Cost and Required Changes 

Input: 

𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒; // expected conference size 

𝑙𝑀𝐴𝑋; // maximum participants from time slot 𝑘 to 𝑘 + 𝛿, who can be in the conference for more than 𝜃 time 

slots. 

𝑈𝐹 , 𝛽; // use 𝑈𝐹 to keep track of all existing resources 

Output:  

𝑟𝑒𝑠𝑢𝑙𝑡; // an array with three elements to keep total cost, QoS cost, and required conference size 

21. 𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] ← ∞, 𝑟𝑒𝑠𝑢𝑙𝑡[𝑠𝑖𝑧𝑒] ← 0;    
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For our simulations, we randomly generate the number of participants joining and 

leaving the conference at each time slot as the real-time number of participants. This dataset 

contains increased, fixed, and decreased number of participants over the conference 

duration. The fixed number of participants over some time slots means the total number of 

joining and leaving users are the same. We generate the predicted number of participants by 

applying the 𝜀 and 𝛾 on the real-time dataset for each time frame. In fact, we generate the 

results of assumed prediction model described in section 7.2. 

In our simulations, we consider dividing the conference duration into 100 time slots. To 

study the impact of time frame duration, resource provisioning time, and acceptable delay 

on all scenarios, we consider different settings of simulation parameters. In addition, we set 

the user fluctuation up to 12000 users in MMOG and 2000 users in ODL and OPPD. 

Moreover, we assume 𝛽 for MMOG is 0.8 to stress more on reducing the resource allocation 

cost rather than QoS violation cost. Also, we assume 𝛽 for ODL is 0.5 and for OPPD is 0.2. 

Simulation parameters and settings are depicted in Table 7.3.  

7.4.2. Results 

We implement the AOS algorithm in JAVA. Also, we use the LPSolve engine [83] to 

find the AOS optimal solution for our mathematical model. We study the impact of different 

settings on the results of the optimal solution and our heuristic. Also, we compare the results 

of our algorithm with those of the optimal solution. Fig. 7.2, 7.3, and 7.4 depict the 

corresponding costs for MMOG, ODL, and OPPD scenarios, respectively. These costs are 

normalized and cumulative. In MMOG, since resource cost is much more important, AOS 

Table 7.3. Simulation Parameters and Settings 

 MMOG ODL OPPD 

Fluctuation 0-12000 0-2000 0-2000 

𝛽 0.8 0.5 0.2 

Variable 

Parameters 

𝛿 = 3, 𝜃 = 4 𝐹 = {8, 10, 20, 30} 

𝛿 = 3, 𝜃 = 9 𝐹 = {20, 30} 

𝛿 = 8, 𝜃 = 9 𝐹 = {20, 30} 

Fixed 

Parameters 

𝑛 𝜀 𝛾 𝑀 

100 80% ±10% 1000000 
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aims to reduce the resource cost, while considering the QoS requirements and the total cost. 

In ODL, the resource cost and QoS violation cost are equally important. So, AOS aims to 

   

 

(a) QoS Violation Cost 

 

(b) Resource Cost – Noteworthy Cost 

 
(c) Total Cost 

Fig. 7.2. MMOG Cumulative Normalized Costs – Value of β = 0.8 
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minimize the total cost by equally reducing the resource and QoS violation costs. In OPPD, 

the noteworthy cost is QoS violation and AOS tries to minimize it while considering another 

 
(a) QoS Violation Cost 

 
(b) Resource Cost 

 

(c) Total Cost – Noteworthy Cost 

Fig. 7.3. ODL Cumulative Normalized Costs – Value of β = 0.5 
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objective, which is minimizing the total cost. 

   

  
(a) QoS Violation Cost – Noteworthy Cost    

 
(b) Resource Cost 

 

(c) Total Cost 

Fig. 7.4. OPPD Cumulative Normalized Costs – Value of β = 0.2 
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(i) Impact of the Prediction Time Frame 

The results in Fig. 7.2, 7.3, and 7.4 show that by increasing the time frame, the AOS 

optimal solutions have more information about the future and it helps them to make better 

scaling decisions. However, as it is observed in Fig. 7.2(b), 7.3(c), and 7.4(a), increasing the 

future knowledge after some threshold is not helpful and the decisions are the same. This 

means that the scaling decisions towards minimizing the noteworthy cost for each scenario 

in these time frames are the same. In contrast, the results of AOS heuristic show that the 

bigger prediction time frame size has small negative impacts towards minimizing the 

noteworthy cost. This result is explicitly visible in Fig. 7.4(a) when 𝛿 = 3 and 𝜃 = 4. The 

main reason is at each time slot 𝑖, the AOS heuristic focuses on the information between 

𝑖 + 𝛿 and 𝑖 + 𝜃 + 𝛿. Since each time frame should have this information, there should be 

no impact by the time frame size. However, the AOS heuristic reruns as long as the time 

frame is not over. Therefore, lower time frame size leads to starting the heuristic sooner and updating the 

prediction information for previous time frames. This allows to tune the allocations better and leads to lower 

the noteworthy cost.  

(ii) Impact of the Acceptable Waiting Time 

The results of MMOG and ODL in Fig. 7.2(b) and 7.3(b) show that with the same value 

of 𝛿, the higher value of 𝜃 can lead to a lower resource cost. Consequently, as it is shown in 

Fig. 7.2(c) and 7.3(c), their total costs are lower in this setting for both optimal and heuristic 

solutions. In fact, in this setting, AOS can allocate resources later. However, in OPPD, since 

waiting time is not much tolerated, the higher value of 𝜃 has no impact on the resource cost 

of optimal solutions and their results in Fig. 7.4(b) are almost the same.  

(iii) Impact of the Resource Provisioning Time 

The MMOG and ODL results in Fig. 7.2(b) and 7.3(b) show that with the same 𝜃, a 

higher value of 𝛿 leads to an increase in the resource cost and consequently an increase in 

the total cost, as it is shown in Fig. 7.2(c) and 7.3(c). The reason is that AOS should ensure 

the QoS requirements. Since provisioning the resources takes longer when 𝛿 is higher, AOS 

should allocate sooner and it causes an increase in the resource cost in these scenarios. 

However, it does not affect the resource cost of OPPD. In OPPD, as it is shown in Fig. 
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7.4(a), with the same 𝜃, a higher value of 𝛿 leads to an increase in the QoS violation cost. 

In fact, in OPPD, AOS aims to allocate resources sooner. Thus, a higher provisioning time 

leads to higher waiting times for participants and an increase in the QoS violation cost. 

(iv) AOS Heuristic Performance 

The results in Fig. 7.2(b) show that the AOS heuristic in MMOG can perform between 

90% and 99% close to the results of the optimal solutions. Also, its performance in ODL is 

between 97% and 99% based on the results shown in Fig. 7.3(c). However, the heuristic 

result in OPPD shown in Fig. 7.4(a) is far from the optimal solution in minimizing the QoS 

violation cost. The main reason is that AOS heuristic relies on the acceptable waiting time 

for the users and for each time slot 𝑖, it finds the solution that leads to the minimum cost in 

a period of time between 𝑖 + 𝛿 and 𝑖 + 𝜃. Meaning that it finds the minimum QoS violation 

cost in a period of time while the optimal solution finds the solution that leads to the 

minimum QoS violation cost per each time slot. Thus, the heuristic leads to a greater waiting 

time compared to the optimal solution in OPPD and in consequence, a higher QoS violation 

cost.  

Note that each scenario has a noteworthy cost which is the main objective of AOS to 

minimize. Therefore, the heuristic might have lower values at the other costs compared to 

those of the optimal solution. The main reason is that the existing trade-off between the 

resource cost and the QoS violation cost. For instance, the aim of AOS in MMOG is to 

minimize the resource cost as its noteworthy cost. Thus, as it is depicted in Fig. 7.2(b), the 

resource costs of AOS optimal solutions are lower than those of the heuristic solutions, 

while their QoS violation costs in Fig. 7.2(a) are higher. Similarly, the results of OPPD in 

Fig. 7.4(a) show that the optimal solutions have lower values in QoS violation costs 

compared to those of the heuristic solutions, while their resource costs are higher in Fig. 

7.4(b).  

The processing time of the AOS heuristic to reach the scaling solution is significantly 

lower than that of the AOS optimal solution. The results of the average processing time for 

AOS heuristic and optimal solutions are summarized in Table 7.4. The results show that 
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although increasing the prediction time frame can help the AOS optimal solution to get 

better results, it significantly increases the processing time.  

7.5. Conclusion 

This chapter presents AOS as a novel scaling algorithm for cloud-based multimedia 

conferencing applications. The AOS produces a cost-efficient scaling schedule while 

considering the QoS requirements and the future demands of the conferencing services. The 

AOS algorithm minimizes the resource cost and QoS violation cost as multiple objectives. 

It performs in an online manner and it takes into account the uncertainty in the prediction 

model. We model AOS as an optimization problem and design a heuristic to solve it in 

large-scale scenarios. We solve the problem and evaluate the performance of the AOS 

heuristic on different multimedia conferencing applications. We also study the impact of 

resource provisioning time, acceptable delay, and the prediction time frame on the resource 

cost and QoS violation cost. The evaluation shows that the AOS heuristic derives results 

that are more than 90% close to the results of the optimal solutions while the main objective 

is reducing the resource cost as well as the total cost. 

  

Table 7.4. AOS Heuristic and Optimal Solutions’ Running Time 

Scenario 
Parameter 

Settings 

Frame = 8 Frame = 10 Frame = 20 Frame = 30 

Optimal Heuristic Optimal Heuristic Optimal Heuristic Optimal Heuristic 

MMOG 

𝛽 = 0.8 

𝛿 = 3, 𝜃 = 4 19 sec 13.0 ms 45 sec 12.97 ms 3 min 13.20 ms 13 min 12.58 ms 

𝛿 = 3, 𝜃 = 9 
--- 

3.2 min 15.60 ms 86 min 15.61 ms 

𝛿 = 8, 𝜃 = 9 58 sec 11.91 ms 4 min 11.46 ms 

ODL 

𝛽 = 0.5 

𝛿 = 3, 𝜃 = 4 14 sec 10.37 ms 26 sec 10.31 ms 78 sec 10.13 ms 2.17 min 10.44 ms 

𝛿 = 3, 𝜃 = 9 
--- 

125 sec 11.8 ms 73 min 12.1 ms 

𝛿 = 8, 𝜃 = 9 11 sec 5.1 ms 82 sec 5.2 ms 

OPPD 

𝛽 = 0.2 

𝛿 = 3, 𝜃 = 4 15 sec 10.90 ms 31 sec 11.05 ms 51 sec 10.71 ms 7 min 10.91 ms 

𝛿 = 3, 𝜃 = 9 
--- 

71 sec 12.35 ms 34.5 min 11.88 ms 

𝛿 = 8, 𝜃 = 9 15 sec 4.38 ms 125 sec 4.34 ms 
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Chapter 8 

 

8. Conclusion and Future Work 

 

Cloud-based provisioning of multimedia conferencing applications will bring several 

benefits, including rapid provisioning, resource efficiency, scalability, and elasticity. 

However, it is quite challenging. This thesis addressed architectural and algorithmic 

challenges associated with cloud-based provisioning of multimedia conferencing 

applications. It presented three main contributions. As the architectural contribution, in 

chapter 3, it presented a holistic cloud-based architecture for multimedia conferencing 

applications. It discussed the architectural components and the interfaces which cover both 

the infrastructure and the platform layers of cloud. This contribution simplifies the 

provisioning of the conferencing applications for expert and non-expert application 

providers by proposing novel APIs and GUIs. It also allows the conferencing application 

providers to utilize the offered conferencing services (e.g., audio and video mixing) without 

having to deal with the complexities of conferences. 

To scale the actual resources (e.g., compute, storage, and network) of conferencing 

applications based on demand, we proposed a scaling manager component in the 

conferencing IaaS layer. This component is equipped with the resource allocation 

algorithms that can allocate and deallocate resources to cope with demands. The VMRA 

and CRAM, two novel resource allocation algorithms for multimedia conferencing 

applications that run in this component are proposed in chapter 4 and 5. These algorithms 

scale the actual resources required for multimedia conferencing applications in an optimal 
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manner while guaranteeing the required QoS. Different multimedia conferencing 

applications with video mixing and compressing services are also considered in designing 

these algorithms.  

The VMRA and CRAM can scale the actual resources in the IaaS layer. However, 

finding the best time for scaling the conferencing applications and deciding the amount of 

resources to be scaled for meeting both cost-efficiency objective and QoS requirements are 

still challenging. Therefore, in our proposed architecture, we presented a scaling decision 

maker component in the PaaS layer to get this decision. This component is equipped with 

the algorithms for scaling the multimedia conferencing applications. The ADS and AOS, 

two novel scaling algorithms for multimedia conferencing applications that run in this 

component are presented in chapter 6 and 7. These algorithms enable the conferencing 

applications to scale in an elastic manner with respect to the number of participants. The 

proposed algorithms also guarantee to meet the QoS requirements while considering the 

future demands of the conferencing applications and cost-efficiency objective. We 

discussed the impact of uncertainty of the prediction model on the result of scaling the 

multimedia conferencing applications as well. 

In both algorithmic contributions, the problems are mathematically modeled as ILP 

problems. We solve the mathematical models to achieve optimality for the small-case 

scenarios using the optimization tools. In addition, to solve the problems for the large-scale 

scenarios in an acceptable time, the heuristics were proposed.  

8.1 Future Work 

This thesis presented significant contributions in the cloud-based provisioning of 

multimedia conferencing applications. Yet, there exist several research directions for the 

future. To tackle all algorithmic challenges mentioned in this thesis, we assumed having a 

prediction model that can forecast the future number of participants. As the future work, 

prediction algorithms to predict participants’ arrivals and departures can be introduced.  

In the CRAM heuristic, to allocate actual resources, we first found the minimum 

number of video mixers and then allocated their required resources. After that, based on 

allocated resources for video mixers, we found the minimum number of compressors and 
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then we allocated resources for compressors if needed. In fact, we solve the problem in a 

local optimum manner. As future work, fining the global optimum solution can be 

considered.  

In the ADS and AOS algorithms, we assume all IaaS can offer the required resources 

and all with the same price and QoS. However, as the future work, all these assumptions 

can be relaxed. Therefore, selecting the best IaaS that complies with the objectives can be 

considered in solving those problems.  

Despite possible future works in the algorithmic dimensions, there are some research 

directions in the conferencing architecture as well. As an example, our designed APIs and 

GUIs are required a minimum knowledge of conferencing to create a conference. As the 

future work, we can enhance the GUIs for non-expert providers to suggest the best possible 

workflow to create a conference.  
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