

Architectures and Algorithms for Cloud-Based

Multimedia Conferencing

Abbas Soltanian

A Thesis

In

The Concordia Institute

For

Information and Systems Engineering

Presented in Partial Fulfilment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montreal, Quebec, Canada

October 2018

© Abbas Soltanian, 2018

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Abbas Soltanian

 Entitled: Architectures and Algorithms for Cloud-Based Multimedia Conferencing

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

 Chair
 Dr. Luis Amador

 External Examiner
 Dr. Ahmed Karmouch

 External to Program
 Dr. Ferhat Khendek

 Examiner
 Dr. Chadi Assi

 Examiner
 Dr. Jamal Bentahar

 Thesis Supervisor
 Dr. Roch Glitho

Approved by

 Dr. Chadi Assi, Graduate Program Director

 November 29, 2018
 Dr. Amir Asif, Dean
 Gina Cody School of Engineering and Computer Science

iii

ABSTRACT

Architectures and Algorithms for Cloud-Based Multimedia Conferencing

Abbas Soltanian, Ph.D.

Concordia University, 2018

Multimedia conferencing is the real-time exchange of multimedia content between

multiple parties. It is the basis of several applications, such as distance learning, online

meetings, and massively multiplayer online games. Cloud-based provisioning of

multimedia conferencing has several benefits, like resource efficiency, elasticity, and

scalability. However, it remains very challenging. A challenge, for instance, is the lack of

holistic architectures which cover both the infrastructure and the platform layers of cloud-

based multimedia conferencing applications. Another challenge is the lack of appropriate

algorithms for resource allocation in the conferencing cloud to accommodate the

fluctuating number of participants, while meeting the required quality of services (QoS).

Yet another example is the lack of suitable algorithms for scaling the multimedia

conferencing applications in the cloud while meeting both QoS requirements and cost

efficiency objective. Unfortunately, the solutions proposed so far do not address these

challenges.

This thesis focuses on the architectural and algorithmic challenges of cloud-based

multimedia conferencing. It proposes architectural components and interfaces for

multimedia conferencing application provisioning, covering both the Platform-as-a-

Service (PaaS) and the Infrastructure-as-a-Service (IaaS) layers. The proposed interfaces

simplify multimedia conference service provisioning for a wide range of application

providers. On the algorithmic side, it proposes resource allocation mechanisms that support

scalability in terms of the number of participants while meeting the QoS. These

iv

mechanisms allocate the actual resources (e.g., CPU, RAM, and storage) in an optimal

manner. Besides these mechanisms, it proposes the scalability approaches for cloud-based

multimedia conferencing applications. To ensure cost efficiency, these proposed solutions

enable fine-grained scalability of the applications with respect to the number of participants

while considering the QoS requirements. All algorithmic problems in this thesis are

formulated using the Integer Linear Programming (ILP) and heuristics have been designed

and validated to solve them.

v

Acknowledgments

All praise is due to God who gave me the strength and determination and guided me

throughout this work and beyond. Also, I am immensely and forever thankful to Imam

Reza, who my Ph.D. application was accepted while I was working on a project for him.

All I have achieved in my life is because of God, Imam Reza, and his holly family.

First, and foremost, I am grateful to my Ph.D. supervisor Dr. Roch Glitho for his guidance,

support, patience, and encouragement. He is a dedicated and caring advisor. Thank you.

I gratefully acknowledge my Ph.D. committee members, Dr. Ferhat Khendek, Dr. Chadi

Assi, and Dr. Jamal Bentahar for their time, effort, and constructive comments.

I am also thankful to Dr. Halima Elbiaze, Dr. Fatna Belqasmi, Dr. M. Ali Salahuddin, Dr.

Sami Yangui, and Dr. Diala Naboulsi for all the enlightening discussions, comments, and

collaborations. It was a great pleasure working with you.

Last but not least, I am forever indebted to my parents for their encouragement, continuous

support, love and prayers. Without them and their support, not only this thesis, but also

none of my achievements would have been possible. There are no words that can express

my gratitude and love for you. Also, I am so thankful to my love, who has always been

beside me in all good and bad times. I will love you Leila and honor you in all days of my

life. I am also thankful to my parents in law, my close family and friends.

vi

Contents

List of Figures ... ix

List of Tables .. xi

List of Abbreviations .. xii

1. Chapter 1: Introduction ... 1

1.1 Overview .. 1

1.2 Cloud Computing ... 4

1.2.1 PaaS Architectures .. 6

1.2.2 IaaS Architectures ... 7

1.3 Multimedia Conferencing .. 7

1.4 Thesis Outline .. 9

2. Chapter 2: Challenges, Requirements, and Related Work 10

2.1. Challenges .. 10

2.1.1. General Challenges ... 10

2.1.2. PaaS Related Challenges... 11

2.1.3. IaaS Related Challenges ... 12

2.2. Requirements .. 12

2.2.1. Architecture-Specific Requirements ... 13

2.2.2. Algorithm-Specific Requirements .. 14

2.3. Related Work.. 15

2.3.1. Architectural Related Work .. 15

2.3.2. Algorithmic Related Work .. 18

2.4. Conclusion .. 23

3. Chapter 3: A Cloud-based Architecture for Multimedia Conferencing 26

3.1. Introduction .. 26

3.2. Motivating Scenario ... 27

vii

3.3. Proposed Conferencing Architecture ... 28

3.3.1. Architecture Principles.. 29

3.3.2. General Architecture ... 29

3.3.3. Conferencing Service Development APIs .. 33

3.3.4. Service composition .. 34

3.3.5. Illustrative Scenario .. 36

3.4. Implementation and Measurements ... 37

3.4.1. Implementation Architecture .. 38

3.4.2. Prototype ... 40

3.4.3. Validations and Measurements ... 40

3.5. Conclusion .. 47

4. Chapter 4: A Resource Allocation Mechanism for Multimedia Conferencing

Applications with Video Mixing .. 48

4.1. Introduction .. 48

4.2. VMRA System Model .. 50

4.2.1. Cooperation Model ... 50

4.2.2. Video Mixing Model... 51

4.2.3. Mathematical Model ... 52

4.3. VMRA Heuristic .. 56

4.4. Validations and Measurements .. 58

4.4.1. Comparison Baselines ... 58

4.4.2. Environment and Settings ... 58

4.4.3. Validations and Measurements ... 59

4.5. Conclusion .. 63

5. Chapter 5: A Resource Allocation Mechanism for Multimedia Conferencing

Applications with Video Mixing and Compressing ... 64

5.1. Introduction .. 64

5.2. CRAM System Model .. 65

5.2.1. General Assumptions .. 65

5.2.2. Mathematical Model ... 66

5.3. CRAM Heuristic .. 73

5.4. Validations and Measurements .. 81

5.4.1. Evaluation Scenarios and Simulation Settings ... 81

viii

5.4.2. Results ... 83

5.5. Conclusion .. 87

6. Chapter 6: An Offline Scaling Mechanism for Multimedia Conferencing

Applications ... 88

6.1. Introduction .. 88

6.2. ADS System Model .. 89

6.2.1. Cooperation Model ... 89

6.2.2. Mathematical Model ... 90

6.3. ADS Heuristic .. 94

6.4. Validations and Measurements .. 95

6.4.1. Evaluation Scenarios and Simulation Settings ... 95

6.4.2. Results ... 96

6.5. Conclusion .. 98

7. Chapter 7: An Online Scaling Mechanism for Multimedia Conferencing

Applications ... 99

7.1. Introduction .. 99

7.2. AOS System Model .. 100

7.2.1. Cooperation Model ... 100

7.2.2. Mathematical Model ... 101

7.3. AOS Heuristic .. 109

7.4. Validations and Measurements .. 113

7.4.1. Evaluation Scenarios and Simulation Settings ... 113

7.4.2. Results ... 114

7.5. Conclusion .. 120

8. Chapter 8: Conclusion and Future Work ... 121

8.1 Future Work ... 122

Bibliography .. 124

ix

List of Figures

Fig. 1.1. IBM PaaS Reference Architecture ... 6

Fig. 3.1. Scenario for conferencing application provisioning in the cloud 28

Fig. 3.2. Overall cloud-based conferencing architecture .. 30

Fig. 3.3. Conference creation and modification steps ... 36

Fig. 3.4. Implementation architecture ... 38

Fig. 3.5. Dial-in audio conference creation and activation workflow 42

Fig. 3.6. Conference information which passed to the game application 42

Fig. 3.7. Resource Allocation Evaluation ... 43

Fig. 3.8. Total Time for Scaling the Size of a Conference with Single Participant to a

Conference with 2 up to 3000 Participants ... 44

Fig. 3.9. Conference Scaling Time by Having Different Number of VMs for (a) MIP and

(b) NMIP ... 45

Fig. 3.10. Average (a) Conference Start Time (b) Participant Joining Time.................... 47

Fig. 4.1. Cloud-based conferencing business model ... 49

Fig. 4.2. Communication model ... 50

Fig. 4.3. An example of our video mixing model ... 51

Fig. 4.4. Maximum participants that can be served in a zone ... 60

Fig. 4.5. Total number of participants that can be served across all zones 60

Fig. 4.6. (a) Average, (b) Maximum allocated resources in a datacenter in Meet-By-All

scenario ... 61

Fig. 4.7. Average video mixing response time in Meet-By-All scenario 61

Fig. 4.8. (a) Average, (b) Maximum allocated resources in a datacenter in Meet-By-Some

scenario ... 62

file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391923
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391924
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391925
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391926
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391927
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391928
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391929
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391930
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391931
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391931
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391932
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391932
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391933
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391934
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391935
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391936
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391937
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391938
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391939
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391939
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391940
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391941
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391941

x

Fig. 4.9. Average video mixing response time in Meet-By-Some scenario 63

Fig. 5.1. Geographical distribution of participants in conferencing applications 82

Fig. 5.2. Geographical distribution of the servers ... 82

Fig. 5.3. CRAM heuristic total cost in ODL ... 84

Fig. 5.4. CRAM heuristic total memory allocation in ODL ... 84

Fig. 5.5. CRAM heuristic network cost in ODL ... 85

Fig. 5.6. CRAM heuristic video compression rate in ODL .. 85

Fig. 5.7. CRAM heuristic total cost in MMOG .. 85

Fig. 5.8. CRAM heuristic total memory allocation in MMOG .. 85

Fig. 5.9. CRAM heuristic network cost in MMOG .. 86

Fig. 5.10. CRAM heuristic video compression rate in MMOG .. 86

Fig. 5.11. Two different media handling compositions for users in Seattle and Toronto 87

Fig. 6.1. Conference Size Comparison in MMOG ... 97

Fig. 6.2. Conference Size Comparison in OPPD .. 97

Fig. 6.3. Costs of Resources and QoS Violation in MMOG ... 98

Fig. 6.4. Costs of Resources and QoS Violation in OPPD ... 98

Fig. 7.1. AOS Heuristic Phase .. 111

Fig. 7.2. MMOG Cumulative Normalized Costs – Value of β = 0.8 115

Fig. 7.3. ODL Cumulative Normalized Costs – Value of β = 0.5 116

Fig. 7.4. OPPD Cumulative Normalized Costs – Value of β = 0.2 117

file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391942
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391943
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391944
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391945
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391946
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391947
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391948
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391949
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391950
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391951
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391952
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391953
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391954
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391955
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391956
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391957
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391958
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391959
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391960
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-Final%20Submission.docx%23_Toc532391961

xi

List of Tables

Table 2.1. Summary of the architectural related work .. 24

Table 2.2. Summary of the algorithmic related work ... 24

Table 3.1. Examples of conferencing service development APIs 34

Table 3.2. Categorization of API parameters .. 35

Table 3.3. Published information of a SubaaS into the broker in our implementation 41

Table 4.1. Problem inputs ... 53

Table 4.2. Problem variables .. 53

Table 4.3. Simulation parameters ... 59

Table 5.1. Problem inputs ... 67

Table 5.2. Problem variables .. 67

Table 5.3. Simulation parameters and settings ... 83

Table 6.1. Problem Inputs ... 91

Table 6.2. Problem Variables.. 91

Table 6.3. Simulation Parameters and Settings .. 96

Table 7.1. Problem Inputs ... 103

Table 7.2. Problem Variables.. 104

Table 7.3. Simulation Parameters and Settings .. 114

Table 7.4. AOS Heuristic and Optimal Solutions’ Running Time 120

file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158463
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158464
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158465
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158466
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158467
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158468
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158469
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158470
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158471
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158472
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158473
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158474
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158475
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158476
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158477
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158478
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158479
file:///C:/Users/umroot/Dropbox/PhD/10-Thesis/complete/Abbas-Thesis-complete-v2.docx%23_Toc528158480

xii

List of Abbreviations

ADS Adaptive and Dynamic Scaling

AOS Adaptive Online Scaling

CMCU Cloud-Based Multipoint Control Unit

CMIP Cloud Multiple Infrastructure Provider

CRAM Cloud-based Resource Allocation for Multimedia

conferencing

CSIP Cloud Single Infrastructure Provider

IaaS Infrastructure-as-a-Service

ILP Integer Linear Programming

ITU International Telecommunication Union

MCU Multipoint Control Unit

MMOG Massively Multiplayer Online Games

NCC Non-Cloud Conferencing

NIST National Institute of Standards and Technology

PaaS Platform-as-a-Service

QoS Quality of System

SaaS Software-as-a-Service

SLA Service Level Agreement

xiii

SOA Service Oriented Architecture

SubaaS Substrate-as-a-Service

VM Virtual Machine

VMRA Video Mixing Resource Allocation

WoW World of Warcraft

1

Chapter 1

1. Introduction

This chapter first presents an overview of the challenges and contributions that are

discussed in this thesis. Then, it discusses the required background information on cloud

computing and multimedia conferencing. Finally, it presents the outline of the rest of this

thesis.

1.1 Overview

Cloud computing is a paradigm in which resources (e.g., storage, network, and

services) are provisioned rapidly on demand. It offers three main service models,

Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-

Service (IaaS) [1]. It provides several benefits, such as scalability and elasticity.

Multimedia conferencing (or conferencing in short) is the real-time exchange of

multimedia content (e.g., audio, video, and text) between different parties [2]. It has several

applications, such as massively multiplayer online games (MMOG) and distance learning.

In some conferencing applications like MMOGs, there might be thousands or hundreds of

thousands of users (conference participants). This number of participants may have

considerable fluctuations over a short period of time. For instance, in one study, the number

of players in the World of Warcraft game (a famous MMOG) fluctuates between 1.5 and

2

2.5 million during 10 hours [3]. Therefore, such applications require scalability and

elasticity that cloud-based implementations may provide.

Conferencing application provisioning refers to the entire life-cycle of the

conferencing application, i.e., development, deployment, and management [4]. Cloud-

based provisioning of the conferencing applications will bring several benefits including

rapid provisioning, resource efficiency, scalability, and elasticity. However, it is quite

challenging. A challenge, for instance, is the lack of holistic architectures which take all

aspects of cloud-based conferencing applications (e.g., PaaS and IaaS) into account. The

holistic architecture can ease provisioning of the conferencing applications. For instance,

it can help the conferencing application providers to not master low-level details of

conferencing technologies, protocols, and their dependencies. Therefore, provisioning of

the conferencing applications can be easier especially for non-expert providers.

Another challenge is the lack of appropriate algorithms for resource allocation in the

conferencing cloud to accommodate the fluctuating number of participants while meeting

the required QoSs. As it was mentioned before, the fluctuation in terms of the number of

participants is high in some conferencing applications. If the allocated resources are not

enough, the participants cannot attend the conference. In consequence, it reduces the

participants’ satisfaction and may result in decreasing the QoS. On the other hand, if the

allocated resources are more than demand, it increases the cost. Thus, the efficient resource

allocation algorithms can help to avoid under-provisioning and over-provisioning of

resources.

Yet another challenge is the lack of suitable algorithms for scaling conferencing

applications in the cloud while meeting both QoS requirements and cost efficiency

objective. Besides the actual resources (e.g., computational resources and storage), the

conferencing applications also need to scale for accommodating the fluctuated number of

participants. Thus, there is a need for having efficient scaling mechanisms for the

conferencing applications.

Unfortunately, the solutions proposed so far do not address these challenges. This

Ph.D. thesis addresses the architectural and the algorithmic challenges of cloud-based

3

multimedia conferencing. It consists of three main contributions which are presented as

follows.

(i) Holistic Cloud-based Architecture for Multimedia Conferencing Applications [5],

[6]

 The first contribution is on the architectural components and the interfaces which

covers both the infrastructure and the platform layers of cloud-based multimedia

conferencing applications. This architecture simplifies the provisioning of the conferencing

applications for expert and non-expert application providers. For this contribution, novel

architectural components are proposed for the PaaS and the IaaS layers of multimedia

conferencing. The proposed architecture provides novel application programming

interfaces (APIs) to simplify the provisioning of the conferencing applications for a wide

range of application providers (experts vs. non-experts). It allows the conferencing

application providers to utilize the offered conferencing services (e.g., audio and video

mixing) without having to deal with the complexities of conferences. The proof-of-concept

prototypes are also implemented.

(ii) Resource Allocation Mechanisms for Multimedia Conferencing Applications [7],

[8]

The second contribution is the cloud-based resource allocation algorithms for

multimedia conferencing applications. In this contribution, we consider conferencing

applications with video mixing and compressing. The proposed algorithms allocate the

actual resources in an optimal manner while supporting scalability in terms of the number

of participants, and guaranteeing the required QoS. Since these algorithms are designed to

scale the actual resources (e.g., CPU, RAM, and Storage), they are suitable to be executed

on the conferencing IaaS.

(iii) Scaling Mechanisms of Multimedia Conferencing Applications [9], [10]

Lastly, the third contribution is the fine-grained scaling algorithms for multimedia

conferencing applications. These algorithms enable the conferencing applications to scale

in an elastic manner with respect to the number of participants. The proposed algorithms

4

also guarantee to meet the QoS requirements while considering the future demands of the

conferencing applications and cost efficiency objective. Instead of dealing with the actual

resources, the proposed algorithms scale the conferencing applications in a higher level of

abstraction which is the number of participants. In fact, these algorithms in collaboration

with the resource allocation algorithms in the conferencing IaaS can scale the conferencing

applications. Therefore, the proposed algorithms in this contribution are suitable to be

executed on the conferencing PaaS.

In both algorithmic contributions, the problems are mathematically modeled as integer

linear programming (ILP) problems. We solve the mathematical models to achieve

optimality for the small-case scenarios using the optimization tools (e.g., LPSolve Java

Library). We propose heuristics to solve the problems for the large-scale scenarios in an

acceptable time. The heuristics are evaluated in different scenarios and with different

parameters and settings.

More details and background information on cloud computing and multimedia

conferencing are presented in the following two sections.

1.2 Cloud Computing

There are several definitions for cloud computing. This thesis adopts the definition of

cloud computing provided by the National Institute of Standards and Technology (NIST)

[11]:

“Cloud computing is a model for enabling convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.”

Cloud computing has five essential characteristics [11]:

1. On-demand self-service: The cloud computing services (e.g., computing,

networking, and storing) can be provisioned by consumers without human

interactions with cloud service providers.

5

2. Broad network access: All of the services are available and accessible through the

network.

3. Resource pooling: The cloud resources (e.g., compute, storage, and network) are

pooled to provide services to multi-tenants according to the demand for each

customer. In fact, physical and virtual resources are dynamically assigned and

reassigned according to the consumers’ demands.

4. Rapid elasticity: The cloud is capable of provisioning of services according to the

consumer’s workload requirements.

5. Measured service: The usage of cloud resources can be monitored and controlled

using some metering capabilities. It provides transparency for both providers and

consumers of the utilized services.

Cloud computing can be represented using a service-driven business model. In this

model, hardware and applications are provided as on-demand services [12]. These services

can be grouped into three layers:

(i) Infrastructure-as-a-Service (IaaS)

The IaaS is composed of physical and virtualized resources (e.g., network, storage,

and servers) and provides scalable and cost-efficient resources as a service to the

customers. IaaS relies on virtualization technology that enables the abstraction of hardware

resources from the services. Virtualization allows consolidation of hardware resources into

pools of virtual shared resources. The consumers of IaaS have limited access to the

underlying infrastructure resources. However, the offered services can be tailored to the

consumers’ requirements [13]. Amazon EC2, OpenNebula, and IBM Blue Cloud are some

examples of cloud IaaS.

(ii) Platform-as-a-Service (PaaS)

The PaaS provides the environment needed to facilitate the application provisioning

lifecycle. The application provisioning includes development, testing, deployment, and

execution. The PaaS allows developers to focus on creating applications and freeing them

from the operations or platform maintenance. In consequence, it eases and accelerates the

application provisioning. The PaaS consumers only have control on their deployed

6

applications [13]. Google Cloud Platform, Aneka, and Cloud Foundry are some examples

of this cloud service model.

(iii) Software-as-a-Service (SaaS)

The SaaS is a software delivery model in which applications are hosted by the service

providers on cloud and delivered as a service to the users over the network. Here, the

consumers do not have any control over the application and the underlying infrastructure

layer [13]. SalesForce.com and Google Docs are examples of SaaS cloud service model.

1.2.1 PaaS Architectures

There are some reference models for PaaS architecture such as the one introduced by

IBM [14] and Aneka [15]. As an example, the IBM PaaS layered architecture is depicted

in Fig.1.1. It consists of four layers:

1. Front-end: It has a set of user and developer APIs and tools. Development APIs

allow the developers for allocating and managing the PaaS resources. The user APIs and

graphical user interfaces (GUIs) allow the users for invoking and executing the applications

which are running in the PaaS.

2. Core: It has necessary frameworks (e.g., containers and storage services) required

for application hosting and execution.

Front-end

Core

Management and

Governance

Abstraction

Interface

Developer

APIs

Development

Kit
User APIs GUIs

Service

Engines

Resource

Repositories
Runtime

Execution

Framework

SLA

Management
Orchestration

User

Management

Metering

Billing

PaaS / IaaS Interfaces

…

…

…

Fig. 1.1. IBM PaaS Reference Architecture

7

3. Management and Governance: Consists of entities for managing the PaaS and the

hosted applications (e.g., monitoring and scaling). Moreover, it has the required entities to

support the PaaS Business model (e.g., billing and membership).

4. Abstraction Interface: It has a set of APIs and operations that enable the interaction

with the underlying IaaS.

1.2.2 IaaS Architectures

Similar to the PaaS, the IaaS also has some reference architecture model such as the

one introduced in [16]. In this architecture model, the IaaS has three main layers:

1. Cloud Management: It has the responsibility of managing the overall IaaS. It also

acts as an interface with IaaS consumers (e.g., PaaS and another IaaS).

2. Virtual Infrastructure Management: It provides a uniform and homogenous view

of virtual resources. It provides primitives to schedule and manage VMs across

multiple physical hosts.

3. Virtual Machine Management: It provides simple primitives (e.g., start, stop,

suspend) to manage VMs on a single host.

1.3 Multimedia Conferencing

Multimedia conferencing has three main architectural components, namely signaling,

media handling, and conference control [2]. Signaling is responsible for the establishment,

modification, and teardown of multimedia sessions. Session establishment can be done in

two different ways: dial-in or dial-out. In dial-in conferences, the participants should call

the signaling server to join the conference while in dial-out conferences, the server calls all

the participants.

Media handling is related to media functionalities such as audio and video mixing,

transcoding, and compressing. Some researchers believe that the mixers are the core of the

media handling systems [17]. Audio mixer and video mixer deal with several received

media streams from multiple sources, combine them, and send the mixed stream to the

participants. Some systems may only work with specific codecs. As an example, a device

may have the ability to only play the “H.264” video codec. In order to support the

heterogeneity of audio and video codecs, there is a need to have transcoding ability in the

8

media handling component. Transcoding is a functionality to convert one codec signal to

another one. The media compressing is another functionality of media handling. It is used

to reduce the size of media. Its input media type is the same as its output’s. However, the

output stream size is less than that of the input.

Conference control encompasses the management functions to define and control the

conference policies and floor control. The conference policy functions include conference

arrangement, admission control, participant management, and voting. Based on the

RFC4582, the floor is: “A temporary permission to access or manipulate a specific shared

resource or set of resources”. Based on this definition, the floor control is a mechanism

which enables the management of the joint or exclusive access to the shared resources (e.g.,

audio channel, video channel) among the participants inside a conference. There are three

entities involved in the floor control mechanism: 1) Floor Participants – a conference

participant who is requesting for the access to the shared resources in the conference; 2)

Floor Chair – a conference participant who grants or denies the requests of floor

participants; and 3) Floor Control Server – a logical entity between the floor chair and all

floor participants which maintains the state of the floor (e.g., who is the chair, who has the

floor) and transmit all requests, decisions, and notifications.

There are some conferencing classification schemes. One example is whether the

conference has the sub-conferencing capability or not. This capability simulates a

conference inside another conference. In other words, sub-conferencing simulates a

conference with some different rooms. In each room, entitled as a sub-conference, the

participants can hear or see each other while they cannot hear or see other participants in

other sub-conferences.

Another classification scheme is whether the conference can be prearranged or ad-hoc.

In prearranged, the conference starts at a predetermined time and the duration of the

conference may also be predefined. However, in ad-hoc, the conference starts when the

first two participants decide to create a session and it ends when the last two participants

leave.

9

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 discusses the challenges,

general motivation scenario, and the requirements, followed by the review of the state-of-

the-art. Chapter 3 to 7 present the main contributions of this thesis. Chapter 3 discusses the

proposed holistic cloud-based architecture for multimedia conferencing applications.

Chapter 4 presents a proposed resource allocation algorithm for multimedia conferencing

applications. The proposed algorithm in chapter 4 has some limitations which will be

covered in another algorithm presented in chapter 5. Chapter 6 discusses a proposed scaling

mechanism of multimedia conferencing applications. The proposed algorithm in this

chapter also has some limitations which will be covered in another algorithm presented in

chapter 7. Finally, chapter 8 concludes the thesis and provides future directions for this

research.

10

Chapter 2

2. Challenges, Requirements, and Related

Work

Despite all improvements in the conferencing technologies, the proposed multimedia

conferencing solutions so far still face many challenges. Cloud computing, as an enabler,

can help to solve some of these challenges. This chapter presents the motivations behind

this research by discussing the challenges to be tackled in this thesis. Then, it derives the

requirements of cloud-based multimedia conferencing. After that, the related works are

reviewed in light of the derived requirements. Lastly, it concludes with the summary of the

related work.

2.1. Challenges

The challenges are classified into three categories: general challenges, PaaS related

challenges, and IaaS related challenges.

2.1.1. General Challenges

Nowadays, there are several existing multimedia conferencing applications such as

MMOGs, distance learnings, and online meetings. In some of these applications like

MMOGs, there might be thousands or hundreds of thousands of conference participants.

This number of participants may have considerable fluctuations over a short period of time.

For instance, in one study, the number of players in World of Warcraft (WoW- a famous

11

multiplayer online game), fluctuates between 1.5 and 2.5 million over 10 hours [3].

Therefore, scalability is essential in such applications. Non-cloud multimedia conferencing

solutions do not scale well. For example, a media server (a device or a software that is

responsible for media transmission, mixing, and transcoding) can offer media handling

services to the limited number of media streams. Assuming each participant uses a camera

or a microphone, increasing the number of participants leads to increasing the number of

media streams. Thus, if the media server is overloaded, a new media server should add to

offer media handling services to the new participants. However, in non-cloud multimedia

conferencing solutions, increasing the required resources (i.e., media servers in this

example) to cope with demands is a challenge. On one hand, it is time-consuming (e.g., it

may take several hours to several days to add the required resources). On the other hand,

changing the applications’ configuration in the runtime (to work with the newly added

resources) may not be possible or may cause application outage. Cloud-based multimedia

conferencing solutions can tackle these challenges and enable scalability. The resources

can dynamically increase or decrease on-demand and during the application’s runtime. In

addition, thanks to the virtualization technology that can be used in the cloud solutions,

increasing or decreasing the resources can be hidden from the participants’ perspective.

Therefore, there is no need to change the applications’ configuration in the runtime.

Besides the scalability problem, the efficient use of resources is another challenge.

Non-cloud conferencing solutions usually suffer from over-provisioning or under-

provisioning of resources. In such solutions, they may over-provision the resources in

advance to ensure they can accommodate all possible participants in the near future. For

instance, WoW uses more than ten-thousand servers while most of the servers’ capacities

remain idle most of the time [3]. On the other hand, under-provisioning of resources causes

application outage for the incoming participants. Cloud-based solutions can enable

allocating and de-allocating of required resources in an elastic manner and in a fine

granularity. In consequence, it enables efficient use of resources.

2.1.2. PaaS Related Challenges

There are several conferencing concepts which conferencing application providers

should consider. For instance, there are different conference models such as pre-arrange or

12

ad-hoc. As another example, there could be different conferencing technologies such as

SIP, WebRTC or hybrid. In addition, each concept has its own technical details. For

instance, the acceptable audio and video encodings in each considered conference

technology should be defined. All these technical details require experienced conferencing

application providers. However, their expertise may be different. A conferencing PaaS can

enable hiding the technical details required for provisioning the conferencing applications.

Therefore, it can simplify the provisioning of conferencing applications for a wide range

of conferencing application providers (experts vs. non-experts). In addition, a conferencing

PaaS can offer suitable algorithms for scaling the conferencing applications while meeting

different criteria such as QoS and cost efficiency.

2.1.3. IaaS Related Challenges

The IaaS layer can enable the on-demand provisioning of the actual resources such as

CPU, RAM, and storage. Consequently, it enables minimizing the associated capital costs

of having individual IT infrastructures. However, there are some issues related to having a

conferencing IaaS. For example, as it was mentioned in chapter one, the IaaS has an

architectural layer entitled as Cloud Management. This layer is responsible for the overall

IaaS management and also acts as an interface with IaaS consumers (e.g., PaaS or other

IaaSs). Generally, the usual IaaS consumers expect IaaS services which can be Computing,

Storing, and Networking. However, the consumers of a conferencing IaaS might expect

other services such as Audio and Video Mixing, Transcoding, and Signaling. This

difference in their expectations brings the need of having new interfaces and APIs. In

addition, it brings the need of having new resource allocation algorithms in the

conferencing IaaS. These algorithms can enable efficient resource allocation for the new

expected services while guaranteeing different requirements such as QoS and cost.

Solving all mentioned challenges is the motivation of research in cloud-based

architectures and algorithms for multimedia conferencing.

2.2. Requirements

According to the stated challenges, requirements are classified. Some of the mentioned

challenges have architectural aspects and some others have algorithmic dimensions.

13

Therefore, the requirements are categorized into two categories: architecture-specific

requirements and algorithm-specific requirements.

2.2.1. Architecture-Specific Requirements

These requirements should be considered in the conferencing architectural

contribution.

1) Scalability: A multimedia conferencing application should function well with different

workloads (e.g., having few or several participants). It needs to be scalable in terms of

different conferencing concepts such as the number of conferences, sub-conferences,

floors, and conference participants. The conferencing PaaS, in collaboration with the

conferencing IaaS, should scale the conferencing applications in response to the new

demand.

2) Elasticity: The conferencing PaaS and IaaS, should scale the conferencing applications

in a fine-grained (elastic) manner in response to the new demand (e.g., the fluctuating

number of participants, increasing or decreasing the number of conferences). This

enables the cost efficiency and follows the pay-per-use principle of cloud.

3) Meeting the Quality of Services: As it was mentioned before, multimedia

conferencing is the real-time exchange of media contents between different parties. To

guarantee the real-time exchange of media, meeting the QoS requirements, such as

latency, jitter, and throughput is critical in conferencing applications.

4) Publish-and-Discovery Mechanism: The cloud conferencing can simplify the

provisioning of conferencing applications (e.g., distance learnings) by offering

conferencing services (e.g., audio and video mixing) that may use by these applications.

Therefore, the providers of the multimedia conferencing applications need to find the

appropriate conferencing services which can fulfill their requirements. Publish and

discovery mechanism allows the conference application providers to discover available

conferencing services. It also enables the conferencing PaaS to discover a conferencing

IaaS as well as a conferencing IaaS to discover other conferencing IaaSs for excess

workloads.

5) Composition: This feature simplifies creating a complex conferencing service based

on the basic conferencing services. For example, a dial-in audio conference service

14

might be composed of a dial-in service and an audio-mixing service. As another

example, a video mixer with compression and transcoding capabilities can be

composed of three video mixing, compressing, and transcoding conferencing services.

6) High-level PaaS Northbound Interfaces: The conferencing PaaS northbound

interfaces should enable the conference application provisioning for a wide range of

providers (experts vs. non-experts). Having a conferencing PaaS with high-level

northbound interfaces helps to provision new applications without having to deal with

the complexities of conferencing components and their interactions. The interfaces

should also be flexible enough for creating complex and novel conferencing

applications (e.g., a distance learning application with dial-in audio conference

capability and five minutes of chat per hour).

7) Conference-rooted IaaS Interfaces: The conferencing IaaS interfaces should support

communication with IaaS consumers in terms of the virtual conference or finer

abstracted level such as virtual mixers or conference participants. Thus, the

conferencing IaaS interface needs to be rooted in the conferencing concepts.

2.2.2. Algorithm-Specific Requirements

The following requirements are identified as algorithm-specific requirements.

1) Scalability: As it was mentioned before, multimedia conferencing applications need to

scale in terms of different conferencing concepts to function well in different

workloads. Thus, the resource allocation algorithms for these applications need to

consider scalability in terms of conferencing concepts. These algorithms should be able

to dynamically scale the required resources to cope with new demands.

2) Efficient Use of Resources: Scaling the conferencing applications and their required

resources need to be done in a fine-grained manner. This enables the efficient use of

resources and consequently, cost efficiency.

3) Meeting the Quality of Services: Meeting the QoS requirements, such as latency,

jitter, and throughput is crucial in conferencing applications. Therefore, the responsible

algorithms for scaling these applications and their required resources need to meet the

QoS requirements. Considering the future demands of the application can also play an

15

important role in meeting the QoS. Therefore, the conferencing scaling algorithms need

to take into account the future demand of the application as well.

2.3. Related Work

In this section, the state-of-the-art for cloud-based multimedia conferencing is

presented. First, we discuss the works related to the architectural aspects of our work. After

that, the related algorithmic works are reviewed.

2.3.1. Architectural Related Work

In this section, the existing architectures of cloud-based conferencing, PaaS, and IaaS

are reviewed. In addition, service composition and discovery solutions are also discussed.

(i) Cloud-based Conferencing Architectures

The existing architectures can be categorized with a focus on the SaaS or IaaS layers.

Examples of the first category are presented in [18] and [19]. The two solutions focus on

developing conferencing services at the application layer, without addressing the

challenges related to the PaaS and IaaS layers (e.g., scalability, QoS, publication, and

discovery of conferencing services). Ref. [18] offers conferencing services as SaaS, while

using a conventional PaaS for deployment and execution. Ref. [19] presents an approach

for providing video conferencing as a web service and defines the interfaces to be used by

the conferencing application providers. This work tries to transform the existing

telecommunication services into a reusable resource for the third parties. However, it does

not address how these services are provisioned.

Ref. [20] is an example of the relevant works with a focus on the IaaS layer. The

proposed architecture relies on conferencing substrates (i.e., basic conferencing building

blocks such as signaling, audio and video mixing) and enables scalability in an elastic

manner. It also proposes PaaS/IaaS interfaces rooted in substrates and proposes a broker

between IaaS and PaaS that allows finding suitable substrates. However, it does not

consider the PaaS and SaaS layers and their relevant issues. Neither does it include high-

level PaaS interfaces for application providers.

16

Other works in the relevant literature, such as [21], [22], and [23], address specific

problems of cloud-based conferencing, such as inter-datacenter network utilization, media

mixing, and transcoding. While they focus on how conferencing components can

efficiently utilize the cloud, they do not address conferencing application provisioning. In

addition, as these works only offer one service, they do not tackle the service publication,

discovery, and composition.

(ii) Existing PaaS Solutions

Aneka [15] and Cloud Foundry [24], the two PaaS representatives, are evaluated.

Aneka provides high-level PaaS interfaces and supports scalability in an elastic manner,

specifically for distributed application provisioning. Nonetheless, it does not offer any

conferencing APIs. Cloud Foundry provides no interfaces for conferencing application

provisioning. It supports the scaling of application instances but does not address scaling

in terms of conference concepts. Neither does it address composition and QoS.

(iii) Existing IaaS Solutions

Some relevant literature propose a conceptual architecture of open-source IaaSs. Ref.

[25], for example, proposes the OpenStack architecture that consists of five layers:

Compute (Nova), Storage (Swift), Image (Glance), Identity (Keystone), and Dashboard

(Horizon). Nova is the computing fabric controller for OpenStack and it is all about access

to the computing resources. Swift, as the storage infrastructure in OpenStack, offers APIs

to store and retrieve lots of data. Glance builds a discovery and retrieval system for VM

images. Keystone is responsible for authentication and authorization. Horizon provides a

web-based user interface to all above OpenStack services. In [26], instead of having one

layer for Storage, it is broken down into two layers: Block Storage and Object Storage.

Block Storage offers storage volume for Compute layer while Object Storage stores the

actual virtual disc files. Their architecture also has a Network layer to provide virtual

networking for the Compute layer. All components in both architectures follow a shared-

nothing policy, meaning each component can be installed on any server.

The OpenNebula architecture proposed in [25] and [27] has three layers: Drivers,

Core, and Tools. Drivers do the communication with the underlying operating system. VM

17

creation, startup and shutting down are parts of this layer’s functionality. The core is a

centralized layer that manages the VM life cycle. To manage VMs, Tools offers different

interfaces for communication with users. Authors in [16] keep the Core and Drivers layers

and propose Scheduler to replace Tools. Scheduler decides about VM placement. This

layer keeps track of all the incoming requests in order to send an appropriate deployment

command to the Core layer, based on those requests. They also have an Interface layer to

communicate with users.

All above IaaS solutions are VM-based, thus, their interfaces should change to support

the communication rooted in conferencing concepts (e.g., start, stop and modify the

conferencing substrates). Moreover, they support scalability in terms of computing

resources, storage, and networking. However, as a conferencing IaaS, there is a need to

scale resources in terms of conferencing concepts (e.g., the number of participants) to

collaborate with the conferencing PaaS.

(iv) Service Composition and Discovery

Service composition is a well-researched topic as several solutions and alternatives

have been proposed to cater to different situations [28], [29], [30]. Service composition can

be done in a static or dynamic way [31]. In a static composition, the basic services as part

of the composition are selected in advance and their aggregation takes place at the design

time. In contrast, dynamic composition allows to select and replace the basic services

during the runtime. The composition can also be done manually, semi-automated or

automatically [31]. In manual composition, the service provider should define and create

an abstract composite process and manually bind the services to the abstract process. Some

web service standard languages such as BPEL [32] or OWL-S [33] can be used to create

the abstract process. In automatic composition, the new composite service specification

can be generated by selecting adequate services based on the specified requirements [31].

Semi-automatic composition leverages both manual and automatic approaches. Workflow-

based and template-based compositions are other composition planning techniques [34]. In

the workflow-based composition, the process is depicted as an acyclic directed graph with

control and data flow. This technique requires the developers’ extensive domain

knowledge and is time-consuming. In the template-based composition, templates describe

18

the outline of activities required to solve the problem. Templates are parameterized and use

variables that allow customization based on the users’ needs and preferences. In fact, the

templates lead to creating an executable workflow.

Ref. [35] proposes a cloud service broker to facilitate the deployment of cloud

application topologies from multiple cloud providers. The authors also propose a multi-

criteria optimization algorithm to select the basic services to be composed. The algorithm

sets cost efficiency as the main objective. Authors in [36] consider a wide range of

objectives to design their cloud broker selection mechanism, such as user constraints,

financial, energetic, geographic or operator contractual preferences. Ref. [37] considers

multimedia conferencing requirements for designing the service broker. The authors here

propose an architecture for substrate service publication and discovery. Their service

broker acts between the substrate providers and the conferencing IaaSs and offers some

REST APIs as the interfaces between them.

2.3.2. Algorithmic Related Work

In this section, the related algorithmic works are reviewed. First, we review the

resource allocation solutions proposed so far for cloud-based multimedia conferencing.

This is followed by a discussion of the other cloud-based solutions. This discussion

includes multimedia solutions which are not multimedia conferencing. After that, we will

present the general cloud resource allocation solutions that are not bounded to multimedia

and multimedia conferencing applications. The solutions which are based on Network

Function Virtualization (NFV) [38] are also reviewed. NFV is a technology that enables

dynamic provisioning of network services. However, these solutions are discussed because

NFV is also considered as a candidate technology for provisioning other services such as

multimedia services [39]. Finally, the traditional approaches for multimedia conferencing

are reviewed.

(i) Resource Allocation for Multimedia Conferencing in the Cloud

There are some algorithmic and architectural works done in multimedia conferencing

in the cloud. Negralo et al. [40] present algorithms for scaling resources based on the real-

time demands by using load balancing and the addition or removal of virtual machines

19

(VMs). Reaching a predefined threshold for CPU or bandwidth usage triggers scaling. Gao

et al. [41] also work on cost-efficient video transcoding in the cloud. They minimize the

overall storage and computing cost by partially using offline and online transcoding. The

main focus of these works is cost efficiency and they do not consider QoS.

Hajiesmaili et al. [42] model the video conferencing cost in multiparty cloud video

conferencing architecture. The main focus in this work is minimizing the operational cost

by finding the best assignment of users to VMs. Besides minimizing the cost, they aim to

reduce the conferencing delay as well. However, this work does not consider the resource

allocation problem in case of having fluctuations in the number of participants. Abdallah

et al. in [43] survey other architectural works on delay-sensitive conferencing video

services. They present some related applications such as Cloud Gaming, Virtual Reality

(VR) and Augmented Reality (AR) and their requirements for conferencing services. They

also review the architectural designs for the management of such services. In addition, they

briefly talk about optimization techniques. None of the reviewed papers meet the

requirement of scalability in terms of considering fluctuations in the number of

participants.

(ii) Non-Conferencing Related Cloud Resource Allocation Solutions

Several researchers have proposed solutions for resource allocation to multimedia

services in the cloud. However, they do not focus on multimedia conferencing. Xavier et

al. in [44], [45] propose resource allocation algorithms for audio and video services in the

content delivery network (CDN). The proposed solutions scale the resources at the VM-

level while attempting to minimize the cost. They also consider meeting the users’ quality

of experience in their algorithms. Gao et al. in [46] present a resource allocation algorithm

for transcoding as a cloud service. In this work, they try to maximize the service profit

while achieving their performance requirements such as service processing delays.

Although these works consider scalability, fine-grained resource allocation and efficient

use of resources are not considered.

He et al. in [47] and Dong et al. in [48] consider fluctuation in the number of audio

and video sources. In these two works, they consider numerous users as video broadcasters

20

which live stream their video content such as their mobile camera feed or online game

scenes. The authors in [47] propose a generic cloud framework that considers the viewers’

quality of experience (QoE) and cloud resource cost. They only consider transcoding as a

media handling service in their study. The authors in [48] propose an algorithm that makes

a tradeoff between QoE of users and the total cost for a media service provider. None of

these two works consider having a video mixing service. It means that in these works, the

videos are just streamed from a source to a destination and never mixed with other video

sources.

Several cloud resource allocation solutions consider meeting the QoS requirements

and cost efficiency. Considering the future demands of the application also can play an

important role in meeting the QoS. Some of these solutions consider the future demands of

the application while others only take real-time demands into account. Therefore, we

categorized them into two group.

(iii) General Cloud Resource Allocation Solutions

There are several cloud-based resource allocation solutions with different objectives

such as reducing the cost or meeting the QoS requirements. We categorize them into

existing PaaS resource allocation solutions, and IaaS resource allocation solutions.

a) PaaS Resource Allocation Solutions

Anselmi et al. [49] model the resource allocation problem of PaaS as a Generalized

Nash Equilibrium problem. Their scaling model relies on the number of VMs that host the

applications which are offered as SaaS. Their proposed game-theoretic approach tries to

manage the capacity of a PaaS provider among multiple competing SaaSs at runtime.

Gomez et al. [50] introduce a PaaS framework that enables provisioning of cloud-based

services and applications by using the blueprints. The blueprint in this work refers to the

technical description of an application and all its dependencies (e.g., required resources

and deployment geolocations). Their platform supports both horizontal and vertical scaling

and relies on different IaaSs. Hu et al. [51] present an adaptive resource management

algorithm. Their proposed PaaS dynamically allocates and de-allocates the application

21

instances based on the fluctuation of resource demands. Their algorithm monitors the

performance statistics to tune the scaling decision.

 Machado et al. [52] present a PaaS framework that supports the deployment of multi-

tier and stateful applications while assuring their availability. In this work, they use

different profiles to represent the requirements of applications such as response time and

budget. Satoh [53] also proposes a resource allocation mechanism for applications in the

cloud. This approach considers the runtime data and it tries to minimize the required

resources by reducing the redundant functions and data of the applications. None of the

aforementioned works take the future demand for the applications into account. Moreover,

the scaling decisions in these solutions lead to adding a new instance of an application or

a VM. Therefore, their scaling decision may not suitable for cost-efficiency objective.

Babaioff et al. [54] present a scheduling and pricing framework for cloud resources

based on the predicted demands and completing a job within a deadline. The proposed

solution updates the prediction with every new request. Also, their architecture provides

some internal APIs which enable plugging the algorithmic modules such as demand

prediction. Bunch et al. [55] present a pluggable auto-scaling mechanism for PaaS. Their

solution considers different resource pricing model offered by IaaS. They use an

exponential smoothing algorithm to forecast the future demands for a specific period. The

algorithm runs periodically and predicts the future demands based on the requests over the

last 𝑡 seconds. Roy et al. [56] also developed a model-predictive algorithm for workload

forecasting. They use Autoregressive-Moving-Average method for their workload

prediction. While [55] considers the uncertainty in the prediction model, [56] has no

consideration for misprediction. These solutions also can only support scalability at the

VM-level granularity and do not consider real-time demands.

b) IaaS Resource Allocation Solutions

An online resource allocation solution is proposed by Mashayekhy et al. in [57]. Their

solution runs as soon as a request by a user arrives or a resource is released. Their objective

is to allocate resources in terms of VMs while minimizing the cost for both IaaS providers

and users. Shen et al. in [58] and Han et al. in [59] also propose a resource allocation

22

mechanism with the objective of minimizing the wastage of resources by considering the

real-time demands for resources. The scaling decisions of all these mechanisms result in

the addition or removal of VMs. Moreover, the main focus of these works is cost efficiency

and they do not consider the QoS requirements.

The future demand is taken into account in other IaaS resource allocation solutions.

Xavier et al. in [60] consider the similarity of future demands with the historical VM

allocation data. In this work, they proactively allocate required VMs hosting the required

components such as an encoder, decoder, and transcoder. The resource allocation in this

work is also in terms of VMs. Gong et al. [61] also propose an elastic resource scaling

solution that considers future resource demands as well as real-time demands. The aim of

this work is to minimize the cost of resources. They derive a pattern window from the

historic resource usage and use that in their demand prediction of a window time-slot

ahead. While [60] considers QoS, [61] does not consider this requirement.

(iv) NFV Resource Allocation Solutions

There are several works done in NFV resource allocation domain. Herrera and Botero

in [62] present a comprehensive survey on NFV architecture and its resource allocation

problems. They define different optimization strategies for NFV resource allocation,

followed by emerging challenges. The reviewed works are focused on optimizing the

Virtual Network Functions (VNFs) placement in the network and not focused on scaling

based on the fluctuating demands.

Other researchers such as Fei et al. in [63] and Wang et al. in [64] focus on scaling the

VNFs and considering the fluctuations in the demands of a service. In [63], they propose a

proactive approach for provisioning VNFs by using traffic prediction. The goal of this work

is to instantiate fewer VNFs to reduce cost. Also, they use online learning to intelligently

scale VNFs to cope with traffic fluctuations. The authors in [64] propose an online

deployment of VNF chains and dynamic scaling in response to changes in traffic. Similar

to [63], the goal of [64] is to reduce the cost by deploying a minimum number of VNFs.

However, they also consider VNF placement and minimizing network congestion. The

scaling in these works is in terms of a VNF instance and they do not consider increasing or

23

decreasing the resources of existing VNFs. Dieye et al. in [39] introduce a cost-efficient

proactive VNF placement for CDNs. In this work, the location of end-users as destinations

are known in advance while the location of their surrogate servers (i.e., media sources) are

not known. Similar to [63] and [64], they do not consider scaling in an elastic manner of

resources in the existing VNFs.

(v) Traditional Resource Allocation for Conferencing

There are some resource allocation solutions for peer-to-peer (P2P) conferencing and

centralized multimedia conferencing [65]. Yuen and Chan [66] reduce worst-case video

transmission delay from different video sources to users. They propose an algorithm to

select peers as mixers to achieve minimum overall delay. However, their algorithm does

not account for media handling response time. Chen et al. [67] also propose a P2P multi-

party video conferencing solution to achieve a low end-to-end delay. They optimize the

streaming rates of all peers subject to network bandwidth constraints. Their study reduces

the end-to-end delay without tackling the specifics of media handling services. Multipoint

Control Unit (MCU) [68] is a media handling component that can include different media

handling functionalities. Traditionally, all requests are handled by a single MCU, where

resources are allocated in a static manner. Thus, this approach is not scalable and uses

resources inefficiently.

2.4. Conclusion

As it was discussed in this chapter, there are some existing works done close to this

research area. However, none of them satisfy all the requirements of multimedia

conferencing applications. Table 2.1 and 2.2 summarize the evaluation of the related work

with respect to the mentioned requirements. The check marks in these tables indicate that

the requirement is met in the related work.

24

Table 2.1. Summary of the architectural related work

Publish

and

discovery

Composition

High level PaaS

northbound

interface

Conference

rooted IaaS

interface

Elasticity,

Efficient

use of

resource

Scalability
Meeting

the QoS
A

rc
h
it

ec
tu

ra
l

R
el

at
ed

 W
o
rk

[18] – –  – – – –

[19] – –  – – – –

[20] – – –    –

[21] – – – –   –

[22] – – – –   –

[23] – – – –   –

[15] – –  –   –
[24] – – – –   –
[25] – – – – –  –

[26] – – – – –  –

[27] – – – – –  –

[16] – – – – –  –
[35]   – – – – –
[36]  – – – – – –

[37]  – –  – – –

Table 2.2. Summary of the algorithmic related work

 Elasticity, Efficient use of resource Scalability Meeting the QoS

A
lg

o
ri

th
m

ic
 R

el
at

ed
 W

o
rk

[40] –  

[41]   –

[42]  – –

[30] –  

[31] –  

[46] –  

[47]   –

[48]   –

[49] – – 

[50]  – 

[51]  – 

[52] –  –

[53] –  –

[54] –  

[55] –  

[56] –  –

[57] –  –

[58]   –

[59]   –

[60] –  

[61]   –

[57]   –

[58]   –

[33]   –

25

 Elasticity, Efficient use of resource Scalability Meeting the QoS

[63]   –

[64]   –

[39]   –

26

Chapter 3

3. A Cloud-based Architecture for

Multimedia Conferencing

3.1. Introduction

This chapter proposes a holistic conferencing cloud architecture that provides novel

application programming interfaces (APIs) to simplify the provisioning of the conferencing

applications for a wide range of application providers (experts vs. non-experts). It also

describes the process of composing a complex conferencing service from the basic

conferencing services (e.g., signaling, video mixing, and compressing). Service

composition can be done in orchestration and choreography approaches. The choreography

defines the sequences and conditions where different independent services exchange data

while orchestration defines the sequences and conditions where one service invokes other

services [69]. In this chapter, we entitled the basic conferencing services as Conferencing

Substrate. The Proposed architecture allows the application providers to utilize the offered

conferencing services without having to deal with the complexities of conferences.

27

This architecture is based on the business model in [2], which introduces six roles:

connectivity provider, broker, conferencing substrate provider, conferencing infrastructure

provider, conferencing platform provider and conferencing service provider. This work

reuses and extends this business model by adding a new role, entitled as the conferencing

application provider. It also assumes that the conferencing infrastructure provider plays the

role of the substrate provider too. In this architecture, the infrastructure provider exposes

the conferencing substrates as services (SubaaS) to the platform (i.e., PaaS) provider. The

PaaS provider offers high-level APIs to create innovative conferencing services and it

enables the on-the-fly composition of SubaaS into full-fledged conference services. The

conferencing application providers reuse the conferencing services offered as SaaS in

building new applications. They also use PaaS to update the running conferences in their

applications at runtime (e.g., switching from audio conference to audio/video conference)

without stopping the ongoing conferences.

The rest of this chapter is as follows. First, the motivating scenario for this work is

described. Later, the architectural principles are presented followed by the proposed

architecture. Then, the service composition will be discussed. Finally, we discuss the

implementation architecture, followed by the measurements and conclusion of this chapter.

3.2. Motivating Scenario

Fig. 3.1 depicts the motivating scenario. There are conferencing application providers

that use conferencing services offered as SaaS to develop their applications. Three

conferencing applications are provisioned: (1) an online game that allows dial-in audio

conferencing between the game players, (2) a distance learning application that enables

dial-out audio conferencing between students and teachers, and (3) an online meeting

application that offers dial-out video conferencing with floor control. The conferencing

service providers in the scenario use the conferencing PaaS to provision the conferencing

services these applications are based on. One service provider offers Conferencing Service

“A” that supports both dial-in and dial-out audio conferences. The distance learning and

the game applications utilize Service A. Another conferencing service provider offers a

dial-out video conference service with floor control, i.e., Service B. This second service is

used by the online meeting application.

28

The conferencing SaaSs create new conferences when they receive corresponding

requests from the conferencing applications. For example, Service A creates a dial-in audio

conference when it receives a request from the game application. To run the conference,

the PaaS finds the appropriate SubaaSs (i.e., dial-in signaling and audio mixer in this

example), composes them, and requests the relevant IaaS(s) to create and activate an

adequate instance of each substrate (e.g., the audio mixer with the capability of supporting

500 users). The SubaaSs involved in a given composed conference application may belong

to different substrate/IaaS providers. As the players join and leave a conference, PaaS

scales the conference up and down in terms of the number of participants. Then, the

conferencing IaaS should scale the corresponding instances up and down in terms of the

virtualized hardware (e.g., CPU, RAM, and Storage) and software (e.g., the number of

running instances of each substrate). Scaling in both layers is done in an elastic manner.

3.3. Proposed Conferencing Architecture

In this section, the architectural principles are presented. Then, the architectural

components and service development APIs are discussed in detail, followed by an

illustrative scenario.

Conferencing

SaaSs

Conferencing

Applications

Conferencing IaaSs

Conferencing IaaS 3

(Floor Control)

Conferencing PaaS

Conferencing Service A

(Dial-in/Dial-out Video

Conference)

Conferencing Service B

(Dial-out Video Conference

with Floor Control)

Conferencing

Service

Providers

Online MeetingDistance LearningOnline Game

Conferencing

Application

Providers

Conferencing IaaS 1

(Dial-in Signaling,

Dial-out Signaling)

Conferencing IaaS 2

(Audio Mixer, Video

Mixer)

…

Fig. 3.1. Scenario for conferencing application provisioning in the cloud

29

3.3.1. Architecture Principles

The first principle is to adopt the orchestration approach for the SubaaS composition

because it provides PaaS with a greater control on the substrates and their interactions. In

fact, orchestration allows a central entity to control different services and their interactions.

The second principle is to use high-level PaaS/IaaS interfaces rooted in the conferencing

substrates. This principle enables PaaS to request IaaSs for scaling conferences in terms of

conference concepts (e.g., the number of participants) rather than VM or the container

resources. The third principle is to leverage the existing PaaSs and IaaSs. This allows

reusing the existing solutions for the conferencing PaaS and IaaS implementation. The last

principle is that the conferencing IaaSs expose substrates as RESTful web services.

3.3.2. General Architecture

The proposed cloud-based conferencing architecture, as shown in Fig. 3.2, includes

two main layers (i.e., PaaS and IaaSs) and a broker. The figure also shows the conferencing

service providers, the conferencing applications, and the conferencing application users

referred to as the conference participants. Note that PaaS may need to communicate with

multiple IaaSs to provision a given conferencing service.

(i) PaaS Components:

The PaaS layer consists of six components, which deal with two key facets: 1)

conferencing service provisioning and utilizing, and 2) conference management.

a) Conferencing Services Provisioning and Usage

This facet covers conferencing SaaSs development, deployment, and management in

addition to conferencing SaaSs utilizing. It includes four components. The Conferencing

Service Provisioning APIs component offers high-level APIs to the conferencing service

providers, for easy provisioning of new conferencing SaaSs. It also allows the SaaSs

providers to make their services available to the application developers via publishing them

into a PaaS local service repository.

30

The Conferencing Service Utilizing APIs provides high-level APIs for conferencing

application providers, to discover (from the local service repository), reuse, and control the

existing conferencing SaaSs.

The Management and Governance component manages the conferencing services and

monitors their QoS and SLAs during service execution. It deploys and executes new

services in the Service Hosting and Execution component, upon receiving the requests from

the conferencing Service Provisioning APIs.

The Service Hosting and Execution component hosts the conferencing services. It

allocates necessary PaaS resources (e.g., server runtime and database drivers) and prepares

the execution environment before hosting.

Note that the Conferencing Service Provisioning and Utilizing APIs are the extensions

of the application provisioning front-end available in regular PaaS architectures. The

SubaaS Controller

Substrate Manager

Virtualized Hardware

SubaaS

Broker

Conference Orchestration

Conferencing Service

Provisioning APIs

Service Hosting and Execution

Monitor

PaaS

resources

Monitor and

maintain SLA

Manage service lifecycle

Create new conferences

PaaS / IaaS Interface

Publish

SubaaS

Conferencing IaaS Handler
Scale conferencesActivate and manage substrates

Provision

hosting

environment

Deploy, start, stop,

scale service

instances

Discover

SubaaS

Management and Governance

Conferencing Service Providers
Conferencing

Applications Online Game
…

Game Players

(Conference

Participants)

Conferencing PaaS Handler

Conferencing Service

Utilizing APIs
C

o
n
feren

cin
g
 P

aaS
C

o
n
feren

cin
g
 Ia

a
S

Active

SubaaS Info

Fig. 3.2. Overall cloud-based conferencing architecture

31

Management and Governance, as well as the Service Hosting and Execution components

are reused from the conventional PaaS architectures.

b) Conference Management

This facet concerns the management of the actual conferences (i.e., the virtual rooms

where people can meet and communicate). It encompasses conference creation as well as

the management of the created conferences (e.g., scaling the size of a conference to support

more participants). The main component of this facet is Conference Orchestration with the

following five tasks: First, it determines the necessary substrate types and their associated

requirements by using, for instance, syntactic matching with the categorized API

parameters. This task starts upon receiving the execution or modification request for a

specific conferencing SaaS. Second, based on the determined types and requirements, it

discovers the most suitable conferencing SubaaSs from the broker. The existing algorithms

for cloud service selection, such as [70], can be reused in this context. Third, it orchestrates

conferences from the selected SubaaSs and executes them. Note that conferences are

executed in this component. In contrast, the conferencing SaaSs that create conferences are

executed in the Service Hosting and Execution component. Fourth, it manages the

composed conferences. For example, it can add the video mixing ability to a conference or

remove it from it. Fifth, it monitors the running conferences to make decisions if any

scaling is required. For instance, if the number of participants in a conference increases, it

decides to scale the conference size. Thus, it requests the conferencing IaaSs to scale the

corresponding substrates to cope with the new workloads.

Another component under this facet is the Conferencing IaaS Handler, which is in

charge of communications between the conferencing PaaS and the conferencing IaaSs. For

instance, a scaling request initiated by the Conference Orchestration component is sent to

the corresponding conferencing IaaSs through the Conferencing IaaS Handler. Note that

Conference Orchestration is a novel component while Conferencing IaaS Handler is an

extension of IaaS communication component in conventional PaaS architectures.

32

(ii) IaaS Components:

The IaaS layer consists of five components, dealing with two key facets: 1) resource

management and 2) SubaaS management.

a) Resource Management

This facet is in charge of providing the required resources in order to run a substrate. The

Virtualized Hardware is one of the components in this facet. It has a pool of typical

virtualized IaaS resources such as CPU, Network, and Storage. The second component of

this facet is Substrate Manager with three main tasks: First, it creates and hosts resources

in order to run the substrates. These resources can be a VM or a container [71] that uses

virtualized hardware to host a substrate. Each substrate can be hosted on one or many VMs

or containers (e.g., two instances of the same substrate may be activated in two different

machines). In addition, each VM or container may host more than one substrate. The

second task is modifying the allocated resources upon receiving the scaling request for a

substrate. For instance, to scale up a running substrate, it can add some virtualized hardware

to the VM that hosts the target substrate. The third task is inserting and updating the

information of all running substrates in a repository called Active SubaaS Info.

b) SubaaS Management

This facet includes the managing functionalities to offer substrates as services. The

first component of this facet is the Active SubaaS Info. It is a repository that keeps

information about all running SubaaSs. For instance, for each running SubaaS, it keeps the

related conference ID, IP of the VM(s) or container(s) hosting that substrate, etc.

Another component of this facet is SubaaS Controller. This component has two main

tasks. First, it decides how and when to scale a running substrate, based on the Service

Level Agreements (SLAs) between the PaaS and IaaS (e.g., end-to-end delay should be

less than 400 msec). Upon receiving the scaling request from the PaaS and its required

QoS, it uses the stored information in the Active SubaaS Info repository to make the scaling

decisions. The resource allocation algorithm and video mixing procedure that we will

present in the next chapter (chapter 5) are used for this purpose. Second, it maintains a

repository of all available substrates in the IaaS. It selects a suitable substrate from this

33

repository when it receives a request to create and start a substrate. It then instructs the

Substrate Manager to create the actual resource. Moreover, it publishes the information of

SubaaSs in the broker.

The third component of this facet is Conferencing PaaS Handler, which is in charge

of all communications between the PaaS and IaaS layers. This component has two main

tasks: First, it receives and dispatches the PaaS requests (e.g., to create a substrate and scale

up a substrate) to the appropriate IaaS components and forwards the IaaS replies to the

PaaS. Second, it handles the conference participants’ requests (e.g., joining a conference).

The participants’ requests are sent from the conferencing applications to the PaaS, which

forwards them to the conferencing IaaS. The Conferencing PaaS Handler, in collaboration

with the Active SubaaS Info repository, identifies the appropriate substrates and forwards

the requests to them. This feature increases the level of abstraction for the substrates

working in a single conference. Moreover, there is no need to update the participants on

any changes in the substrates’ hosting resources.

(iii) Broker:

The Broker lists the SubaaSs offered by different IaaSs. The SubaaSs description is

semantic-based to allow for rich descriptions and queries. It includes high-level information

such as the type of service, QoS parameters, and cost. In this paper, we reuse the description

model and the broker publication and discovery interfaces from [37].

3.3.3. Conferencing Service Development APIs

Three principles are followed to design the proposed APIs. The first principle is

leveraging basic conferencing concepts (e.g., conference, participant, media, and floor) in

the API design. This helps in achieving an abstraction level higher than conferencing

components (e.g., signaling, media mixer, and media transcoder) and their complex

interactions. The second principle is categorizing API parameters, which helps service

providers to easily understand conference mandatory and optional aspects, required API

parameters for each aspect and dependencies among parameters. The third principle is the

34

use of RESTful design. It is standard-based, lightweight and flexible for data representation,

which allows describing the APIs in a generic way.

Table 3.1 delineates four API examples. It shows some of the REST resources along with

an example operation for each. The request parameters and the response contents are also

listed. Showing the categorization of API parameters, Table 3.2 highlights that a service

provider has to specify one conference model, at least one media and the conferencing

technology. It also shows the conditional dependencies of parameters. For example, for

WebRTC-based conferencing [72], the signaling protocol must be specified. In this table,

the parameters that the service providers can change during the runtime are italicized.

3.3.4. Service composition

As per our first design principle, the conferencing services are composed of SubaaSs

using the orchestration approach. The Conference Orchestration component of the PaaS

plays the role of the central entity that invokes and controls the composing SubaaSs.

In addition to the composition approach, two other composition aspects are considered:

binding dynamicity and automation level [31]. Since the PaaS discovers, selects, and

activates the composing SubaaSs on the fly, dynamic binding to IaaSs (i.e., SubaaS

Table 3.1. Examples of conferencing service development APIs

REST

Resource
Operation

HTTP action and

resource URI
Request body parameters

Most important

info in response

List of

Conferences

Create

conference
POST: /conferences

Conference model, Media,

Conference technology,

floor control, conference

size, QoS requirements

ID and URI of

the created

conference

resource

List of

participants

Add

participant

POST: /conference/

{conferenceId}/

participants

Participant description:

name, URI

ID and URI of

the new

participant

resource

List of floors Add floor
POST: /conferences

/{conferenceId} /floors

Floor description: chair,

floor participants

ID and URI of

the newly

created floor

resource

Specific sub-

conference

Remove

subconference

DELETE: /conferences

/{conferenceId}

/subconferences

/{subconferenceId}

None

Success or

failure

indication

35

providers) is required. As for the automation level, the semi-automated approach is adopted

to take advantage of more mature and widely used techniques, such as workflow.

In this work, the conferencing PaaS provider develops a generic workflow template for

the composite conference, considering the various substrate types that may be required. It

uses a workflow automation tool (e.g., Activiti [73]) to ease and speed up the process. When

the Conference Orchestration component selects the SubaaSs to be composed (i.e., at

runtime), it creates an instance of the workflow template and then configures the instance

with the selected and activated substrate instances. Thus, the conference is dynamically

bound to its composing substrate services. This dynamic binding makes it possible and easy

to change the substrates used by an ongoing conference at runtime if needed. Note that a

Table 3.2. Categorization of API parameters

Categories of

Parameters
Example Values

Mandatory

Aspects

Conference

Model

Pre-arranged

conference

Dial-in conference

Dial-out conference

Ad-hoc conference

Media At least one of audio, video, and text

Conferencing

Technology

SIP-based

Signaling

protocol

Default protocol: SIP. No

need to specify

Audio

encodings

Default encoding: NULL. It

should be specified

Video

encodings

Default encoding: NULL. It

should be specified

WebRTC-based

Signaling

protocol

Default protocol: NULL. It

should be specified

Audio

encodings

Default encoding: G.711

and Opus. Can specify

additional

Video

encodings

Default encoding: H.264

and VP8. Can specify

additional

Hybrid (SIP +

WebRTC based)

Mandatory protocols and encodings from

both technologies apply. Can specify

additional

Optional

Aspects

Floor control
At least one floor control policy, e.g., chair-moderated or

round-robin

Subconference Enabled or not

36

PaaS provider may define multiple workflow templates and then select the most suitable

one based on the required substrate types and the rest of the users’ requirements.

3.3.5. Illustrative Scenario

The illustrative scenario consists of (i) an online game application where players can talk

for unlimited time but can have private text chat for only 5 minutes per hour, (ii) a service

provider that offers dial-in audio conferencing as SaaS with text chat for a limited time and

(iii) a conferencing PaaS that subscribes to three conferencing IaaSs: A, B and C, which

offer dial-in signaling, audio mixing and instant messaging SubaaSs respectively. The

scenario illustrates how the conferencing PaaS creates a conference when the game

application sends a request to the conferencing SaaS and how the conferencing IaaSs

allocate the resources.

Fig. 3.3 shows the interactions. For brevity, the game application is omitted in the figure.

Using the Conferencing Service Utilizing APIs, the game application developer finds the

offered conferencing services and requests for conferencing SaaS A. When conferencing

SaaS A receives the game application request for creating a conference, it invokes the create

conference API (step 1). The API handling is delegated to the Conference Orchestration

component, which determines necessary substrate types (step 2) and finds appropriate

Fig. 3.3. Conference creation and modification steps

Conferencing SaaS A
(running on PaaS)

Conference Orchestration

Determine necessary
substrates and
composition template

Conferencing
IaaS Handler

Dial-in Signaling
(IaaS A)

Audio Mixing
(IaaS B)

Return substrate ID (S1)

Create & activate substrate

Create & activate substrate

Return substrate ID (A1)

Conference created (C1)

Instant Messaging
(IaaS C)

Return substrate ID (T1)

Create & activate substrate

After 30 minutes ...

Instant Messaging added to
conference C1

Add conference C1's participants in substrate T1
Return Ack (Participants added)

API.createConference({

 model: dial-in,

 media: audio

 technology: WebRTC,

 signaling-protocol: JSEP,

 maxSize: 1000,

 startTime: March 4, 2016

 15:00:00,

 duration: 2 hours

});

API.addMedia(C1, {

 type: instant messaging,

 protocol: SIP/SIMPLE,

 duration: 5 minutes

});

Broker

Discover related SubaaSs

Signaling -> IaaS A,
Audio Mixer -> IaaS B,

10

11

14

15

Create & activate signaling substrate

Signaling substrate created (S1)

Create & activate Audio Mixer substrate

Map new conference ID from substrates' IDs: C1 = (S1, A1)
Audio Mixer substrate created (A1)

Create & activate Instant Messaging substrate

Instant Messaging ubstrate created (T1)

Modify orchestrated conference
Associate T1 with running conference: C1 = (S1, A1, T1)

Add conference C1's participants in substrate T1

Return Ack (Participants added)

12
13

Discover related SubaaS

Instant Messaging -> IaaS C

1
2

3

4

5 6

7
8

9

16

17

18 19

20
21

22

23 24

252627

37

SubaaSs through the broker (step 3). In this scenario, the dial-in signaling and the audio

mixing SubaaSs are selected from IaaSs A and B respectively (step 4).

Next, the PaaS requests the IaaSs, via the Conferencing IaaS Handler, to activate the

substrates (steps 5 to 12). For activation, the Conferencing PaaS Handler component in the

IaaS receives the request and forwards it to the SubaaS Controller. The latter selects the

requested substrate’s code from its repository and sends the required information to the

Substrate Resource Manager to allocate the required resources (e.g., it selects the audio

mixer code that can handle 200 participants and asks the Substrate Resource Manager to

create and run a new VM to accommodate 200 participants, install the substrate code on the

VM, and run the code to initialize and activate the audio mixer as a substrate).

 After activating the substrates, the Conference Orchestration binds the SubaaSs in the

composing template (selected in step 2) and then executes the new dial-in audio conference

(step 13). The orchestrated conference represents a full-fledged conference. Finally, the ID

of the full-fledged conference is returned to the game (step 14).

It is assumed that the conferencing service enables private text chat after 30 minutes.

When the timer expires, the service invokes the addMedia API to add instant messaging to

the conference for 5 minutes (step 15). Thus, the Conference Orchestration discovers the

appropriate SubaaS from the broker (step 16). It selects IaaS C, activates the instant

messaging substrate and modifies the conference workflow to add instant messaging (step

17 to 22). On the new substrate, an individual conference is created for 5 minutes and the

existing participants are added to it (step 23 to 26). A notification is sent to the game

application (step 27) and the participants can start exchanging text messages. For

optimization purposes, the messaging SubaaS can be added to the conference when created

and it can be enabled and disabled when needed. Meanwhile, the messaging SaaS can be

discovered and added at runtime if, for instance, the original one is no more available. The

scenario is showing the latter case.

3.4. Implementation and Measurements

An implementation architecture is first presented. Next, the developed prototype is

described.

38

3.4.1. Implementation Architecture

Fig. 3.4 shows the implementation architecture including Conferencing PaaS,

Conferencing IaaS, and the SubaaS Broker.

(i) Conferencing PaaS

In the Conferencing Service Provisioning APIs component, two sets of REST APIs are

developed: Conferencing SaaS Development APIs and Conferencing SaaS Deployment

APIs. These are used for service creation and deployment respectively. The Conferencing

Service Utilizing APIs have been also implemented as REST APIs. Management and

Governance and Service Hosting and Execution components are not discussed here as they

are reused from the conventional PaaS architectures.

The Conference Orchestration component uses a repository to store the workflows of

composing templates. The Conference Manager in this component receives the northbound

requests for running conferences, selects an appropriate template from the repository, and

determines the required substrates for the conference. It then sends that information to the

SubaaS Selector and the Substrate Orchestration Engine.

Conferencing Service Provisioning APIs

Service Hosting & Execution

Management and Governance

Conference Orchestration

Hosting Environment Manager

SubaaS Selector Substrate Orchestration Engine

Conferencing SaaS Development APIs

Conferencing IaaS Handler

PaaS/IaaS Interfaces

Conference Scaling Decision MakerConference Execution Engine

Conference Manager

SubaaS

Controller

Substrate Manager

Resource DeallocatorResource Allocator

SubaaS

Broker

Conferencing SaaS Deployment APIs

Conferencing Service Providers

Service Hosting & Execution Container
Conferencing SaaS A Conferencing SaaS B

C
o
n

feren
cin

g
 Ia

a
S

Conferencing

Applications
Online Game

SaaSs

Repository

Conferencing

Service Utilizing APIs

SubaaS Management

Resource

Management

C
o
n

feren
cin

g
 P

a
a
S

Virtualized Hardware

Composition

Templates Repository

Service SLA Manager PaaS GovernanceService Lifecycle ManagerHosting Environment Lifecycle Manager

Conferencing Service

Provisioning and

Utilizing

Conference

Management

Substrate Hosting Resources

Conferencing PaaS Request Handler Conferencing Participants Request Handler

Conferencing PaaS Handler

Scaling Manager

Out-Scaler Down-ScalerUp-Scaler

Scale Decision Maker
Active

SubaaS

Info

SubaaS Manager

SubaaS

Publisher

Substrate

Selector
Substrate

Repository

Fig. 3.4. Implementation architecture

39

The SubaaS Selector chooses the most suitable conferencing SubaaS from the SubaaS

Broker, given the substrate requirements. The discovery mechanism and the interfaces

between these two are reused from the existing work [37]. The Substrate Orchestration

Engine uses the chosen template to compose the selected substrates and deploy it in the

Conference Execution Engine that hosts the running conferences. The Conference Scaling

Decision Maker monitors the running conferences and requests scaling when needed.

(ii) Conferencing IaaS

The Conferencing PaaS Handler includes two components: Conferencing PaaS Requests

Handler and Conferencing Participants Request Handler. These are used to process the

requests initiated by the PaaS and by the Conference Participants (i.e., the users of

conferencing applications), respectively. These requests are of three types: (1) to create and

activate a conference; (2) to scale a specific conference (e.g., change the conference size);

and (3) to join and leave a conference. The first two are initiated by the PaaS while the third

is used by the participants. Both handlers are implemented using REST APIs.

The conference creation and activation requests are sent to the SubaaS Manager in the

SubaaS Controller component. The SubaaS Manager uses the Substrate Selector to choose

the appropriate substrates for creating the new conference. Also, it uses the SubaaS

Publisher to publish the existing SubaaSs to the Broker.

The conference scaling requests are forwarded to the Scaling Manager in the SubaaS

Controller component. It relies on a Scale Decision Maker to decide how to scale the

conference. The decision maker first fetches the information about the conference-related

SubaaSs from the Active SubaaS Info (e.g., the IP of the hosting VM(s)/container(s) and

the information of the server(s) hosting those substrates, such as available RAM, CPU, etc).

Then, based on this information and the new scaling requirements, the decision maker

determines which substrate(s) should be changed and how (i.e., scale up/out/down). It then

instructs the appropriate component to do it (i.e., Up-Scaler, Out-Scaler, and Down-Scaler).

For instance, if the requirement is to update an audio conference with 50 users to support

100 users and the current server hosting the audio mixing substrate does not have enough

40

resources, the decision is to scale out the audio mixing substrate on another server. Thus, a

new VM or container will create on another server to host the audio mixer substrate.

For the Substrate Manager, we use the OpenStack Compute (Nova) layer. It creates and

updates VMs/Containers to host the running substrates. It allocates or deallocates resources

based on the incoming requests from the SubaaS Manager and the Scaling Manager. It also

keeps the Active SubaaS Info up-to-date after each operation.

3.4.2. Prototype

The prototype scenario includes a service provider offering dial-in audio conferencing

service and a game application utilizing that service. It also includes the conferencing PaaS

and two conferencing IaaSs – both providing dial-in signaling and audio mixer substrates.

In this prototype, the Cloud Foundry PaaS is used to provide the implementation of

typical PaaS components. We also extend it to implement our novel component (i.e.,

Conference Orchestration). For Substrate Orchestration Engine and Conference Execution

Engine, we use Activiti [74], a light-weight workflow and Business Process Management

(BPM) platform. Conference Manager and Conferencing IaaS Handler are implemented

using Express.js framework [75]. Advanced REST Client [76] is also used to simulate SaaS

APIs invocation by the game.

For the conferencing IaaS, OpenStack [77] is used. Conferencing PaaS Handler is

implemented as a Java application with REST-based APIs to communicate with the PaaS.

The open source framework Asterisk [78] is used for signaling, media handling, and floor

control substrates. To publish a SubaaS information, we implement a subset of the model

proposed in [37]. Our published SubaaS information is shown in table 3.3. For the Scaling

Manager, we use the proposed resource allocation mechanism in chapter 4.

3.4.3. Validations and Measurements

To validate our architecture, we run the implementation according to the steps presented

in Fig. 3.3. Fig. 3.5 shows the Activiti orchestration process to create a dial-in audio

conference. The workflow execution corresponds to steps 5 to 14 in Fig. 3.3. Implementing

41

the dial-in audio conference service using Activiti proved the simplicity of service creation,

which is very useful for non-expert developers. Indeed, while expert conferencing service

providers can use offered APIs to create their provisioned services, non-expert providers

can use an orchestration tool to provision their services. Fig. 3.6 shows the parameters sent

back to the game application after the workflow execution.

Three experimental environments are considered for performance measurements: 1) A

Non-Cloud Conferencing (NCC) environment, where resources are allocated beforehand.

2) A Monolithic IaaS Provider (MIP) environment, where an IaaS offers multiple substrates

in a single SubaaS (i.e., the SubaaS is composed of multiple coupled substrates). Thus, the

IaaS hosts all substrate instances on the same VM. This is the same if several SubaaSs from

the same IaaS run on the same VM. 3) A Non-Monolithic IaaS Provider (NMIP)

environment, where IaaS offers every single substrate as a separate service. In NMIP, the

IaaS hosts substrate instances on separate VMs.

Table 3.3. Published information of a SubaaS into the broker in our implementation

Categories of

Parameters
Example Values

Type of Service

Signaling

Signaling Protocol
Acceptable signaling protocols

(e.g., SIP)

Conference Model
Acceptable conference models

(e.g., Dial-in, Dial-out, Ad-hoc)

Media Handling

Audio Mixer
Acceptable audio encodings

(e.g., G.711)

Video Mixer
Acceptable video encodings

(e.g., H.264)

Conference

Control

Floor Control

Policy

Supported control policies

(e.g., round-robin)

Floor Chairs
Maximum number of acceptable chairs

(e.g., 5)

Service Endpoint URI
The domain or IP of the service, along with the port

number (e.g., http://audiomixer.com:263)

Service Limit

Maximum

number of

accepting

participants

Zero means there is no limit on maximum number of

accepting participants

Service

Integration

Templates

Workflows
The bpmn20.xml files that describes how this service can

integrate with some other known services

42

The following four metrics are used: (1) Resource Allocation – the total amount of

allocated resources, such as memory and CPU, to accommodate all participants, (2) Scale

Time – the time to add resources to scale the conference, (3) Conference Start Time – the

time to get a conference ready upon the receipt of a request and (4) Participant Joining

Time – the time to add a participant to a running conference.

To analyze the allocated resources, we consider a conferencing application with

considerable fluctuation. A good example of such application is a massively multiplayer

online game (MMOG) which offers the audio/video conferencing. This kind of application

may include thousands or even millions of players who share their audio and video in the

logic of the game. For example, the study in [3] reported that the number of users in World

of Warcraft (a famous online game) fluctuates between 1.5 and 2.5 million over 10 hours.

Fig. 3.7 shows the allocated amount of memory (i.e., RAM) for a conference when the

number of participants fluctuates between 1 and 3000. To simulate this fluctuation, we

Fig. 3.5. Dial-in audio conference creation and activation workflow

Fig. 3.6. Conference information which passed to the game application
Fig. 6 Conference Information which Passed to the Game Application

43

increase the conference size by 200 participants every 10 minutes. The results are based on

the observed resource usage per participant. The Scale Decision Maker in IaaSs scales the

VMs up and out while maintaining the QoS requirements. Two QoS requirements are

considered: 1) the end-to-end delay which includes the audio and video mixing time should

not take more than 400 msec and 2) the amount of allocated resources should be minimized.

The VMRA resource allocation algorithm presented in chapter 4 is used for this prototype.

In NCC, there are always some idle and non-utilized resources because of upfront

resource provisioning. Hence, we do not show the NCC allocated resources in Fig. 3.7. As

it is depicted in this figure, MIP scales better than NMIP (i.e., it allocates fewer resources)

for smaller conferences whereas NMIP wins for bigger conferences. In NMIP, the

substrates are hosted on separate VMs. Thus, for smaller conferences, it leads to more VMs

and more non-utilizable resources (e.g., the resources consumed by the operating system)

than in MIP. The bigger the size of a conference, the more resources the substrates required

to perform well. However, they do not require the same thing; e.g., a signaling substrate

may need less extra resources than the mixer because it is only used in the first phase of

the conference. In MIP, because of having monolithic SubaaS, the rate of adding resources

is the same for all substrates. This results in more scaling out decisions and therefore more

VMs. Indeed, by applying the VMRA allocation algorithm, the resources exceed its

maximum extra amount for scaling up, which makes scaling out a better decision. By

contrast, in NMIP, the resources are allocated to each substrate based on their need,

resulting in less scaling out decisions. This makes NMIP achieve better scalability because

of the fewer number of VMs and better resource utilization than in MIP.

Fig. 3.7. Resource Allocation Evaluation

0

2000

4000

6000

8000

1

2
0

1

4
0

1

6
0

1

8
0

1

1
0

0
1

1
2

0
1

1
4

0
1

1
6

0
1

1
8

0
1

2
0

0
1

2
2

0
1

2
4

0
1

2
6

0
1

2
8

0
1

R
A

M
 (

M
B

)

Number of Participants

MIP NMIP

44

Regarding CPU usage, we used a 2.6 GHz single core CPU for each VM. The CPU

utilization per VM fluctuated between 20% and 80% for each VM in both scenarios. This

fluctuation is based on the number of users that are connected to the VM. This shows that

VMs’ resources are not fully used, in both MIP and NMIP. Therefore, CPU utilization for

small conferences is better in MIP, since it has a fewer number of VMs to accommodate

users in comparison with NMIP. Similarly, when the size of the conference is big, NMIP

has better results because of its fewer VMs usage.

For the Scale Time metric, we observe the scaling performance of the system under two

conditions. The first condition demonstrates the behavior of the system when the

conference starts with the minimum required amount of resources, i.e., the least possible

substrate instances (Fig. 3.8). The second condition demonstrates the behavior of the

system under resource over-provisioning situation, i.e., the conference starts with more

substrate instances than required (Fig. 3.9). Note that the second experiment is exclusively

aimed for demonstrating the impact of the number of substrates on the scaling time.

Therefore, in that experiment, the SLA violations are not taken into account; i.e., the

amount of allocated resources is not minimized. The provided set of experiments helps the

conference service providers to evaluate the tradeoff between over-provisioning and

(sub)optimal substrate allocation.

Fig. 3.8. Total Time for Scaling the Size of a Conference with Single Participant to a Conference with 2 up

to 3000 Participants

1 VM 2 VMs 3 VMs 4 VMs

2 VMs 3 VMs 4 VMs

MIP

NMIP

0

40

80

120

160

200

1

2
0

1

4
0

1

6
0

1

8
0

1

1
0

0
1

1
2

0
1

1
4

0
1

1
6

0
1

1
8

0
1

2
0

0
1

2
2

0
1

2
4

0
1

2
6

0
1

2
8

0
1

T
o
ta

l
S

ca
li

n
g
 T

im
e

(s
ec

)

Number of Adding Participants

MIP Scale Time NMIP Scale Time

45

The scaling time under the first condition for both MIP and NMIP scenarios are depicted

in Fig. 3.8. In this experiment, we first run a conference with one participant. This

conference starts with the minimum required resources (i.e., one VM in MIP and two VMs

in NMIP). By increasing the size of the conference, the required resources are added to the

existing VMs (i.e., those hosting the substrates). If the required QoSs cannot be satisfied

by adding resources to the existing VMs, (e.g., the end-to-end delay is more than 400

msec), the Scaling Manager in the IaaS starts new VMs for hosting another instance of

required substrates. We scale the size of the conference between 1 and 3000 participants in

this experiment. The scaling time accounts for several parameters, including the time for

creating a new VM, the time for adding resources (i.e., RAM in this experiment) to the

existing VMs and reconfiguring the system (e.g., updating the list of available audio

mixers), and the time for adding all the participants. Basically, the scaling time from 10 to

100 participants, for instance, is the total time for moving from a running conference with

10 participants to a running conference with 100 participants.

As shown in Fig. 3.8, for adding a large number of participants, the scaling time in MIP

is lower than that of NMIP. The main reason is, as discussed earlier, MIP creates more

instances/VMs than NMIP when the number of participants is large. This makes MIP able

to add participants in parallel to several substrate instances/VMs. Besides, although

reconfiguring the system with more instances has some overhead, the gain from load

balancing makes the scaling time in MIP lower than in NMIP.

(a) (b)

Fig. 3.9. Conference Scaling Time by Having Different Number of VMs for (a) MIP and (b) NMIP

40

80

120

1
1

2
5

2
4
9

3
7
3

4
9
7

6
2
1

7
4
5

8
6
9

9
9
3

1
1
1

7

1
2
4

1

1
3
6

5

1
4
8

9

T
im

e
(s

ec
)

Added Number of Participants

1 VM 2 VMs

3 VMs 4 VMS

40

80

120

1

1
3
6

2
7
1

4
0
6

5
4
1

6
7
6

8
1
1

9
4
6

1
0
8

1

1
2
1

6

1
3
5

1

1
4
8

6

T
im

e
(s

ec
)

Added Number of Participants

2 VMs 3 VMs 4 VMs

46

Also, MIP gives better results when a limited number of participants is added (scaling

between 1 through ~825 in this graph). Adding resources to the existing VMs in both

scenarios takes the same time, i.e., it is the exact same process. However, the overhead

time of reconfiguring the system with more VMs in NMIP leads to having a longer scaling

time. Once MIP starts to create new VMs, the time for creating these VM leads to an

increase in the scaling time in MIP (in the middle part of the figure). Based on the results,

no matter how many VMs are created, it does not noticeably affect the scaling time in MIP

and NMIP because several VMs can be created in parallel.

The case of over-provisioning (Fig. 3.9) shows that, in both MIP and NMIP, the scaling

time for a limited number of participants (up to ~800 participants) is less when the number

of VMs is less. In contrast, when the number of participants to be added is large, having a

conference that is hosted on more VMs results in less scaling time because the participants

can join multiple instances/VMs in parallel. Therefore, we can conclude that having more

resources does not always lead to having less scaling time in the conferencing domain. In

fact, in conferencing, the collaboration between different substrate instances hosted on

different VMs causes some overhead. Although increasing the number of substrate

instances and balancing the loads between them leads to some saving in scaling time, the

overhead of reconfiguring the system might be more than the gain.

Fig. 3.10(a) compares the conference start time in the three studied environments (i.e.,

NCC, MIP, and NMIP). It shows that NCC takes the least time to start a new conference,

which is obvious due to the absence of virtualization overhead. And, since in NMIP the

substrate instances are hosted on separate VMs and they need to connect to each other over

the network, it takes more time than it does in MIP. However, since starting a conference

happens just once, this time is endurable in the Cloud scenarios. Participant joining time is

also the least in the NCC as shown in Fig. 3.10(b). Cloud-based scenarios take more time

because of the notification overhead between IaaSs, PaaS and the game server. However,

this time length remains acceptable (can be seen as the waiting time to join the conference)

and is not noticeable by end users. In addition, the participant joining time of the two cloud-

based scenarios are close as IaaSs can notify PaaS in parallel.

47

3.5. Conclusion

This chapter presents a novel holistic architecture for multimedia conferencing

applications. This architecture covers both PaaS and IaaS layers of cloud. The proposed

architecture simplifies the provisioning of the conferencing applications for expert and non-

expert application providers by providing novel APIs. It also supports scaling the

conferencing applications in an elastic manner. The conferencing API examples and the

categorization of their parameters are presented in this chapter. The implemented prototype

and the experiments show the feasibility and validation of the proposed architecture.

Although in cloud-based scenarios the conference start time and the participant joining

time are more than those in NCC, the cloud-based conferencing architecture helps to scale

the system easily and avoids the over-provisioning or under-provisioning of resources. The

results of scaling duration and allocated resources help the conferencing service providers

with better provisioning of their services. For instance, MIP is a better choice for

provisioning small conferencing services (e.g., to support 300 users) as it results in less

resource usage and less scaling time than it does in NMIP. However, for a conferencing

service with 1200 users, NMIP gives better scaling time and lower resource consumption.

In the case of big scenarios (e.g., 3000 users or more), there is a tradeoff between using

fewer resources (i.e., NMIP) and having less scaling time (i.e., MIP).

(a) (b)

Fig. 3.10. Average (a) Conference Start Time (b) Participant Joining Time

0

20

40

60

T
im

e
(s

ec
)

NCC MIP NMIP

0

50

100

150

200

T
im

e
(m

se
c)

NCC MIP NMIP

48

Chapter 4

4. A Resource Allocation Mechanism for

Multimedia Conferencing Applications

with Video Mixing

4.1. Introduction

In the previous chapter, we proposed a holistic cloud-based architecture for

multimedia conferencing applications. In the conferencing IaaS of our proposed

architecture, we assumed that there is an efficient resource allocation mechanism that can

optimize the allocation of actual resources (e.g., CPU, RAM, and Storage). This chapter

proposes a cloud-based resource allocation mechanism for conferencing applications with

video mixing. The proposed solution optimizes resource allocation and scales resources in

terms of the number of participants while guaranteeing QoS. Fig. 4.1 depicts the assumed

business model. It has four main roles: conferencing application providers, conferencing

service providers, media handling service providers, and conferencing IaaS providers. In

this model, conferencing applications rely on a conferencing service that is offered as a

SaaS. Media handling services are also offered to conferencing service providers as SaaSs.

The actual resources for media handling services are provided by geographically

49

distributed IaaSs. As it is shown in this figure, the proposed resource allocation mechanism

runs in the IaaS.

We entitled the proposed algorithm in this chapter as VMRA (Video Mixing Resource

Allocator). In designing the VMRA, we consider the conferencing applications with video

mixing. It allocates or deallocates resources for conferencing applications based on the

fluctuation in the number of participants. Besides efficient resource utilization, it caters to

the QoS, with respect to the video mixing response time. It performs a fine-grained scaling

of resources to improve efficiency in resource utilization. We analyze VMRA theoretically

by modeling it as an optimization problem. Then, we design the heuristic that can reach

the sub-optimal solution for the large-scale scenarios in an acceptable time.

The rest of this chapter is as follows. First, it presents the VMRA by discussing its

system model. Then, it discusses the designed heuristic. After that, it presents the

simulation parameters and settings of VMRA followed by the validation results. We

conclude this chapter at the end.

Conferencing

Application Provider Distance Learning as a Service MMOG as a Service
…

Conferencing

Service Provider Conferencing as a Service

Media Handling

Service Provider Video Mixing as a Service Transcoding as a Service Compressing as a Service …

Conferencing

IaaS

Provider

Resource Allocator Resource Allocation Mechanisms for Media Handling Services

Fig. 4.1. Cloud-based conferencing business model

50

4.2. VMRA System Model

The system model of VMRA includes cooperation, video mixing, and mathematical

models. In our mathematical model, we define VMRA as an Integer Linear Programming

(ILP) problem.

4.2.1. Cooperation Model

We consider a large-scale geographically distributed cloud infrastructure to support

conferencing applications and video mixing as a service, consisting of users, separate zones

and an IaaS in each zone 𝑧, as depicted in Fig. 4.2. We illustrate users scattered across a

large geographical area, wanting to join a conferencing application, such as MMOG. We

assume that in each zone 𝑧, there is a data center providing IaaS, where each data center

consists of a number of servers (𝑁𝑧), hosting VMs. Furthermore, we assume that zones are

interconnected in a full mesh manner. The same assumption applies to VMs in a data

center, as shown in Fig. 4.2.

Users in each zone will connect to their local data center to join a conferencing

application. Each user is considered as a video source, sending video and requesting video

mixing service. The challenge lies in allocating the resources for video mixing to achieve

optimal resource utilization while guaranteeing QoS requirements.

Fig. 4.2. Communication model

51

4.2.2. Video Mixing Model

VMRA decides to add resources to existing VMs or create a new VM when a video

source is added to a data center. Adding resources is done in fine granularity. This implies

that VMRA will add minimal required resources in an elastic manner. It will also balance

the load between all the VMs in a data center. After provisioning appropriate resources, a

video source will join a VM, that is, a video mixer and video mixing will start. The video

mixing process is illustrated in Fig. 4.3.

Our video mixing model follows the Fork/Join parallelism technique [79]. All video

mixing requests in a data center fork off to several other mixing processes, which are

concurrently executed in each VM, until they finally join into a single mixed video. VMs

mix their video sources in parallel. Therefore, the required time for this step depends on

the maximum number of video sources connected to any VM (𝑉𝑧) in zone 𝑧.

Each VM will send the result to other VMs in the same data center. This intra-zone

video exchange time is in 𝑇𝑖𝑛𝑡. Next, each VM mixes the incoming videos from other VMs

with the result of its own mixed video source. The time for this step depends on the total

number of VMs in the data center.

Fig. 4.3. An example of our video mixing model

52

Here, mixed video of a data center is ready and sent to all other data centers. This inter-

zone video exchange time is in 𝑇𝑒𝑥𝑡. Then, VMs will start mixing the incoming videos from

other zones with the one of their own zone. Here, the required time depends on the total

number of zones and the mixed video across all zones is ready to be sent back to the users.

4.2.3. Mathematical Model

This subsection presents our VMRA problem formulation, which is modeled as an ILP

problem. It presents the problem statement followed by the objectives and constraints.

(i) Problem Statement

Given a data center with 𝑁𝑧 servers and 𝑀𝑧 users (video sources), let 𝑇𝑚𝑖𝑥(𝑘) and 𝑅𝑚𝑖𝑥(𝑘)

represent the time and the resource required to mix 𝑘 video sources, respectively. Also, let

𝑇𝑖𝑛𝑡 and 𝑇𝑒𝑥𝑡 denote the time to exchange a video across VMs and zones, respectively. 𝑅𝑂

are the resources dedicated to VM operation, hence, they cannot be utilized for video

mixing. There are thresholds 𝑇 on QoS, pertaining to the maximum acceptable video

mixing response time, and 𝑅 on server resource capacity, respectively. Find the minimum

number of VMs, while efficiently using resources and respecting QoS.

We model this as an ILP problem, where we assume a video mixer to be analogous to a

VM. Tables 4.1 and 4.2 delineate the inputs and variables of our problem, respectively.

(ii) Objectives

We assume the operational cost of a VM, in terms of non-utilizable resources,

supersedes the cost of resources required for handling the video mixing request of a

participant, as in (1). Furthermore, we assume homogeneous costs of video mixing

resources across servers. Therefore, the operational cost 𝑅𝑂, associated with a VM, inhibits

the introduction of a new VM, in the event of a new participant arrival. That is, a new VM

is only instantiated if an incoming request cannot be handled by increasing the resource of

an existing VM.

𝑅𝑂 ≫ (𝑅𝑚𝑖𝑥 (𝑘+1) − 𝑅𝑚𝑖𝑥(𝑘)) (1)

53

Equation (2) depicts our multiple objectives. Primarily, we minimize the allocated

resources across all zones, by minimizing the number of VMs. On the other hand, the time

to mix videos in zone 𝑧 depends on the maximum number of users connected to a VM (𝑉𝑧).

We balance the load between VMs to decrease the overall video mixing time. Note that

these are competing objectives. Therefore, we prioritize minimizing the number of VMs

by normalizing 𝑉𝑧 with the maximum number of users in zone 𝑧.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 { ∑∑𝑥𝑖,𝑗 +
𝑉𝑧
𝑀𝑧

𝑀𝑧

𝑗=1

𝑁𝑧

𝑖=1

} (2)

Table 4.1. Problem inputs

Input Definition

𝑍 number of zones

𝑁𝑧 number of servers in zone 𝑧

𝑀𝑧 number of users, i.e., video sources in zone 𝑧

𝑇𝑖𝑛𝑡 time to send a video between VMs in a zone

𝑇𝑒𝑥𝑡 time to send a video between zones, 𝑍 = 1 ⇒ 𝑇𝑒𝑥𝑡= 0

𝑇𝑚𝑖𝑥(𝑘) time to mix 𝑘 video sources, 𝑇𝑚𝑖𝑥(1) = 0

𝑇 QoS threshold (acceptable mixing response time)

𝑅𝑚𝑖𝑥(𝑘) required resources for mixing 𝑘 video sources in a VM

𝑅𝑂 non-utilizable VM operating resources

𝑅 threshold on the maximum amount of resources on a server

𝛽 large enough constant

Table 4.2. Problem variables

Variable Definition

𝑋
𝑁𝑧 ×𝑀𝑧 binary matrix,

where
 𝑥𝑖,𝑗 = {

1, 𝑖𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖 ℎ𝑜𝑠𝑡𝑠 𝑉𝑀 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑌
 𝑀𝑧 ×𝑀𝑧 binary matrix,

where
 𝑦𝑗,𝑘 = {

1, 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑉𝑀 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑉𝑧 Maximum number of users that are connected to a VM in zone 𝑧

𝑈 A vector where 𝑢𝑗 is the number of users connected to VM 𝑗

𝐶 𝑁𝑧 ×𝑀𝑧 matrix, where c𝑖,𝑗 = {
𝑢𝑗, 𝑖𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖 ℎ𝑜𝑠𝑡𝑠 𝑉𝑀 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

54

(iii) Constraints

VMs and users cannot be split across multiple servers and VMs, respectively. Equation

(3) ensures that a VM exists on a single server. Similarly, (4) allows a user to connect to a

single VM. Furthermore, if there are users connected to a VM, that VM should exist on

one server, as depicted in (5) and (6).

∑𝑥𝑖,𝑗 ≤ 1

𝑁𝑧

𝑖=1

 1 ≤ 𝑗 ≤ 𝑀𝑧 (3)

∑𝑦𝑗,𝑘 = 1

𝑀𝑧

𝑗=1

 1 ≤ 𝑘 ≤ 𝑀𝑧 (4)

∑𝑦𝑗,𝑘 ≤ 𝛽 ⋅ (∑𝑥𝑖,𝑗

𝑁𝑧

𝑖=1

)

𝑀𝑧

𝑘=1

 1 ≤ 𝑗 ≤ 𝑀𝑧 (5)

∑𝑦𝑗,𝑘 ≥∑𝑥𝑖,𝑗

𝑁𝑧

𝑖=1

𝑀𝑧

𝑘=1

 1 ≤ 𝑗 ≤ 𝑀𝑧 (6)

Video mixing required resources, that is, the VMs operating resources and their

connected number of users is bounded by the server resource capacity 𝑅, in (7).

 𝑅𝑂 ⋅ (∑𝑥𝑖,𝑗

𝑀𝑧

𝑗=1

) + 𝑅
𝑚𝑖𝑥(∑ (𝑥𝑖,𝑗

𝑀𝑧
𝑗=1 ⋅ ∑ 𝑦𝑗,𝑘)

𝑀𝑧
𝑘=1)

≤ 𝑅 1 ≤ 𝑖 ≤ 𝑁𝑧 (7)

Note that the product ∑ (𝑥𝑖,𝑗
𝑀𝑧
𝑗=1 ⋅ ∑ 𝑦𝑗,𝑘)

𝑀𝑧
𝑘=1 in (7) is non-linear. Therefore, we linearize

(7) by replacing it with constraints (8)-(13).

∑𝑦𝑗,𝑘 = 𝑢𝑗

𝑀𝑧

𝑘=1

 1 ≤ 𝑗 ≤ 𝑀𝑧 (8)

𝑐𝑖,𝑗 ≤ 𝑀𝑧 ⋅ 𝑥𝑖,𝑗 1 ≤ 𝑖 ≤ 𝑁𝑧 ,1 ≤ 𝑗 ≤ 𝑀𝑧 (9)

55

𝑐𝑖,𝑗 ≤ 𝑢𝑗 1 ≤ 𝑖 ≤ 𝑁𝑧 ,1 ≤ 𝑗 ≤ 𝑀𝑧 (10)

𝑐𝑖,𝑗 ≥ 𝑢𝑗 −𝑀𝑧(1 − 𝑥𝑖,𝑗) 1 ≤ 𝑖 ≤ 𝑁𝑧 ,1 ≤ 𝑗 ≤ 𝑀𝑧 (11)

𝑐𝑖,𝑗 ≥ 0 1 ≤ 𝑖 ≤ 𝑁𝑧 ,1 ≤ 𝑗 ≤ 𝑀𝑧 (12)

𝑅𝑂 ⋅ (∑𝑥𝑖,𝑗

𝑀𝑧

𝑗=1

) + 𝑅
𝑚𝑖𝑥(∑ 𝑐𝑖,𝑗

𝑀𝑧
𝑗=1)

≤ 𝑅 1 ≤ 𝑖 ≤ 𝑁𝑧 (13)

The maximum number of users, 𝑉𝑧, in a zone 𝑧 influences the video mixing time.

Equation (14) finds 𝑉𝑧, for each zone.

 ∑ 𝑦𝑗,𝑘 ≤ 𝑉𝑧

𝑀𝑧

𝑘=1

 1 ≤ 𝑗 ≤ 𝑀𝑧 (14)

Video mixing response time for a zone 𝑧, depends on the maximum number of users

connected to a single VM in that zone (𝑇𝑚𝑖𝑥(𝑉𝑧)). Note that VMs should mix the output of

video mixing from other VMs too, therefore, the video mixing response time will also be

influenced by the total amount of VMs across all servers in 𝑧. This time is given

by 𝑇
𝑚𝑖𝑥(∑ ∑ 𝑥𝑖,𝑗

𝑀𝑧
𝑗=1

𝑁𝑧
𝑖=1)

, with an inter-zone exchange time of 𝑇𝑖𝑛𝑡. Furthermore, VMs should

mix the incoming videos from all other zones, time for which is represented by 𝑇𝑚𝑖𝑥(𝑍),

with an intra-zone exchange time of 𝑇𝑒𝑥𝑡. Equation (15) ensures that this total video mixing

response time for each zone 𝑧, abides by the QoS threshold 𝑇.

 𝑇𝑚𝑖𝑥(𝑉𝑧) + 𝑇𝑖𝑛𝑡 + 𝑇
𝑚𝑖𝑥(∑ ∑ 𝑥𝑖,𝑗

𝑀𝑧
𝑗=1

𝑁𝑧
𝑖=1)

+ 𝑇𝑒𝑥𝑡 + 𝑇𝑚𝑖𝑥(𝑍) ≤ 𝑇 ∀1 ≤ 𝑧 ≤ 𝑍 (15)

VMRA executes in each zone separately. However, because video mixing as a service

relies on multiple IaaSs, the total number of zones will influence VMRA’s decision. Based

on (15), different response times across zones are attributed to the different values of

𝑇𝑚𝑖𝑥(𝑉𝑧) and 𝑇
𝑚𝑖𝑥(∑ ∑ 𝑥𝑖,𝑗

𝑀𝑧
𝑗=1

𝑁𝑧
𝑖=1)

. Zone 𝑧 will send its mixed video to other zones and wait to

receive from them. Waiting time in (16) will add to the video mixing response time of

56

zones that perform video mixing faster than the other zones. Thus, the video mixing

response time will be equal to the maximum response time across all zones.

{

𝑀𝐴𝑋

{

 (𝑇𝑚𝑖𝑥(𝑉𝑝) + 𝑇𝑚𝑖𝑥(∑ ∑ 𝑥𝑖,𝑗
𝑀𝑝
𝑗=1

𝑁𝑝
𝑖=1

)
) −

(𝑇𝑚𝑖𝑥(𝑉𝑧) + 𝑇𝑚𝑖𝑥(∑ ∑ 𝑥𝑖,𝑗
𝑀𝑧
𝑗=1

𝑁𝑧
𝑖=1)

)
}

0, 𝑖𝑓 𝑀𝐴𝑋 ≤ 0

 ∀1 ≤ 𝑝 ≤ 𝑍 (16)

4.3. VMRA Heuristic

Based on (1), VMRA always processes a new mixing request by adding required

resources to the existing VMs unless it cannot satisfy the QoS requirement or there are not

enough free resources on the server. In this case, VMRA instantiates a new VM and

balances the load between VMs in the data center. Load balancing helps to minimize the

maximum number of connected users to each VM. We achieve this by employing MinMax

our objective, that is, the minimization of the maximum number of users on VMs and

consequently, based on (15), it decreases the total response time.

VMRA checks the available resources when it decides to instantiate a new VM.

Moreover, it checks the possibility of satisfying QoS requirement, by adding a new VM.

Our heuristic is as described in Algorithm 4.1. We consider the constants and variables

shown in Table 4.1 and Table 4.2 as the input to this algorithm.

Algorithm 4.1. Video mixing resource allocation (VMRA)

Input:

𝑀𝑎𝑥_𝑀 = M; // Max number of users that can be served in DC
𝛼 = 0; // number of VMs
𝛽 = 1; // number of used servers
𝑅𝛽 = 𝑅; // available resources on server 𝛽
Remain_User = 0; // auxiliary variable to scatter users between VMs
Output: 𝛼, 𝑈,𝑀𝑎𝑥_𝑀
1. For each m  M do

Phase 1: Test if there is a VM with lower users than 𝑉𝑧

2. If (𝑅𝛽 ≥ R
mix(1)

) Then

3. For j =1 → 𝛼 do

4. If (𝑢𝑗< V
Z

) Then

5. 𝑢𝑗 ← 𝑢𝑗 + 1

6. Break, serve next m

7. end for

8. end if

57

Phase 2: Create first VM in DC

9. If (𝛼==0) Then

10. 𝛼 ← 1

11. 𝑢1 ← 1

12. 𝑉𝑧 ← 1

13. end if

Phase 3: Test response time by increasing 𝑉𝑧 without adding VM

14. Else if (𝑅𝛽 ≥ R
mix(1)

AND Response time(𝑉𝑧 ← 𝑉𝑧 + 1, 𝛼)≤ 𝑇)Then

15. 𝑢1 ← 𝑢1 + 1

16. 𝑉𝑧 ← 𝑉𝑧 + 1

17. end else if

Phase 4: Test response time by adding a new VM on the same server

18. Else if (𝑅𝛽 ≥ R
mix(1)

+ R
O
) Then

19. If (Response time(𝑉𝑧 ← ⌈
𝑚

𝛼+1
⌉, 𝛼 ← 𝑎 + 1)≤ 𝑇) Then

20. 𝛼 ← 𝑎 + 1

21. Remain_User ← m

22. For j = 𝛼 → 1 do

23. 𝑢𝑗 ← Remain_User / j

24. Remain_User ← Remain_User − 𝑢𝑗

25. end for

26. 𝑉𝑧 ← ⌈
𝑚

𝛼
⌉

27. end if

28. Else

29. 𝑀𝑎𝑥𝑀 ← 𝑚 − 1

30. Break, DC cannot serve m users

31. end else

32. end else if

Phase 5: Test response time by adding new VM on the other server

33. Else If ((N
z
 -𝛽 > 0) AND (𝑅𝛽 ≥ R

mix(1)
+ R

O
)) Then

34. If (Response time(𝑉𝑧 ← ⌈
𝑚

𝛼+1
⌉, 𝛼 ← 𝑎 + 1)≤ 𝑇) Then

35. 𝛽 ← 𝛽 + 1

36. 𝛼 ← 𝑎 + 1

37. Remain_User← m

38. For j = 𝛼 → 1 do

39. 𝑢𝑗 ← Remain_User / j

40. Remain_User ← Remain_User − 𝑢𝑗

41. end for

42. 𝑉𝑧 ← ⌈
𝑚

𝛼
⌉

43. end if

44. Else

45. 𝑀𝑎𝑥𝑀 ← 𝑚 − 1

46. Break, DC cannot serve m users

47. end else

48. end else if

49. Else

50. 𝑀𝑎𝑥𝑀 ← 𝑚 − 1

51. Break, DC cannot serve m users

52. end for each

Return 𝛼, 𝑈,𝑀𝑎𝑥_𝑀

58

In phase 1, VMRA tries to find a VM with lowest number of connected users. If VMRA

finds such a VM, it will add required resources to that VM and assigns the new user to it.

In phase 2, the first user wants to join. So, VMRA will create the first VM and assign that

user to it. VMRA will reach phase 3 if all the VMs have the same number of users. Here,

VMRA checks the available resources and the feasibility of satisfying QoS requirements,

if it assigns a new user to one of the existing VMs. This assignment is crucial as it

increases 𝑉𝑧, thus, impacting the video mixing time.

If increasing 𝑉𝑧 causes sacrificing QoS, VMRA decides to instantiate a new VM on the

same server or on other servers based on available resources, in phase 4 and 5, respectively.

If there are available resources, but VMRA cannot find any feasible solution to satisfy QoS,

it will stop accepting new users in both phases 4 and 5.

This algorithm has a nested loop and its time complexity is based on the number of

iterations of each loop. Therefore, the time complexity of our VMRA algorithm

is 𝑂(𝑀𝑧 . 𝛼).

4.4. Validations and Measurements

In this section, we present the simulation results of VMRA resource allocation

algorithm. First, the comparisons baselines are presented. Then, it describes the simulation

environment and settings followed by the results and a conclusion for this section.

4.4.1. Comparison Baselines

We compare VMRA with (i) popular traditional MCU [68], for video mixing, (ii) Nan

et al. [80], cost minimization queuing model in cloud, for a single class service, and (iii)

cloud-based MCU (CMCU), which avoids upfront resource costs. Since these models do

not support multi-zone video mixing, we assume that each model is implemented in a zone

and exchange mixed video amongst each other until all sources are mixed.

4.4.2. Environment and Settings

We assume a MMOG, where player’s video is shared in the logic of the game and

developed a custom simulator in JAVA. We simulate multiple data centers and game

59

players as conferencing participants. VMRA heuristic runs on each data center part in our

simulator. Players (conference participants) send their video mixing requests to the local

data center and receive the result from it. The total number of game players across all zones

fluctuates since they can join or leave the game whenever they want to. For our simulation,

we assume a snap-shot of the number of players in each zone. Our simulation parameters

are depicted in Table 4.3.

4.4.3. Validations and Measurements

We simulate VMRA heuristic to check supported number of participants, resource

utilization and video mixing response time.

(i) Number of Users

It is evident from Fig. 4.4, that VMRA can serve more users in a single zone in

comparison to other baselines. This is because VMRA has the leverage to increase

resources whenever it reaches the QoS threshold in contrast to the queuing model, where

the number of computation nodes is fixed. VMRA also performs better than MCU and

CMCU. Due to their centralized nature, both MCU and CMCU models leverage a single

server entity and consequently are not equipped to handle a large number of users.

When we increase the number of zones, we have to account for the inter-zone

communication time of mixing videos. As a result, to satisfy video mixing response time

threshold, video mixing as a service can serve a lower number of users in each zone, while

the number of zones increases. Although there is a tradeoff between the number of zones

and the number of users that can be served in each zone, total number of users that can be

served across all zones will increase, as depicted in Fig. 4.5. In addition, VMRA shows a

better growth rate, thus it shows better scalability, in terms of the number of users, in

comparison to the other models.

Table 4.3. Simulation parameters

Parameter Value Parameter Value Parameter Value

𝑍 1-6 𝑇𝑚𝑖𝑥(𝑘) 7 msec 𝑅𝑚𝑖𝑥(𝑘) 20 MB (RAM)

𝑁𝑧 3 𝑇 300 msec 𝑅𝑂 400 MB (RAM)

𝑀𝑧 1-500 𝑇𝑖𝑛𝑡 10 msec 𝑅 10240 MB (RAM)

𝛽 M+1 𝑇𝑒𝑥𝑡 15 msec

60

(ii) Resource Utilization and Video Mixing Response Time

Required resources for video mixing depends on the maximum number of served users.

Accordingly, we study two different scenarios, each with a different number of video

mixing requests: (i) Meet-By-All - In this scenario, we assume that there exists a maximum

number of users, which can be served by all the resource allocation models in a zone while

respecting QoS. (ii) Meet-By-Some - In this scenario, we assume for all models, the

number of users to be the maximum supported by VMRA while respecting QoS. In this

scenario, we relax the QoS constraint for the other models, giving them the leverage to

support a higher number of users.

a) Resource Utilization: Meet-By-All Scenario

Fig. 4.6(a) and 4.6(b), depict the average and the maximum allocated resources over the

total available resources in a data center, respectively. In MCU, because of the upfront

resource over-provisioning, there are always some idle resources, which remain unutilized.

However, because the allocated resources in MCU are always at 100%, we do not show it

in the resource allocation figures. Other baselines allocate resources as needed. VMRA has

better results compared to the other baselines, in both average and maximum cases in this

scenario. This is because the maximum number of users in this scenario is equal to the

number of users that MCU can support and just one computation entity is enough to serve

them. However, the queuing model, based on our simulation settings, always uses 3 servers

to accommodate users. Whereas, VMRA uses 2 VMs to accommodate the same number of

users, which leads to the allocation of fewer resources, compared to the queuing model and

Fig. 4.4. Maximum participants that can be served

in a zone

Fig. 4.5. Total number of participants that can be

served across all zones

0

100

200

300

400

500

1 2 3 4 5 6

N
u
m

b
er

 o
f

P
ar

ti
ci

p
an

ts

Number of zones
VMRA Queuing

MCU CMCU

0

500

1000

1500

2000

1 2 3 4 5 6

N
u
m

b
er

 o
f

P
ar

ti
ci

p
an

ts

Number of zones
VMRA Queuing

MCU CMCU

61

more resources, compared to MCU and CMCU. However, because the total available

resources in VMRA are more than those of MCU and CMCU, the allocated resource

percent is lower in comparison to both.

b) Video Mixing Response Time: Meet-By-All Scenario

The average video mixing response time for the Meet-By-All scenario is shown in Fig.

4.7. As it can be seen, the queuing model shows better video mixing response time than

VMRA. This is because the objective of our model is maximizing resource utilization while

respecting QoS. Intuitively, for lower response time, we should allocate more resources;

however, this is in contradiction to our objective. So, in VMRA, as long as video mixing

response time is lower than QoS threshold, it does not reduce video mixing response time.

On the other hand, MCU and CMCU models have a higher video mixing response time, in

comparison to VMRA. This is directly attributed to the centralized architecture of these

models. Interestingly, the video mixing response time for MCU and CMCU are the same.

(a)

(b)

Fig. 4.6. (a) Average, (b) Maximum allocated resources in a datacenter in Meet-By-All scenario

0%

2%

4%

6%

8%

10%

1 2 3 4 5 6

A
ll

o
ca

te
d

 R
es

o
u
rc

es

Number of zones

CMCU Queuing VMRA

0%

3%

6%

9%

12%

1 2 3 4 5 6

A
ll

o
ca

te
d

 R
es

o
u
rc

es

Number of zones

CMCU Queuing VMRA

Fig. 4.7. Average video mixing response time in Meet-By-All scenario

0

100

200

300

1 2 3 4 5 6

R
es

p
o

n
se

 T
im

e
(m

se
c)

Number of zones

MCU CMCU

VMRA Queuing

62

It shows cloud has an effect only on the amount of allocated resources in CMCU and not

on the video mixing response time.

c) Resource Utilization: Meet-By-Some Scenario

Recall, our model can serve the maximum number of users, as shown in Fig. 4.5. Hence,

in this scenario, we have as many users as VMRA can serve. As depicted in Fig. 4.8(a) and

4.8(b), the resource allocation of the queuing model performs better compared to VMRA.

This is because, VMRA will add more resources to accommodate as many users as

possible, within the QoS threshold, while queuing model serves requests by leveraging a

fixed number of servers.

d) Video Mixing Response Time: Meet-By-Some Scenario

Previous results show queuing model allocates a lower amount of resources in Meet-

By-Some scenario compared to VMRA. However, this model is not suitable for video

mixing as a service after comparing the corresponding video mixing response time. This is

because the queuing model sacrifices QoS to serve the same number of users, compared to

VMRA. As shown in Fig. 4.9, if we choose resource allocation based on the queuing model

for video mixing as a service in cloud we have a high violation in terms of QoS. Based on

our simulation results, if we serve as many users as VMRA can support using the queuing

resource allocation model, QoS will be sacrificed between 66% and 72%. The same holds

true when comparing with CMCU. In fact, VMRA allocates more resources, compared to

queuing model and CMCU, to satisfy QoS for more users.

(a)

(b)

Fig. 4.8. (a) Average, (b) Maximum allocated resources in a datacenter in Meet-By-Some scenario

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6

A
ll

o
ca

te
d

 R
es

o
u
rc

es

Number of zones

CMCU VMRA Queuing

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6

A
ll

o
ca

te
d

 R
es

o
u
rc

es

Number of zones

CMCU VMRA Queuing

63

It is important to note that Fig. 4.6 and Fig. 4.8 reveal that to accommodate a larger

number of users for video mixing, it is desirable to have more data centers with fewer

resources. Furthermore, as evident from the results, our novel VMRA addresses the

specific needs of video mixing as a service, which cannot be handled by generic cloud-

based resource allocation models.

4.5. Conclusion

This chapter presents VMRA, a novel cloud-based resource allocation algorithm for

multimedia conferencing applications with video mixing. VMRA scales resources in an

elastic manner while meeting the QoS requirements and considering the fluctuation in the

number of participants. We mathematically formulated the problem and also proposed the

heuristic to solve the large-scale scenarios in an acceptable time. Simulation results show

that VMRA outperforms other resource allocation techniques for video mixing because it

considered both resource efficiency and video mixing QoS requirements. VMRA is suitable

for conferencing applications with video mixing service. However, other media handling

services such as compressing may be used in a conferencing application. Since each media

handling service has different requirements, the VMRA may not be suitable for such

conferencing applications. In addition, VMRA just considers reducing the servers’ resource

cost and does not consider reducing the network cost. These limitations of VMRA will be

solved in chapter 5.

Fig. 4.9. Average video mixing response time in Meet-By-Some scenario

0

300

600

900

1200

1500

1 2 3 4 5 6R
es

p
o

n
se

 T
im

e
(m

se
c)

Number of zones
MCU CMCU

Queuing VMRA

64

Chapter 5

5. A Resource Allocation Mechanism for

Multimedia Conferencing Applications

with Video Mixing and Compressing

5.1. Introduction

The previous chapter proposed VMRA, a novel resource allocation mechanism to

optimize resource allocation in terms of the number of participants while guaranteeing QoS

for conferencing applications with video mixing. As it was mentioned before, VMRA has

some limitations. For instance, it does not consider the requirements of other media

handling services such as compressing while allocating the resources. In addition, it does

not consider reducing the network cost. This chapter proposes another cloud-based

resource allocation mechanism for conferencing applications to solve the limitations of

VMRA. We entitled this algorithm as CRAM (Cloud-based Resource Allocation for

Multimedia conferencing). In designing the CRAM, we consider the conferencing

applications with video mixing and compressing together. Similar to VMRA, the CRAM

algorithm allocates or deallocates resources for conferencing applications based on the

fluctuation in the number of participants. Besides efficient servers’ resource utilization,

CRAM considers reducing the network cost as well. It also caters to the QoS, with respect

to both media handling response times and network latency. To reduce the network cost

and latency, CRAM algorithm selects adequate locations for allocating resources. We

65

analyze CRAM theoretically by modeling it as an optimization problem. Then, we design

the heuristic that can reach the sub-optimal solution for the large-scale scenarios in an

acceptable time.

The rest of this chapter is as follows. First, it presents the CRAM algorithm by

discussing its system model. Then, it discusses the designed heuristic, followed by a

conclusion of this chapter at the end.

5.2. CRAM System Model

In CRAM, besides video mixing, we consider using the compressing service. In

addition, we consider reducing both network and servers’ resources costs. CRAM system

model includes the general assumptions that we made in this work and the mathematical

model. In our mathematical model, we define CRAM as an ILP problem.

5.2.1. General Assumptions

There are some assumptions that are considered to model the problem. We categorize

them into two sections.

(i) Assumptions on Conferencing Applications

We assume that conferencing applications run in a large scale geographically distributed

cloud. Also, we consider multiple conferencing participants who want to join a conferencing

application and share their videos with each other. Moreover, participants are

simultaneously considered as video sources and destinations. It is assumed that the

conferencing application requires the video streams from all participants to be mixed and

sent to each of them.

(ii) Assumptions on Media Handling Services

Media handling services can be placed in any data center, as long as the participants’

required QoS (such as latency) is satisfied. It is assumed that each media handling service

is hosted on a VM. To connect media handling services, we consider different cost and

latency for each network link.

66

Similar to VMRA (presented in the previous chapter), our video mixing model follows

the Fork/Join parallelism technique [79]. Therefore, the video mixing process for all

participants depends on all video mixer instances. In this work, we assume the video mixing

time in a video mixer depends on the number of input streams of that mixer. Note that all

video mixers across different servers need the results from each other to complete the

mixing process. Thus, the total mixing time depends on the number of video mixers and

network latency.

5.2.2. Mathematical Model

This section presents the CRAM problem formulation, which is modeled as an ILP

problem.

(i) Problem Statement

Given 𝑆 and 𝑈 as sets of servers and participants (i.e., video sources and destinations)

respectively, let 𝑇𝑚(𝑘) and 𝑅𝑚(𝑘) represent the time and the resource required to mix or

compress 𝑘 video sources, respectively. Note that we assume 𝑇𝑚(𝑘) and 𝑅𝑚(𝑘) are linear

functions of 𝑘. Also, let 𝑇𝑎,𝑏 and 𝑃𝑎,𝑏 denote the time and cost to exchange a video from

location 𝑎 to 𝑏, respectively. Each compressor instance can reduce the size of video by %𝛾.

The 𝑇𝑎,𝑏 and 𝑃𝑎,𝑏 are reduced by %𝛾 if there is a compressor at location 𝑎. In addition, 𝑅𝑂

are the resources which cannot be utilized for video mixing or compressing (e.g., OS

required resources). There are thresholds 𝑇 on QoS, pertaining to the maximum acceptable

end-to-end delay, and 𝑅𝜀
𝑠 on resource capacity of server 𝑠. The problem is finding the

minimum number of VMs and minimum network cost, while respecting QoS. Also, finding

the optimal order of using media handling services to efficiently use resources is part of the

problem.

We model this as an ILP problem, where we assume a media handling service to be

analogous to a VM. Tables 5.1 and 5.2 delineate the inputs and variables of our problem,

respectively.

67

(ii) Objectives

We assume the operational cost of a VM, in terms of non-utilizable resources, supersedes

the cost of resources required for media handling services request of a participant, as in (1).

Table 5.1. Problem inputs

Input Definition

𝑆 set of servers

𝑈 set of users, i.e., video sources and destinations

𝑀 set of video mixer instances

𝐶 set of compressor instances

𝑉 set of all VMs, where 𝑉 = {𝐶 ∪𝑀}
𝑇𝑚(𝑘) time to mix or compress 𝑘 video sources

𝑅𝑚(𝑘) required resources to mix or compress 𝑘 video sources in a VM

𝑅𝑂 non-utilizable VM operating resources

𝑇𝑎,𝑏 time to send a video between location a and b

𝑃𝑎,𝑏 cost to send a video between location a and b

𝑃𝑠 cost of provisioning a VM on server 𝑠, 𝑠 ∈ 𝑆

𝛾 compress rate, 0 < 𝛾 < 100

𝑅𝜀
𝑠 threshold on the maximum amount of resources in server 𝑠
𝑇 QoS threshold (acceptable mixing response time)

𝛽 large enough constant

Table 5.2. Problem variables

Variable Definition

𝐷
(4|𝑈| − 2) × (4|𝑈| −

2) binary matrix, where
 𝑑𝑎,𝑏 = {

1, 𝑖𝑓 𝑎′ ′𝑖𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦

 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ′𝑏′
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐸
|𝑈| × (3|𝑈| − 2) binary

matrix, where
 𝑒𝑎,𝑏 = {

1, 𝑖𝑓 𝑢𝑠𝑒𝑟 ′𝑎′ 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑜𝑟 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦

𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑉𝑀 ′𝑏′
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑋
|𝑆| × (3|𝑈| − 2) binary

matrix, where
 𝑥𝑠,𝑣 = {

1, 𝑖𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 ′𝑠′ ℎ𝑜𝑠𝑡𝑠 𝑉𝑀 ′𝑣′
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑌

|𝑈| × (3|𝑈| − 2) matrix where, 𝑦𝑎,𝑏 is the required time to transmit a video

stream from user ′𝑎′ to VM ′𝑏′ and the total required time for media handling

services to reach location ′𝑏′

𝑍
|𝑆| × (3|𝑈| − 2)

matrix, where
 𝑧𝑠,𝑣 = {

𝑔𝑣 , 𝑖𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 ′𝑠′ ℎ𝑜𝑠𝑡𝑠 𝑉𝑀 ′𝑣′
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐺 A vector where 𝑔𝑣 is the number of users connected to the VM 𝑣

𝐹

|𝑈| × (3|𝑈| − 2) ×
(3|𝑈| − 2) binary matrix,

where

𝑓𝑖,𝑣
𝑢 = {

1, 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑢′ ′𝑖𝑠 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑉𝑀 𝑣′ ′𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑉𝑀 ′𝑖′
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

68

Furthermore, we assume homogeneous costs of video mixing and compressing resources

on each server. Therefore, the operational cost 𝑅𝑂, associated with a VM, inhibits the

introduction of a new VM, in the event of a new participant’s arrival. That is, a new VM is

only instantiated if an incoming request cannot be handled by increasing the resources of an

existing VM.

𝑅𝑂 ≫ (𝑅𝑚 (𝑘+1) − 𝑅𝑚(𝑘)) (1)

Equation (2) depicts our multiple objectives which are aiming at minimizing the overall

cost. We aim to minimize the cost of allocated resources by minimizing the number of VMs.

Moreover, we want to minimize the network cost. We use 𝑥𝑠,𝑣 to represent a VM 𝑣 which

is hosting on server 𝑠. Also, 𝑑𝑎,𝑏 represents a video stream connection from source 𝑎 to the

location 𝑏. The network cost between location 𝑎 and 𝑏 is shown by 𝑃𝑎,𝑏.

𝑚𝑖𝑛 {∑∑𝑥𝑠,𝑣 × 𝑃𝑠 + ∑ ∑ 𝑑𝑎,𝑏 × 𝑃𝑎,𝑏

𝑏∈𝑈∪𝑉𝑎∈𝑈∪𝑉𝑣∈𝑉𝑠∈𝑆

} (2)

In this work, we assume the cost of sending a video from one location to another location

in both directions are the same (i.e., 𝑃𝑎,𝑏 = 𝑃𝑏,𝑎). Note that we know the locations of

participants and servers. Therefore, to find the cost of sending a video from a participant to

a VM, or from a VM to another VM, we use equations (3) and (4).

𝑃𝑢,𝑣 = 𝑃𝑣,𝑢 =∑(𝑥𝑠,𝑣 × 𝑃𝑠,𝑢)

𝑠∈𝑆

  𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(3)

𝑃𝑣1,𝑣2 = ∑ ∑(𝑥𝑠1,𝑣1 × 𝑥𝑠2,𝑣2 × 𝑃𝑠1,𝑠2)

𝑠2∈𝑆𝑠1∈𝑆

  𝑣1, 𝑣2 ∈ 𝑉 (4)

Since equation (4) is not linear, we linearize it through equations (4-1) and (4-4). We use

a binary auxiliary variable 𝑗𝑠1,𝑠2 for linearizing this equation.

𝑗𝑠1,𝑠2 ≤ 𝑥𝑠1,𝑣1
 𝑣1 ∈ 𝑉

 𝑠1, 𝑠2 ∈ 𝑆
(4-1)

𝑗𝑠1,𝑠2 ≤ 𝑥𝑠2,𝑣2
 𝑣2 ∈ 𝑉

 𝑠1, 𝑠2 ∈ 𝑆
(4-2)

69

𝑗𝑠1,𝑠2 ≥ 𝑥𝑠1,𝑣1 + 𝑥𝑠2,𝑣2 − 1
 𝑣1, 𝑣2 ∈ 𝑉

 𝑠1, 𝑠2 ∈ 𝑆
(4-3)

𝑃𝑣1,𝑣2 = ∑ ∑(𝑗𝑠1,𝑠2 × 𝑃𝑠1,𝑠2)

𝑠2∈𝑆𝑠1∈𝑆

  𝑣1, 𝑣2 ∈ 𝑉 (4-4)

(iii) Constraints

Based on the set 𝑈, we can define two sets for video mixers (𝑀) and compressors (𝐶).

We know that each video mixer has at least two video streams as input. Therefore, set 𝑀

can be defined such that |𝑀| = |𝑈| − 1 and 𝑀 = {𝑚1, 𝑚2, … ,𝑚|𝑈|−1 }. Also, we assume

we can have compressors between participants and mixers as well as between mixers.

Therefore, set 𝐶 can be defined such that |𝐶| = |2𝑈| − 1 and 𝐶 = {𝑐1, 𝑐2, … , 𝑐|2𝑈|−1 }.

Since each VM hosts just one media handling service, we define a set for all possible virtual

machines as 𝑉 where 𝑉 = {𝐶 ∪ 𝑀}. These sets are used in the following equations.

We consider each participant has only one directed connection for sending the video

stream and receiving the mixed video. Equations (5) and (6) ensure that there is only one

directed connection from participants to VMs, and from VMs to participants, respectively.

∑𝑑𝑢,𝑣 = 1

 𝑣∈𝑉

  𝑢 ∈ 𝑈 (5)

∑𝑑𝑣,𝑢 = 1

 𝑣∈𝑉

  𝑢 ∈ 𝑈 (6)

Note that 𝑑𝑎,𝑏 is a directed connection where 𝑎 and b are the head and tail, respectively.

Moreover, participants need the mixed video from all others in the conference. Therefore,

there is no direct connection between participants. Equation (7) ensures this constraint.

∑∑𝑑𝑖,𝑗
 𝑗∈𝑈

= 0

 𝑖∈𝑈

 (7)

To complete the video mixing process, there should be at least one VM, which is the tail

of a direct or indirect connection to all original sources of video streams (i.e., participants).

After finishing the whole video mixing process, the final mixed video stream should be sent

70

to the participants from the mixers or compressors that have the whole mixing result.

Equations (8) and (9) find the direct and indirect connection between all participants and all

VMs. Equation (10) ensures that there is no indirect connection to any VM which has no

direct connection. In addition, equations (11) and (12) consider all possible indirect

connections from a participant𝑢 to the VM 𝑣 through all other VMs. Based on these

connections, equation (13) ensures that the final video streams comes from the VMs which

are directly or indirectly connected to all participants. Note that 𝑒𝑎,𝑏 is an indirect connection

where 𝑎 and 𝑏 are the head and tail, respectively.

𝑒𝑢,𝑣 ≥ 𝑑𝑖,𝑣 + 𝑒𝑢,𝑖 − 1
 𝑖, 𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(8)

𝑒𝑢,𝑣 ≥ 𝑑𝑢,𝑣
 𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(9)

𝑒𝑢,𝑣 ≤ ∑ 𝑑𝑘,𝑣
𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(10)

𝑒𝑢,𝑣 ≤∑𝑓𝑖,𝑣
𝑢

𝑖∈𝑉

+ 𝑑𝑢,𝑣  𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(11)

𝑓𝑖,𝑣
𝑢 ≤

𝑑𝑖,𝑣 + 𝑒𝑢,𝑖
2

 𝑖, 𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(12)

𝑑𝑣,𝑢 ≤
∑ 𝑒𝑝,𝑣𝑝∈𝑈

|𝑈|

 𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(13)

As described before, each media handling service has its own functionality. The

compressors can just reduce the video size. Therefore, the total number of input and output

streams are the same. This constraint is considered in equation (14). In addition,

compressors can help to reduce the size of video and in consequence, reduce the network

cost and transmission time. In this work, we assume there is no need to have two consecutive

compressors. Thus, there is no direct connection between two compressor instances.

Equation (15) ensures this constraint.

∑ 𝑑𝑘,𝑐
𝑘∈𝑈∪𝑉

= ∑ 𝑑𝑐,𝑘
𝑘∈𝑈∪𝑉

  𝑐 ∈ 𝐶 (14)

71

∑∑𝑑𝑖,𝑗
 𝑗∈𝐶

= 0

 𝑖∈𝐶

 (15)

On the other hand, mixers are responsible to mix video streams. Therefore, at least one

video mixer should be directly or indirectly connected to all participants as the tail. This

constraint is ensured in equation (16).

∑ ⌊
∑ 𝑒𝑢,𝑚𝑢∈𝑈

|𝑈|
⌋

𝑚∈𝑀

≥ 1 (16)

Since equation (16) is not linear, we linearize it through equations (16-1) and (16-2) by

using ℎ𝑚 as an auxiliary variable.

∑ ℎ𝑚
𝑚∈𝑀

≥ 1 (16-1)

ℎ𝑚 ≤
∑ 𝑒𝑢,𝑚𝑢∈𝑈

|𝑈|
  𝑚 ∈ 𝑀 (16.2)

A VM, that is hosting a media handling service, cannot be split across multiple servers.

Equation (17) ensures that a VM exists on a single server. Furthermore, if there are any

input streams connected to a VM, that VM should exist on one server, as depicted in (18)

and (19). Also, if there are any output streams from a VM, that VM needs to exist on a

server as shown in (20) and (21). Note that 𝛽 is a big enough constant used for linearization

purpose.

∑𝑥𝑠,𝑣 ≤ 1

𝑠∈𝑆

  𝑣 ∈ 𝑉 (17)

∑ 𝑑𝑘,𝑣 ≤ 𝛽 × (∑𝑥𝑠,𝑣
𝑠∈𝑆

)

𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 (18)

∑ 𝑑𝑘,𝑣 ≥∑𝑥𝑠,𝑣
𝑠∈𝑆𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 (19)

72

∑ 𝑑𝑣,𝑘 ≤ 𝛽 × (∑𝑥𝑠,𝑣
𝑠∈𝑆

)

𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 (20)

 ∑ 𝑑𝑣,𝑘 ≥∑𝑥𝑠,𝑣
𝑠∈𝑆𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 (21)

The number of VMs and their resources are bounded by the servers’ capacities. Equation

(22) ensures that the required resources for media handling services and operating system

in VMs are bounded by the server resource capacity.

 𝑅𝑂 × (∑𝑥𝑠,𝑣
𝑣∈𝑉

) + 𝑅𝑚(∑ (𝑥𝑠,𝑣𝑣∈𝑉 ×∑ 𝑑𝑘,𝑣)𝑘∈𝑈∪𝑉) ≤ 𝑅𝜀
𝑠

 𝑠 ∈ 𝑆 (22)

Note that the product ∑ (𝑥𝑠,𝑣𝑣∈𝑉 × ∑ 𝑑𝑘,𝑣)𝑘∈U∪V in (22) is non-linear. Therefore, we

linearize (22) by replacing it with constraints (22-1)-(22-6).

∑ 𝑑𝑘,𝑣 = 𝑔𝑣
𝑘∈𝑈∪𝑉

  𝑣 ∈ 𝑉 (22-1)

 𝑧𝑠,𝑣 ≤ |𝑈| × 𝑥𝑠,𝑣  𝑠 ∈ 𝑆 , 𝑣 ∈ 𝑉 (22-2)

𝑧𝑠,𝑣 ≤ 𝑔𝑣  𝑠 ∈ 𝑆 , 𝑣 ∈ 𝑉 (22-3)

 𝑧𝑠,𝑣 ≥ 𝑔𝑣 − |𝑈| × (1 − 𝑥𝑠,𝑣)  𝑠 ∈ 𝑆, 𝑣 ∈ 𝑉 (22-4)

𝑧𝑠,𝑣 ≥ 0  𝑠 ∈ 𝑆, 𝑣 ∈ 𝑉 (22-5)

 𝑅𝑂 × (∑𝑥𝑠,𝑣
𝑣∈𝑉

) + 𝑅𝑚(∑ 𝑧𝑠,𝑣𝑣∈𝑉) ≤ 𝑅  𝑠 ∈ 𝑆 (22-6)

The whole mixing procedure time, depends on the video mixing, compressing, and the

time required for video transmission over the network. To satisfy the QoS requirement, the

mixing procedure time for all participants should be less than or equal to 𝑇. Equations (23)

to (25) ensure that this end-to-end time for all participants, abides by the QoS threshold 𝑇.

73

𝑦𝑢,𝑣 ≥ 𝑑𝑖,𝑣 × 𝑇𝑖,𝑣 + 𝑦𝑢,𝑖 + 𝑇𝑚(∑ 𝑑𝑘,𝑣𝑘∈𝑈∪𝑉)
 𝑖, 𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(23)

𝑦𝑢,𝑣 ≥ 𝑑𝑢,𝑣 × 𝑇𝑢,𝑣
 𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(24)

𝑦𝑢,𝑣 + 𝑑𝑣,𝑢 × 𝑇𝑣,𝑢 ≤ 𝑇
 𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(25)

We assume that the required time and cost for sending a video from one location to

another location in both directions are the same (i.e., 𝑇𝑎,𝑏 = 𝑇𝑏,𝑎 and 𝑃𝑎,𝑏 = 𝑃𝑏,𝑎). To find

the cost of sending a video from a participant to a VM, or from a VM to another VM, we

use equations (26) and (27).

𝑃𝑢,𝑣 = 𝑃𝑣,𝑢 =∑(𝑥𝑠,𝑣 × 𝑃𝑠,𝑢)

𝑠∈𝑆

  𝑣 ∈ 𝑉

 𝑢 ∈ 𝑈
(26)

𝑃𝑣1,𝑣2 = ∑ ∑(𝑥𝑠1,𝑣1 × 𝑥𝑠2,𝑣2 × 𝑃𝑠1,𝑠2)

𝑠2∈𝑆𝑠1∈𝑆

  𝑣1, 𝑣2 ∈ 𝑉 (27)

Since equation (27) is not linear, we linearize it through equations (27-1) and (27-2). We

use a binary auxiliary variable 𝑘𝑠1,𝑠2 for linearizing this equation.

𝑘𝑠1,𝑠2 ≤ 𝑥𝑠1,𝑣1
 𝑣1 ∈ 𝑉

 𝑠1, 𝑠2 ∈ 𝑆
(27-1)

𝑘𝑠1,𝑠2 ≤ 𝑥𝑠2,𝑣2
 𝑣2 ∈ 𝑉

 𝑠1, 𝑠2 ∈ 𝑆
(27-2)

𝑘𝑠1,𝑠2 ≥ 𝑥𝑠1,𝑣1 + 𝑥𝑠2,𝑣2 − 1
 𝑣1, 𝑣2 ∈ 𝑉

 𝑠1, 𝑠2 ∈ 𝑆
(27-3)

𝑃𝑣1,𝑣2 = ∑ ∑(𝑘𝑠1,𝑠2 × 𝑃𝑠1,𝑠2)

𝑠2∈𝑆𝑠1∈𝑆

  𝑣1, 𝑣2 ∈ 𝑉 (27-4)

5.3. CRAM Heuristic

CRAM allows determining the number of VMs for mixers and compressors needed in

order to serve a set of media handling requests. In addition, it identifies the servers that will

74

host these VMs, together with the resulting service composition. These aspects are covered

with the objective of minimizing the overall costs while meeting QoS thresholds for

multimedia conferencing applications. Note that to reach the lower media handling

processing time, CRAM always assigns video streams to the VMs which have fewer

connected streams on each server. Also, to respect the QoS threshold, CRAM may decide

for using compressors. Note that using compressors leads to lower video resolution.

However, in a dense network or when participants are very far from each other, it may help

to abide the latency threshold.

Finding the best possible servers to host VMs can be mapped to the NP-hard facility

location problem [81]. Besides finding the best servers to host VMs, our problem determines

the best composition of media handling services. Solving our resource allocation problem

for large-scale scenarios using exact algorithms is time-consuming. Thus, we introduce a

heuristic to solve the problem efficiently and in a reasonable time. In this section, we

propose the CRAM heuristic. It handles the composition of media handling services,

together with the placement of the corresponding VMs.

The CRAM heuristic first calculates the minimum required number of VMs for mixing

all streams, regardless of participants’ locations. Then, it finds the possible servers with the

minimum distance from all participants to host the mixers. Using these servers results in

minimizing network latency and network cost. The CRAM heuristic also ensures that the

available resources on these servers are enough to instantiate new VMs. Then, it checks the

possibility of satisfying QoS requirements by having this minimum number of VMs hosting

the mixers. If the QoS is not satisfied, the heuristic tries to increase the number of mixers

(to reduce the mixing time) or add compressors (to reduce the transmission time). In these

processes, our CRAM heuristic considers minimizing the cost as the main objective as well.

Our solution is divided into four parts as described in Algorithms 5.1 to 5.4. We consider

the constants and variables shown in Table 5.1 and Table 5.2 as the input to these algorithms.

Also, to simplify the code, we assume the same resource capacity for all servers (i.e., 𝑅𝜀).

Algorithm 5.1. Media Handling Resource Allocation

Input:

𝑈, 𝑆; // the sets of participants’ and servers’ locations, respectively

𝑃𝑠 // cost of resources on a server

𝑅𝑚(𝑘), 𝑇𝑚(𝑘), 𝑅𝑂;

75

𝑅𝜀; // the maximum capacity for all servers

𝑅 ← 𝑅𝜀 ; // the set of available resources on each server

𝑇𝜀; // the maximum acceptable end-to-end delay

Output: 𝑀, 𝐶, 𝐷;//list of Mixers (𝑀), Compressors (𝐶) and the connections between

participants/mixers/compressors (𝐷)

 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑙𝑎𝑦; // maximum end-to-end delay

Phase 1: Find the minimum number of mixers

1. 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟 ← 0;

2. ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 ← ∞;

3. do

4. 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟 ← 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟 + 1;

5. 𝑀𝑎𝑥_𝑢𝑠𝑒𝑟 = 𝒄𝒆𝒊𝒍 ⌈
|𝑈|

𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟
⌉;

6. If (ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 < 𝑇𝑀(𝑀𝑎𝑥_𝑢𝑠𝑒𝑟) + 𝑇𝑀(𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟)) Then

7. return null; //there is no possible solution for the given |U|

8. end if

9. ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 ← 𝑇𝑀(𝑀𝑎𝑥_𝑢𝑠𝑒𝑟) + 𝑇𝑀(𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟)

10. while ((ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 ≥ 𝑇𝜀) 𝑂𝑅 (𝑅𝑂 + 𝑅𝑚(𝑀𝑎𝑥_𝑢𝑠𝑒𝑟) > 𝑅))

Phase 2: Select the best servers for hosting mixers

11. 𝑣𝑚 ← 0;

12. 𝑖 ← 0;

13. 𝑆 ← 𝑫𝑺𝒐𝒓𝒕(𝑆, 𝑈);// sort servers based on minimum distance to the group of participants

14. do

15. 𝑖 ← 𝑖 + 1;

16. while (𝑅[𝑆[𝑖]] ≥ 𝑅𝑂 + 𝑅𝑚(𝑀𝑎𝑥𝑢𝑠𝑒𝑟)𝐀𝐍𝐃 𝑣𝑚 < 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟) do

17. 𝑀[𝑆[𝑖]] ← 𝑀[𝑆[𝑖]] + 1;// number of mixers hosted on server 𝑖
18. 𝑣𝑚 + +;

19. 𝑅[𝑆[𝑖]] ← 𝑅[𝑆[𝑖]] − (𝑅𝑂 + 𝑅𝑚(𝑀𝑎𝑥_𝑢𝑠𝑒𝑟));

20. end while

21. If (𝑖 == |𝑆| 𝐀𝐍𝐃 𝑣𝑚 < 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟) Then

22. return null; //not enough resources to support |U|

23. end if

24. while (𝑣𝑚 < 𝑀𝑖𝑛_𝑚𝑖𝑥𝑒𝑟)

Phase 3: Check the need of compressor between mixers

25. 𝑢𝑠𝑒𝑑_𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ← 𝑖;
26. For j =1 → 𝑢𝑠𝑒𝑑_𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do

27. 𝑚𝑖𝑥_𝑡𝑖𝑚𝑒[𝑆[𝑗]] ← 0; // maximum mixing time for each server

28. For n =1 → 𝑢𝑠𝑒𝑑_𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do

29. 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ← 𝑇𝑀(𝑀𝑎𝑥_𝑢𝑠𝑒𝑟) + 𝑇𝑀(𝑀[𝑆[𝑗]]) + 𝑇𝑀(𝑢𝑠𝑒𝑑_𝑠𝑒𝑟𝑣𝑒𝑟𝑠) + 𝑇[𝑆[𝑗]][𝑆[𝑛]];

30. if (𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ≥ 𝑇𝜀) Then

31. 𝑡 ← 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒−𝑇𝜀; // required time to compress

 //Create/assign a compressor between servers j and n

32. 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔(𝑗, 𝑆[𝑛], 𝑡, "𝑠𝑒𝑟𝑣𝑒𝑟");
33. if (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 == 𝑁𝑢𝑙𝑙) Then

34. return null; // there is no possible solution

35. end if

36. 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ← 𝑇𝜀;
37. end if

38. If (𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 > 𝑚𝑖𝑥_𝑡𝑖𝑚𝑒[𝑆[𝑗]]) Then

39. 𝑚𝑖𝑥_𝑡𝑖𝑚𝑒[𝑆[𝑗]] ← 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒; // keep track of mixing time and network transmission time

between all mixers

40. end if

41. end for

42. end for

76

Phase 4: Assign participants to mixers AND check the need of compressors

43. 𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 ← 0;

44. For u =1 → |𝑈| do

45. 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ← 0;

//find the closest server with a mixer that can accept a participant

46. 𝑠 ← 𝑨𝑪𝑺(𝑢,𝑀); //acceptable closest server to the participant 𝑢

47. 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ← 𝑚𝑖𝑥_𝑡𝑖𝑚𝑒[𝑆[𝑠]] + 2 × 𝑇[𝑈[𝑢]][𝑆[𝑠]];
48. If (𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ≤ 𝑇𝜀) Then

 //Assign the participant 𝑢 to a mixer on server 𝑠, (𝑠 ∈ 𝑆)
49. 𝐷[𝑢][𝑆[𝑠]] ← 1; //connection from participant to server

50. 𝐷[𝑆[𝑠]][𝑢] ← 1; //connection from server to participant

51. end if

52. Else

 //Create/assign a compressor between participant u and server s

53. 𝑡 ← 𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 − 𝑇𝜀; // required time to compress

54. 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔(𝑢, 𝑆[𝑠], 𝑡, "𝑢𝑠𝑒𝑟");
55. if (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 == 𝑁𝑢𝑙𝑙) Then

56. return null; // there is no possible solution

57. end if

58. 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 ← 𝑇𝜀;
59. end else

60. If (𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 > 𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦) Then

61. 𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 ← 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒;//maximum end-to-end delay

62. end if

63. end for

Return 𝑀,𝐶, 𝐷,𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦

Algorithm 5.1 is the main body of the CRAM heuristic. It takes as main inputs: (i) the

list of participants and their locations, (ii) the list of servers and their locations, and (iii) the

network transmission time and cost between different locations. This algorithm in

collaboration with algorithms 5.2 to 5.4, finds the list of mixers, compressors, network

connections, and the maximum end-to-end delay. This algorithm runs at the starting point

of the conferencing application. In addition, it re-runs periodically to scale the system based

on the fluctuations in the number of participants.

Algorithm 5.1 has four main phases. In the first phase, it finds the minimum possible

number of mixers that can mix the total number of video streams from all participants. To

find this minimum number, it considers both the QoS threshold and the available resources

on the servers.

After finding the minimum number of mixers, in phase two, it places these mixers on the

servers which are closer to the majority of participants. Also, it makes sure that the selected

77

server has enough resources to host VMs. To find the servers based on the minimum

distances to the majority of participants, it uses Algorithm 5.2 (i.e., DSort) in phase two.

After placing the mixers on the chosen servers, in phase three it checks the need of having

compressors between mixers. Note that we consider full mesh topology between mixers on

a server and also between servers which host mixers. If the total time of the mixing process

and the network transmission time between two servers cannot abide the QoS threshold, a

compressor will be added between these servers. To assign or create a compressor between

two servers, Algorithm 5.3 (i.e., Compress) is used in this phase. At the end of phase three,

all mixers and required compressors between them are placed. Moreover, the mixing time

for each specific server will be known.

In the last phase, participants are assigned to the closest mixer which can accept a new

participant. The acceptable closest server is retrieved by using Algorithm 5.4 (i.e., ACS).

Moreover, if the end-to-end delay is greater than the QoS threshold, it uses Algorithm 5.3

to assign a compressor between the participant and the mixer.

Algorithm 5.2. (DSort): Sort servers based on minimum distance to a group of participants

Input:

𝑆; // the sets of servers’ locations

𝑈; // the sets of participants’ locations

Output:𝑆𝑒𝑟𝑣𝑒𝑟 // sorted list of servers

1. 𝑑𝑒𝑙𝑎𝑦[]; // an array to keep track of distance for each server

2. For n =1 → |𝑆| do

3. For u =1 → |𝑈| do

4. 𝑑𝑒𝑙𝑎𝑦[𝑛] ← 𝑑𝑒𝑙𝑎𝑦[𝑛] + 𝑇[𝑈𝑠𝑒𝑟[𝑢]][𝑆[𝑠]];
5. end for

6. end for

7. 𝑑𝑒𝑙𝑎𝑦2[] ← 𝑠𝑜𝑟𝑡(𝑑𝑒𝑙𝑎𝑦[]);// keep sorted distances in another array

8. For 𝑖 = 1 → |𝑆| do

9. For 𝑗 = 1 → |𝑆| do

10. if (𝑑𝑒𝑙𝑎𝑦2[𝑖] == 𝑑𝑒𝑙𝑎𝑦[𝑗]) Then

11. 𝑆𝑒𝑟𝑣𝑒𝑟[𝑖] ← 𝑗; // keep track of server n’s location

12. 𝑑𝑒𝑙𝑎𝑦[𝑗] ← −1; //change to a negative value to make sure not using the same server more than

once

13. break;

14. end if

15. end for

16. end for

Return 𝑆𝑒𝑟𝑣𝑒𝑟

78

Algorithm 5.2 sorts the servers based on their minimum distances to a group of

participants. It takes the list of servers and participants and returns a list of sorted servers.

This algorithm calculates the total distance from each server to all participants and uses a

simple sort function (e.g., binary sort).

Algorithm 5.3. (Compress): Create or assign a compressor

Input: 𝑠𝑒𝑛𝑑𝑒𝑟// video sender (i.e., a participant or a server)

𝑏 // the location of destination server

𝑡 // minimum time that needs to be reduced by compression

𝑠𝑡𝑟𝑖𝑛𝑔 // to find video sender is a participant or another server

𝑃 // the matrix of video transmission costs over the network

𝑇 // the matrix of video transmission times over the network

𝑅𝑎𝑡𝑒𝑚𝑎𝑥 // the maximum acceptable compression rate (0 to 1)

Output: 𝐶, 𝐷 // list of compressors and their connections

𝑅𝑎𝑡𝑒 // compression rate for the requested compress

1. if (𝑠𝑡𝑟𝑖𝑛𝑔 == "𝑠𝑒𝑟𝑣𝑒𝑟") Then

2. 𝑎 ← 𝑆[𝑠𝑒𝑛𝑑𝑒𝑟]; // keep location of the server in 𝑎

3. else

4. 𝑎 ← 𝑈𝑠𝑒𝑟𝑠[𝑠𝑒𝑛𝑑𝑒𝑟]; keep location of the participant in 𝑎

5. end if/else

6. 𝑀𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑇[𝑎][𝑏] − 𝑡 − 𝑇𝑚(1);

7. 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[]; list of possible servers that can host compressors between locations a and b

8. 𝑓𝑙𝑎𝑔[] ← 0; // to keep the demand for adding a new compressor

9. 𝑗 ← 0;

Phase 1: Find possible servers to host compressors between 𝑎 and 𝑏

10. For 𝑖 =1 → |𝑆| do

11. if (𝑇[𝑎][𝑆[𝑖]] < 𝑀𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 AND 𝑅[𝑆[𝑖]] > 𝑅𝑚(1)) Then

12. 𝑗 ← 𝑗 + 1;

13. 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑗] ← 𝑖; keep server 𝑖 as a possible server

14. end if

15. end for

16. if (|𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠| == 0) Then

17. return null; // there is no possible server to host compressors

18. end if

Phase 2: Find the corresponding cost for hosting or using compressors on each possible server found

19. 𝐶_𝑅 ← 1 − 𝑅𝑎𝑡𝑒𝑚𝑎𝑥; //

20. For 𝑖 =1 → |𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠| do

21. 𝑠 ← 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑖]
22. if (𝐶[𝑆[𝑠]] == 0) Then //no existing compressor on server 𝑠
23. if (𝑅[𝑆[𝑠]] < 𝑅𝑂 + 𝑅𝑚(1)) Then //not enough resources

24. Cost[𝑆[𝑠]] ← ∞;

25. continue;

26. end if

27. Cost[𝑆[𝑠]] ← 𝑃[𝑎][𝑆[𝑠]]+(𝑅𝑚(1) + 𝑅𝑂) × 𝑃𝑠;

28. 𝑓𝑙𝑎𝑔[𝑆[𝑠]] ← 1;

29. end if

30. Else

31. 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ← ∞;

32. For 𝑐 =1 → 𝐶[𝑆[𝑠]] do

33. 𝑚 ← 𝑐𝑜𝑚𝑝_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑠]][𝑐];//connected number of streams to the compressor 𝑐 on server 𝑠
34. if (𝑚 < 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚) Then

79

35. 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ← 𝑚;

36. end if

37. end for

38. if (𝑇𝑚(𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 +1) + 𝑇[𝑎][𝑆[𝑠]] + 𝑇[𝑆[𝑠]][𝑏] × 𝐶_𝑅 ≤ 𝑇[𝑎][𝑏] − 𝑡) Then

39. Cost[𝑆[𝑠]] ← 𝑃[𝑎][𝑆[𝑠]]+(𝑅𝑚(1)) × 𝑃𝑠;

40. end if

41. Else

42. if (𝑅[𝑆[𝑠]] < 𝑅𝑂 + 𝑅𝑚(1)) Then //not enough resources

43. Cost[𝑆[𝑠]] ← ∞;

44. continue;

45. end if

46. Cost[𝑆[𝑠]] ← 𝑃[𝑎][𝑆[𝑠]]+(𝑅𝑚(1) + 𝑅𝑂) × 𝑃𝑠;

47. 𝑓𝑙𝑎𝑔[𝑆[𝑠]] ← 1;

48. end else

49. end else

50. end for

Phase 3: Assign a compressor between locations 𝑎 and 𝑏 based on cost

51. 𝐶𝑜𝑠𝑡2[] ← 𝑠𝑜𝑟𝑡(𝐶𝑜𝑠𝑡[]);// keep sorted cost in another array

52. For 𝑗 = 1 → |𝐶𝑜𝑠𝑡| do

53. if (𝐶𝑜𝑠𝑡2[1] == 𝐶𝑜𝑠𝑡[𝑆[𝑗]]) Then

54. 𝑐ℎ𝑜𝑠𝑒 ← 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟[𝑗]; // chosen server to host the compressor between 𝑎 and 𝑏

55. break;

56. end if

57. end for

58. if(𝑠𝑡𝑟𝑖𝑛𝑔 == 𝑢𝑠𝑒𝑟)Then

59. 𝐷[𝑠𝑒𝑛𝑑𝑒𝑟][𝑆[𝑐ℎ𝑜𝑠𝑒]] ← 1; connection from sender to server

60. 𝐷[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑠𝑒𝑛𝑑𝑒𝑟] ← 1; connection from server to sender

61. else

62. 𝐷[𝑆[𝑠𝑒𝑛𝑑𝑒𝑟]][𝑆[𝑐ℎ𝑜𝑠𝑒]] ← 𝐷[𝑆[𝑠𝑒𝑛𝑑𝑒𝑟]][𝑆[𝑐ℎ𝑜𝑠𝑒]] + 1;

63. end if/else

64. 𝐷[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑏] ← 𝐷[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑏] + 1;

65. 𝐶[𝑆[𝑐ℎ𝑜𝑠𝑒]] ← 𝐶[𝑆[𝑐ℎ𝑜𝑠𝑒]] + 𝑓𝑙𝑎𝑔[𝑆[𝑐ℎ𝑜𝑠𝑒]];
66. 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ← ∞;

67. 𝑢𝑠𝑒𝑑_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ← 0;

68. For 𝑐 =1 → 𝐶[𝑐ℎ𝑜𝑠𝑒] do

69. 𝑚 ← 𝑐𝑜𝑚𝑝_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑐]; // number of streams

70. if (𝑚 < 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚) Then

71. 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ← 𝑚;

72. 𝑢𝑠𝑒𝑑_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ← 𝑐;

73. end if

74. end for

75. 𝑐𝑜𝑚𝑝_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑢𝑠𝑒𝑑_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟] ←
 𝑐𝑜𝑚𝑝_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑢𝑠𝑒𝑑_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟] + 1;

Phase 4: Find the required compression rate for this stream

76. 𝑁𝑒𝑤_𝑡𝑠,𝑏 ← 𝑇[𝑎][𝑏] − 𝑡 − 𝑇[𝑎][𝑆[𝑐ℎ𝑜𝑠𝑒]] − 𝑇𝑚(𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 +1);

77. 𝑅𝑒𝑎𝑙_𝑅𝑎𝑡𝑒 ← (𝑇[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑏] − 𝑁𝑒𝑤_𝑡𝑠,𝑏)/𝑇[𝑆[𝑐ℎ𝑜𝑠𝑒]][𝑏];

Return 𝐶, 𝐷, 𝑅𝑒𝑎𝑙_𝑅𝑎𝑡𝑒

 The CRAM heuristic considers video mixing and compressing as two main media

handling services. The compressing process is described in Algorithm 5.3. It has three main

inputs: (i) two locations that need a compressor in between, (ii) the minimum time that needs

80

to be reduced by compression, and (iii) the video mixing transmission times and costs

between different locations. Note that our proposed compression algorithm does not have a

fixed compression rate. It tries to compress as less as possible to have less impact on the

video resolution. We also consider a maximum acceptable compression rate (i.e., 𝑅𝑎𝑡𝑒𝑚𝑎𝑥)

as the input for this algorithm.

The compression algorithm has four main phases. In phase one, it finds the servers that

are close enough to the video sender and have resources to compress a video stream.

According to the servers found, in phase two, it calculates the corresponding cost for

assigning the compressing request for each server. The cost is calculated based on the

server’s resource cost and the network transmissions cost. If the chosen server has no

compressor on it, this phase considers the cost of creating a new compressor on the server

in the total cost. However, if there is an existing compressor on the server, this phase checks

if the compressor can accept another stream. It ensures by checking the satisfaction of the

minimum time that needs to be reduced by compression. In case of satisfaction, there is no

extra cost for creating a new VM and the server cost is calculated based on the required

resources to compress one more stream. On the other hand, if it cannot satisfy, then another

compressor needs to be created on this server and the cost of a new VM will be considered.

According to the calculated cost to host a compressor for each server, phase three selects

the server with the minimum cost and allocates the required resources for the compressor.

Also, it creates a link from the sender to the compressor and from the compressor to the

destination. If there is more than one compressor on the chosen server, it always assigns the

video stream to a compressor with minimum connected streams. It helps to minimize the

overall media handling time. At the end of this algorithm, in phase four it calculates the

exact reduced time by compression and also finds the compression rate.

Algorithm 5.4. (ACS): Find the acceptable closest server

Input: 𝑀 // list of Mixers

𝑢// a participant

𝑆 // the sets of servers’ locations

Output: 𝑠 //proposed server with mixer to host 𝑢

Phase 1: Find acceptable servers

1. 𝑗 ← 0;

2. For 𝑖 =1 → |𝑆| do

3. if (𝑀[𝑆[𝑖]] > 0) Then

4. For 𝑚 =1 → 𝑀[𝑆[𝑖]] do

81

5. if (𝑚𝑖𝑥𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑖]][𝑚] < 𝑚𝑎𝑥_𝑢𝑠𝑒𝑟) Then

6. 𝑗 ← 𝑗 + 1;

7. 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑗] ← 𝑖; keep server 𝑖 as a possible server

8. break;

9. end if

10. end for

11. end if

12. end for

Phase 2: Find the closest server from the acceptable servers

13. 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← ∞;

14. 𝑠 ← 0;

15. For 𝑖 =1 → |𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠| do

16. if (𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑇[𝑈[𝑢]][𝑆[𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑖]]]) Then

17. 𝑠 ← 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑖]; //chosen server to assign the participant to a mixer

18. 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑇[𝑈[𝑢]][𝑆[𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟𝑠[𝑖]]];
19. end if

20. end for

21. 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ← ∞;

22. For 𝑚 =1 → 𝑀[𝑆[𝑠]] do

23. if (𝑚𝑖𝑥𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑠]][𝑚] < 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚) Then

24. 𝑚𝑖𝑥𝑒𝑟 ← 𝑚; // chosen mixer to support participant

25. 𝑚𝑖𝑛_𝑠𝑡𝑟𝑒𝑎𝑚 ← 𝑚𝑖𝑥𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑠]][𝑚];
26. end for

27. 𝑚𝑖𝑥𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑠]][𝑚𝑖𝑥𝑒𝑟] ← 𝑚𝑖𝑥𝑒𝑟_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑆[𝑠]][𝑚𝑖𝑥𝑒𝑟] + 1;

Return 𝑠

Algorithm 5.4 is responsible to find the closest server which is hosting a video mixer to

a participant. It has two main phases. In the first phase, it finds the servers with at least one

video mixer whose total connected streams is less than a maximum possible connection

calculated in the phase one of Algorithm 5.1. In phase two, it selects the one which is closest

to the participant. Also, it selects the video mixer on this server with the minimum connected

streams to be responsible for this mixing request. In addition, it increases the number of

connected video streams for the selected video mixer.

5.4. Validations and Measurements

This section describes our evaluation scenarios and the simulation settings followed by

the obtained results.

5.4.1. Evaluation Scenarios and Simulation Settings

We consider two different conferencing applications as our evaluation scenarios. (i)

Massively Multiplayer Online Game (MMOG) and (ii) Online Distance Learning (ODL).

In these scenarios, the conference participants are sharing their videos in the logic of the

82

application. The aim is to allow each participant to have a mixed video from all other

participants. In MMOG, participants are from different geographical locations in the world.

Thus, the end-to-end delay may be high. In contrast, in ODL, the number of participants is

limited and they are distributed in a smaller area such as one country. For our simulation,

we consider two different geographical distributions for participants as depicted in Fig. 5.1.

(a) Homogeneous – participants are distributed over the whole area (i.e., world or country)

with similar density. (b) Heterogeneous – the majority of the participants are geographically

distributed in the east and the west side of the area. These distributions can help to

understand the behavior of the proposed solution when the participants are close or far from

each other.

For our simulations, we consider having servers in twenty cities over the world for

MMOG and nine cities over the USA for ODL. For the network transmission time between

servers, we use the information available at [82]. Fig. 5.2 shows the locations of considered

servers. Also, we consider different number of participants for both scenarios. We assume

a snapshot of the number of participants in this work. To study the impact of servers’

resources and network costs, we consider various settings with different simulation

parameters. We assume that the network transmission cost between two locations is a linear

function of the transmission time between them. In fact, the farther two locations are, the

higher is the network cost between them. Also, for the media handling time and required

(a) Homogeneous Geographical Distribution (b) Heterogeneous Geographical Distribution

Participants’ PopulationLow (0) High

Fig. 5.1. Geographical distribution of participants in conferencing applications

Fig. 5.2. Geographical distribution of the servers

83

resources, we consider our prototype experience in chapter 4. The simulation parameters

and settings are depicted in table 5.3. In our evaluation, we account for the server resource

in terms of used memory. However, the mathematical model and our heuristic are general

enough to accommodate other types of resources as well.

5.4.2. Results

We solve our mathematical model to achieve optimality for the small-case scenario using

LPSolve Java Library (http://lpsolve.sourceforge.net). For the medium-scale and large-scale

scenarios (i.e., scenarios with a higher number of participants) deriving the optimal solution

with the exact algorithms used by the solver is very time-consuming. Therefore, we only

present the results of our heuristic that can support the number of participants in our

simulation settings. However, the results in the small-case scenario allow us to validate our

mathematical model. In addition, they show that our mathematical model enables the

orchestration of media handling services and the possibility of composing these services on

the fly. As an example of the result of the mathematical model for a small-case scenario, we

ran our model while having 6 participants in Seattle and 2 participants in Toronto. The result

shows a composition of one video mixer and one compressor. It allocates required resources

for the video mixer in Seattle and for the compressor in Toronto.

In ODL, we assume all participants are from the USA with homogeneous or

heterogeneous geographical distributions. We run the CRAM heuristic for 100, 200, and

Table 5.3. Simulation parameters and settings

 MMOG ODL

Number of servers 20 9

Servers geographical distribution Over the world Over the USA

Number of participants 100, 2000, 3000 100, 200, 500

Participants’ geographical distribution

Homogeneous: Equally distributed in each server’s location

Heterogeneous: Half of users are in the western city and half

are in the eastern one

𝑇𝑚(𝑘) 6 msec per video source

𝑅𝑚(𝑘) 20 MB (RAM) per video source

𝑅𝑜 400 MB (RAM)

𝑅𝜀
𝑠 10240 MB (RAM) per each server

𝑇𝜀 400 msec

𝑃𝑠 $0.1 per MB

𝑇𝑎,𝑏 , 𝑃𝑎,𝑏 As in [1]

Maximum acceptable compression rate 0.95

84

500 participants. Fig. 5.3 shows the total cost by considering both servers’ resources and

network costs. By increasing the number of participants, the need for media handling

services increases. This leads to allocating more resources and implies a higher

communication traffic as well. Thus, as depicted in fig. 5.3, the total cost increases as a

higher number of participants is considered. However, considering the same number of

participants, the total cost in homogeneous geographical distribution is greater than that of

the heterogeneous geographical distribution. The reason is that the heterogeneous

geographical distribution favors the execution of some media handling services locally. By

that, it leads to transmit a lower number of streams over the network and implies a lower

total cost.

Fig. 5.4 depicts the servers’ resources (i.e., RAM) that is allocated for media handling

services. By increasing the number of participants, our heuristic allocates more resources to

media handling services to cope with the requests. The amount of memory allocation for

the same number of participants is greater in the case of heterogeneous geographical

distribution. In fact, in the homogeneous geographical distribution of ODL, most of the

participants can reach the mixers without the need of passing through the compressors. It

leads to using fewer compressors in homogeneous and less memory allocation compared to

heterogeneous.

Fig. 5.5 shows the network cost. By increasing the number of participants, the traffic

grows, implying a higher network cost. Unlike servers’ resources, the network cost is less

in heterogeneous geographical distribution in comparison with homogeneous for the same

number of participants. In fact, the aggregation of participants helps to decrease the network

Fig. 5.3. CRAM heuristic total cost in ODL

Fig. 5.4. CRAM heuristic total memory

allocation in ODL

0

50

100

150

200

100 200 500 100 200 500

Homogeneous Heterogeneous

C
o

st
 (

$
)

Number of Participants

Servers' Resource Network

0

2

4

6

8

10

100 200 500 100 200 500

Homogeneous Heterogeneous

M
em

o
ry

 (
G

B
)

Number of Participants

85

communications and reduces the network cost. However, as it is depicted in Fig. 5.6, it

causes more compression rate in heterogeneous in comparison with homogeneous

geographical distribution for the same number of participants. In fact, the compressors

should serve a higher number of participants in heterogeneous geographical distribution.

Thus, it increases the compression rate to cope with the QoS threshold and reduces the

network transmission time. The lines in the boxes indicate the median for the compression

rate.

On the other hand, in MMOG, we assume all participants are from different locations in

the world. In this scenario, CRAM heuristic runs for 100, 2000, and 3000 number of

participants. As depicted in Fig. 5.7, similar to the ODL, by increasing the number of

participants, the total cost will increase as well. Also, the total cost for the same number of

participants in heterogeneous geographical distribution is less than that of the homogeneous

geographical distribution. Based on that, both evaluation scenarios show that regardless of

the area size, the aggregation of participants can help reduce the total cost.

Fig. 5.5. CRAM heuristic network cost in ODL

Fig. 5.6. CRAM heuristic video compression

rate in ODL

0

20

40

60

80

100 200 500 100 200 500

Homogeneous Heterogeneous

C
o

st
 (

$
)

Number of Participants

Network

0%

20%

40%

60%

80%

100%

100 200 500 100 200 500

Homogeneous Heterogeneous

C
o

m
p

re
ss

io
n
 R

at
e

Number of Participants

Fig. 5.7. CRAM heuristic total cost in MMOG

Fig. 5.8. CRAM heuristic total memory

allocation in MMOG

0

200

400

600

800

100 2000 3000 100 2000 3000

Homogeneous Heterogeneous

C
o

st
 (

$
)

Number of Paerticipants

Servers' Resource Network

0

20

40

60

100 2000 3000 100 2000 3000

Homogeneous Heterogeneous

M
em

o
ry

 (
G

B
)

Number of Participants

86

The memory allocations for different numbers of participants in MMOG is depicted in

Fig. 5.8. Unlike the results of ODL, the memory allocation for MMOG in both

homogeneous and heterogeneous geographical distributions are almost the same. The

reason is that in MMOG, even in the homogeneous geographical distribution, the

participants are far from each other. This leads to using several compressors. In fact, the

aggregation of the participants into two locations does not help to reduce the required

resources for compressing service. However, as it is depicted in Fig. 5.9, the aggregation

can help to reduce the network cost in heterogeneous geographical distribution. Although

the network cost is decreased by the aggregation, it leads to more compression rate as it is

shown in Fig. 5.10. In other words, more participants end up with lower video resolution in

comparison with homogeneous geographical distribution.

For the composition, the CRAM heuristic orchestrates the required instances of media

handling services for participants. Note that each participant may follow a specific media

handling composition which differs from others. Fig. 5.11. shows an example of the created

compositions for two different participants in different locations. As shown in the figure,

CRAM may assign the participant from Seattle to a mixer which is hosted by a server in

Seattle. Thus, this participant will receive the final mixed stream from that mixer as well.

However, if CRAM allocates resources to the mixers in Seattle and a participant from

Toronto wants to use the mixers, to respect the maximum latency, CRAM allocates a

compressor in a location which reduces the total cost and assigns the participant from

Toronto to it. Then, the result of compression is sent to the mixer in Seattle. For this specific

Fig. 5.9. CRAM heuristic network cost in

MMOG

Fig. 5.10. CRAM heuristic video compression

rate in MMOG

o m

0

50

100

150

200

100 2000 3000 100 2000 3000

Homogeneous Heterogeneous

C
o

st
 (

$
)

Number of Participants

Network

0%

20%

40%

60%

80%

100%

100 2000 3000 100 2000 3000

Homogeneous Heterogeneous

C
o

m
p

re
ss

ai
o

n
 R

at
e

Number of Participants

87

example, CRAM allocates a compressor on the Seattle server as well. Therefore, the final

results are compressed one more time and then it sends to the participant in Toronto.

5.5. Conclusion

This chapter presents another novel cloud-based resource allocation algorithm for

multimedia conferencing applications. We consider the conferencing applications in this

chapter with video mixing and compressing services. We proposed CRAM to allocate

resources in an efficient manner for these applications. CRAM considers scaling the

resources in an elastic manner while meeting the QoS requirements and considering the

fluctuation in the number of participants. The proposed algorithm in this chapter considers

reducing both servers’ resource cost and network cost. Also, it takes into account the end-

to-end delay as QoS requirements, considering both media handling service response time

and network latency. We mathematically formulated the problem and also proposed the

heuristics to solve the large-scale scenarios in an acceptable time. Our simulation results

show that the number of participants and their geographical distribution have a significant

impact on the servers’ resource cost, network cost, and the required compression rate for

video streams.

Seattle

Seattle (Server #14)

Toronto Toronto (Server #19)

Compressor

…

Participants on other locations

Mixer1Participant A

Seattle

Toronto

Participant A

Participant BParticipant B

Fig. 5.11. Two different media handling compositions for users in Seattle and Toronto

88

Chapter 6

6. An Offline Scaling Mechanism for

Multimedia Conferencing Applications

6.1. Introduction

As it was described before, the conferencing PaaS in collaboration with the

conferencing IaaS are responsible to scale the conferencing applications. In chapters 4 and

5, we proposed novel algorithms to allocate resources for conferencing applications in the

IaaS layer. However, we still need to know when and for how many participants the

conferencing applications should scale to meet the cost-efficiency objective and QoS

requirements. This chapter presents a novel adaptive scaling algorithm for multimedia

conferencing applications in the PaaS layer. The proposed scaling algorithm in the PaaS

layer is responsible to find the best time for scaling these applications. In addition, it

decides for how many participants the conferencing applications should scale to meet the

cost-efficiency objective and QoS requirements. The proposed algorithm in this chapter

enables the conferencing applications to scale in an elastic manner with respect to the

number of participants. Also, it meets the QoS requirements while considering the future

demands of the conferencing applications (i.e., future number of participants).

89

We entitled the proposed algorithm in this chapter as ADS (Adaptive and Dynamic

Scaling). The main focus of ADS algorithm is on reducing the resource cost while

considering the QoS requirements. ADS works in an offline manner and uses a prediction

model to forecast the future number of participants. The dynamicity of ADS facilitates the

on-demand scaling up or down of the conferencing applications. In addition, the scaling

policies can change adaptively and in accordance with the fluctuating number of

conference participants to ensure elasticity.

The rest of this chapter is as follows. First, it presents the ADS by discussing its system

model. Then, it discusses the designed heuristic for it. After that, it presents the simulation

parameters and settings of ADS followed by the validation results. We conclude this

chapter at the end.

6.2. ADS System Model

The system model of ADS includes cooperation and mathematical models. In our

mathematical model, we define ADS as an ILP problem.

6.2.1. Cooperation Model

We consider a large-scale cloud environment to support the scaling of the conferencing

applications. It consists of users as conference participants, a conferencing PaaS and,

multiple conferencing IaaSs. The conference participants across a large geographical area

want to join a conferencing application, such as MMOG. We assume there is a service level

agreement (SLA) between the conferencing application provider and the PaaS, where the

QoS requirements are defined. One such requirement is the maximum acceptable delay for

a participant to join the conference (𝜃). Moreover, we assume there is a SLA between the

conferencing PaaS and the conferencing IaaSs, where another set of QoS requirements are

defined. One such QoS requirement is the time to provision resources in the IaaSs (𝛿).

When a conference participant wants to join the conference, the required resources

should be provisioned within 𝜃 time slots. In addition, when the scaling request is sent to

the IaaSs, it takes 𝛿 time slots for resources to be provisioned. The challenge lies in finding

90

the best time to send the scaling request. Moreover, this entails finding the required amount

of resources to achieve the optimal resource cost while guaranteeing QoS requirements.

6.2.2. Mathematical Model

This section presents our ADS problem formulation, which is modeled as an ILP

problem. It presents the problem statement followed by the objective and constraints.

(iv) Problem Statement

Given 𝑛 time slots of equal durations, let 𝐴 and 𝐷 represent the sets of expected arrivals

and departures of conference participants, respectively. Such that, there will be a maximum

of 𝑎𝑖 ∈ 𝐴 and 𝑑𝑖 ∈ 𝐷 participants, joining and leaving the conference during time slot 𝑖,

respectively. It is assumed that 𝐴 and 𝐷 are available before the conference is started. Also,

there is a threshold 𝜃 pertaining to the maximum acceptable delay before a participant can

join the conference. We assume that 𝜃 is a multiple of time slots. Upon sending of the

scaling request from the PaaS to the conferencing IaaSs, it is assumed that the required

resources will be allocated within the time lag 𝛿. We assume that 𝛿 is a multiple of time

slots and the 𝛿s for scaling up and scaling down are equal. Moreover, we assume the IaaS

does not accept parallel scaling requests for the same conferencing service. Therefore, we

assume there is at least 𝛿 time slots between two consecutive scaling requests. To simplify

the problem, we consider the same 𝛿 for all IaaSs. In addition, we assume 𝛿 < 𝜃. The goal

is to find the optimal scaling schedule, such that the total amount of allocated resources in

terms of the number of participants is minimized over the conference duration.

We model this as an ILP problem where we assume that each conference participant

needs the same amount of resources to join the conference. Tables 6.1 and 6.2 delineate

the inputs and variables of our problem, respectively.

91

(v) Objectives

We assume that the cost of using resources at each time slot depends on the total number

of participants in the conference at that time slot. Our objective is to minimize the cost

while considering other QoS requirements. We consider the provisioned resources in terms

of the number of participants and the remaining time of the conference after provisioning

the resources. The resource allocation and de-allocation for time slot 𝑖, for which the

request is sent to IaaSs at time slot 𝑗 are represented as 𝑥𝑖,𝑗 and 𝑦𝑖,𝑗, respectively. Since the

result of the scaling request will be ready after 𝛿 time slots, the remaining time of the

Table 6.1. Problem Inputs

Input Definition

𝑛 Total number of time slots in the entire conference duration

𝐴
A set of expected arrivals of conference participants, such that during time slot 𝑖, a

maximum 𝑎𝑖 ∈ 𝐴 participants join the conference, 1 ≤ 𝑖 ≤ 𝑛

𝐷
A set of expected departures of conference participants, such that during time slot 𝑖,

a maximum 𝑑𝑖 ∈ 𝐷 participants leave the conference, 1 ≤ 𝑖 ≤ 𝑛

𝐿
A set of number of conference participants, such that during time slot 𝑖, a maximum

of 𝑙𝑖 ∈ 𝐿 participants are in the conference for more than 𝜃 time slots, 1 ≤ 𝑖 ≤ 𝑛

𝛿

The time lag, stipulated in the conferencing IaaS SLA for the response to the

resource provisioning request.

𝛿 > 1 time slot, otherwise the problem is trivial.

𝜃 Maximum acceptable delay for preparing the conference service

𝑀 A big enough constant

Table 6.2. Problem Variables

Variable Definition

𝑋
𝑛 × 𝑛 matrix, where 𝑥𝑖,𝑗 is the actual number of participants allocated to the service

at time slot 𝑖 whose corresponding request is sent from PaaS to the IaaS at time slot 𝑗

𝑌

𝑛 × 𝑛 matrix, where 𝑦𝑖,𝑗 is the actual number of participants de-allocated from the

service at time slot 𝑖 whose corresponding request is sent from PaaS to the IaaS at

time slot 𝑗

𝑅

A vector of binary variables, where 𝑟𝑗 =

{
1, 𝑖𝑓 𝑃𝑎𝑎𝑆 𝑠𝑒𝑛𝑑𝑠 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡𝑜 𝐼𝑎𝑎𝑆 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

92

conference after sending the scaling request at time slot 𝑗 will be 𝑛 − (𝑗 + 𝛿). Equation (1)

depicts our objective.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {∑∑(𝑥𝑖,𝑗 − 𝑦𝑖,𝑗) × (𝑛 − (𝑗 + 𝛿))

𝑛−𝛿

𝑗=1

𝑛

𝑖=1

} (1)

(vi) Constraints

To respect the maximum acceptable delay (i.e., threshold 𝜃), the allocated resources, in

terms of conference participants, between time slot 𝑖 and 𝑖 + 𝜃 should be greater than or

equal to the expected number of participants arriving at time slot 𝑖. In other words, in the

SLA between PaaS and the application providers, the conferencing PaaS guarantees that

there will be no user waiting for more than 𝜃 time slots to be served before the conference

ends. Equations (2) and (3) enforce this constraint. Note that the resources can be reserved

before or after arrivals of users. It means that the scaling request time (i.e., 𝑗 in these

equations) can be from the moment that conference was started until the end of the

conference.

∑ 𝑥𝑖,𝑗

𝑖+𝜃−𝛿

𝑗=1

≥ 𝑎𝑖 ∀ 1 ≤ 𝑖 ≤ (𝑛 − 𝜃) (2)

∑𝑥𝑖,𝑗

𝑛−𝛿

𝑗=1

≥ 𝑎𝑖 ∀ (𝑛 − 𝜃) < 𝑖 ≤ 𝑛 (3)

If there are some participants in the conference and PaaS provides them their required

service, the conference size cannot be scaled down more than the number of participants

who are remaining in the conference. In fact, the conference size cannot shrink before

participants leave the conference, as in equations (4), (5) and (6).

∑𝑦𝑖,𝑗

𝑛−𝛿

𝑗=1

≤ 𝑑𝑖 ∀ 1 ≤ 𝑖 ≤ 𝛿 (4)

∑ 𝑦𝑖,𝑗

𝑛−𝛿

𝑗=𝑖−𝛿

≤ 𝑑𝑖 ∀ 𝛿 + 1 ≤ 𝑖 ≤ 𝑛 (5)

∑ 𝑦𝑖,𝑗

𝑖−𝛿−1

𝑗=1

= 0 ∀ 𝛿 + 1 < 𝑖 ≤ 𝑛 (6)

93

The maximum amount of scaling down requests at each time slot cannot be more than

the maximum of total allocated resources before that time slot. This is guaranteed in

equation (7).

∑∑𝑥𝑖,𝑡

𝑗

𝑡=1

𝑛

𝑖=1

≥∑∑𝑦𝑖,𝑡

𝑗

𝑡=1

𝑛

𝑖=1

 ∀ 1 ≤ 𝑗 ≤ 𝑛 (7)

Based on 𝐴 and 𝐷, the set 𝐿 can be defined, such that there will be a maximum of 𝑙𝑖 ∈

𝐿 participants in time slot 𝑖, who can be in the conference for more than 𝜃 time slots.

Therefore, at each time slot, the prepared conference size should at least have the required

resources for the participants who have been in the conference for more than 𝜃 time slots.

Equation (8) represents this constraint.

∑∑𝑥𝑖,𝑡

𝑗−𝛿

𝑡=1

𝑛

𝑖=1

−∑∑𝑦𝑖,𝑡

𝑗−𝛿

𝑡=1

𝑛

𝑖=1

≥ 𝑙𝑗 ∀ 𝛿 < 𝑗 ≤ 𝑛 (8)

The conferencing IaaSs can accept the new scaling request from the PaaS after the

previous request has been processed completely. Therefore, two consecutive scaling

requests from the conferencing PaaS must be separated by 𝛿, as depicted in (9).

∑ 𝑟𝑗

𝑖+𝛿−1

𝑗=𝑖

≤ 1 ∀ 1 ≤ 𝑖 ≤ 𝑛 − 𝛿 (9)

Moreover, any changes in the conference size made at time slot 𝑗, should be mapped to

their scaling request at the same time slot as shown in equations (10) and (11). We

assume 𝑀 is a big enough constant in these equations.

𝑀 × 𝑟𝑗 ≥ 𝑥𝑖,𝑗 ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛 (10)

𝑀 × 𝑟𝑗 ≥ 𝑦𝑖,𝑗 ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛 (11)

To avoid unnecessary resource allocation or de-allocation, there should be no scaling

requests over the last 𝛿 time slots of the conference. In fact, such a request, if made, will

take effect after the end of the conference. Through equation (12), we ensure that such

requests are not sent.

𝑟𝑗 = 0 ∀ 𝑛 − 𝛿 < 𝑗 ≤ 𝑛 (12)

94

6.3. ADS Heuristic

Based on the proposed mathematical model, reaching the optimal solution for the large-

scale scenarios is very time-consuming. Therefore, we propose an ADS heuristic as well

to reach a sub-optimal solution in a reasonable time. The ADS heuristic tries to find the

best schedule for scaling requests while respecting the SLAs. Algorithm 6.1 delineates the

ADS heuristic. It iterates over the set of time slots throughout the conference. We consider

the constants shown in Table 6.1 as the inputs of this algorithm. Also, the output of the

ADS algorithm is an integer array 𝑆 with 𝑛 elements. Each 𝑠𝑖 ∈ 𝑆 represents the required

scaling amount at time slot 𝑖. ADS heuristic has two main phases. In the first phase, it tries

to find the minimum possible conference size and the best time for scaling the conference.

In the second phase, it makes sure that all scaling requests are separated by at least 𝛿 time

slots.

Since the cost depends on the amount of the provisioned resources and their usage over

time, ADS heuristic is designed with the objective of reserving the least resources, as late

as possible. The latest time should respect 𝛿 and 𝜃. Also, the minimum amount should

respect the number of participants who are in the conference. Therefore, in phase 1, ADS

tries to find the minimum size of the conference and the best time to send the scaling

request. Based on the inputs, conference scaling takes 𝛿 time slots. Therefore, at each time

slot 𝑖, ADS should consider the total conference size of 𝛿 time slots ahead. Also, new

participants can wait up to 𝜃 time slots to join the conference. Thus, ADS can consider it

as well and checks the total conference size up to 𝜃 time slots ahead. In consequence, since

the objective is to find the minimum cost, ADS considers the minimum conference size

between time slots 𝑖 + 𝛿 and 𝑖 + 𝜃.

In phase 2, ADS heuristic ensures that the consecutive scaling requests are separated by

more than 𝛿 time slots. Moreover, it keeps track of the previous scaling request and its

corresponding conference size. ADS compares the previous conference size with the result

of phase 1 to decide about the scaling amount as the output of the algorithm. A positive

value in the output means the request is to scale up, while a negative one means to scale

down.

95

Algorithm 6.1. ADS Heuristic

Input:

𝑛, 𝛿, 𝜃, 𝐴, 𝐷; // same as the inputs of Table 6.1

Output: 𝑺; // an schedule set of scaling decisions

64. old_size ← 0 // previously provisioned size of the conference

65. new_size ← 0 // conference size that should be provided for the future

66. For each 𝑖 ∈ 𝑛 do

67. min_size ← ∞

68. best_t ← 0

Phase 1: Find the best possible time for sending the scaling request

69. For t = 𝑖 + 𝛿 → 𝑖 + 𝜃 do

70. total_size← 0

71. For p=1→ t do

72. total_size ← total_size + 𝑎𝑝 − 𝑑𝑝

73. end for

74. If (min_size ≥ total_size) Then

75. min_size ← total_size

76. best_t ← t − 𝛿

77. end if

78. end for

Phase 2: Set the amount of scaling request for the best found time and move 𝑖 to the next available time for

sending a request to the IaaSs

79. new_size ← min_size

80. 𝑆[𝑏𝑒𝑠𝑡_𝑡] ← new_size − old_size

81. old_size ← new_size

82. 𝑖 ← best_t + 𝛿 − 1; // -1 because it is in the loop and 𝑖 for next cycle will be (best_t− 𝛿)

83. end for each

Return 𝑆

6.4. Validations and Measurements

In this section, we will describe our evaluation scenarios and the simulation settings,

followed by comparison results.

6.4.1. Evaluation Scenarios and Simulation Settings

As the evaluation scenarios, we consider two different conferencing applications. (i)

Massively Multiplayer Online Game (MMOG) and, (ii) Online Political Party Discussion

(OPPD). In both scenarios, the users as the conference participants, are sharing their videos

and audios in the logic of the application. In MMOG, users join and leave the game from

all over the world. Thus, there is a significant fluctuation in the number of participants. In

contrast, in OPPD, since the participants are limited, the fluctuation of the conference size

is small.

96

For our simulation, we randomly generate the number of participants joining and

leaving the conference at each time slot. To cover all possibilities, we keep the same

conference size over a part of this time. This means that either no one joins or leaves the

conference, or the number of users joining the conference is equal to the number of users

leaving at each time slot, over that part. In our simulation, we divide the conference

duration to 100 time slots. Also, we assume the resource provisioning time and the

acceptable delay are 3 and 4 time slots, respectively. In addition, we set the fluctuation of

the number of users to up to 1500 and 300 in MMOG and OPPD, respectively. Simulation

parameters and settings are depicted in Table 6.3.

6.4.2. Results

We implement the ADS algorithm in JAVA. Also, we use the LPSolve engine [83] to

find the ADS optimal solution for our mathematical model. We compare the results of our

algorithm with that of the optimal solution and the expected conference size. Also, we use

a greedy algorithm as the baseline of our comparison. Since there is no similar heuristic in

the literature that meets all of our requirements, this allows us to assess how our heuristic

performs with respect to a simple greedy approach. The greedy algorithm operates on a

periodic basis with a period equal to 𝛿. At time slot 𝑡 (with 𝑡 𝑚𝑜𝑑 𝛿 = 0), it derives the

maximum number of participants between time slots 𝑡 + 𝛿 and 𝑡 + 2𝛿. It then scales the

conference accordingly. By that, the greedy approach is capable of satisfying the threshold

of user’s acceptable delay. Fig. 6.1 and 6.2, depict the created conference size for MMOG

and OPPD applications, respectively. As these figures show, both our optimal and heuristic

solutions can scale the conference size up and down. The scaling is elastic and it respects

the SLAs.

Table 6.3. Simulation Parameters and Settings

General Parameters Value MMOG Settings OPPD Settings

𝑛 100

𝐴 and 𝐷

Fluctuation
0-1500

𝐴 and 𝐷

Fluctuation
0-300

𝛿 3

𝜃 4

𝑀 1000000

97

Although in our scenarios, users can wait up to 𝜃 time slots to join the conference, there

could be a cost for the delay as QoS violation. Fig. 6.3 and 6.4 show the total resource

allocation and QoS violation costs of our scaling mechanism for MMOG and OPPD,

respectively. As shown in these figures, the ADS heuristic outperforms the greedy

algorithm from a resource-efficiency perspective. It leads to a solution that is closer to

optimality with respect to the solution of the greedy algorithm, implying lower resource

cost. However, this comes at the cost of a higher QoS violation. By comparing the solutions

obtained from different algorithms, we notice that the greedy approach implies the least

cost of QoS violation. It is followed by our ADS heuristic, while the ADS optimal solution

leads to the highest QoS violation cost. These results highlight the trade-off that exists

between the resource efficiency and QoS.

Fig. 6.1. Conference Size Comparison in MMOG

Fig. 6.2. Conference Size Comparison in OPPD

0

300

600

900

1200

1500

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

C
o

n
fe

re
n
ce

 S
iz

e

Time Slots
Real Size ADS Optimal ADS Heuristic

0

50

100

150

200

250

300

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

C
o

n
fe

re
n
ce

 S
iz

e

Time Slots

Real Size ADS Optimal ADS Heuristic

98

Fig. 6.3 and 6.4 also show that the cost of the ADS heuristic for provisioning resources

in OPPD and MMOG has an 18% and a 35% gap from the optimal solution, respectively.

It means that the ADS heuristic can perform better when scaling conferences with lower

fluctuations.

6.5. Conclusion

This chapter presents ADS, a novel scaling algorithm for cloud-based multimedia

conferencing applications. The ADS produces the cost-efficient scaling schedule while

considering the QoS requirements and the future demands of the conferencing applications.

The main objective of ADS is minimizing the resource cost and it performs in an offline

manner. We mathematically formulated the problem and also proposed the heuristic to solve

the large-scale scenarios in an acceptable time. Simulation results show the elasticity of

ADS mechanism for conferencing services. Moreover, we show that the proposed ADS

heuristic outperforms a simple greedy algorithm from a resource-efficiency perspective.

Although ADS considers the future demands of the conferencing applications, it does not

consider the uncertainty in the prediction. In addition, it only minimizes the resource cost

while meeting the QoS requirements. But it does not consider reducing the QoS violation

cost. These limitations of ADS will be solved in chapter 7.

Fig. 6.3. Costs of Resources and QoS

Violation in MMOG

Fig. 6.4. Costs of Resources and QoS

Violation in OPPD

0

20000

40000

60000

Resource QoS Violation

T
o

ta
l
C

o
st

ADS Optimal ADS Heuristic Greedy

0

3000

6000

9000

12000

Resource QoS Violation

T
o

ta
l
C

o
st

ADS Optimal ADS Heuristic Greedy

99

Chapter 7

7. An Online Scaling Mechanism for

Multimedia Conferencing Applications

7.1. Introduction

In the previous chapter, we proposed ADS, an adaptive and dynamic scaling algorithm

for conferencing applications. As it was mentioned before, the ADS works in an offline

manner. Moreover, although it considers the future demand of the conferencing

application, it does not take into account the uncertainty in the prediction model. In

addition, the main focus of ADS is on reducing the resource cost and does not consider the

QoS violation cost. This chapter proposes another novel scaling algorithm for multimedia

conferencing applications in the PaaS layer to solve the limitations of the ADS. We entitled

the proposed algorithm as AOS (Adaptive and Online Scaling). AOS performs in an online

manner and finds the best time for scaling the conferencing applications. In addition, it

decides for how many participants the conferencing applications should scale to meet the

cost-efficiency objective and QoS requirements. Besides reducing the resource cost, AOS

considers reducing the QoS violation cost as well. In addition, it takes into account the

uncertainty of the prediction model. Similar to ADS, the AOS also enables scaling the

100

conferencing applications in an elastic manner and in terms of the number of conference

participants.

The rest of this chapter is as follows. First, it presents the AOS by discussing its system

model. Then, it describes the designed AOS heuristic. After that, it presents the simulation

parameters and settings of AOS followed by the validation results. We will conclude this

chapter at the end.

7.2. AOS System Model

In AOS, besides reducing the resource cost, reducing the QoS violation cost is part of

the objective. In addition, it takes into account the uncertainty in the prediction model.

Despite ADS that works in an offline manner, AOS is designed to work online. Similar to

ADS, the AOS system model includes the cooperation and mathematical models. In the

mathematical model, we define AOS as an ILP problem.

7.2.1. Cooperation Model

We consider a large-scale cloud environment to support the scaling of the conferencing

services. The conference participants across a large geographical area request to join a

conferencing application, such as MMOG. We assume there is an SLA between the

conferencing application provider and the PaaS, where the QoS requirements are defined.

One such requirement is the maximum acceptable delay for a participant to join the

conference (𝜃). Moreover, we assume there is an SLA between the conferencing PaaS and

conferencing IaaSs, where another set of QoS requirements are defined. One such QoS

requirement is the time to provision resources in the IaaS (𝛿).

According to the defined SLAs, when a conference participant requests to join the

conference, the required resources should be ready. Otherwise, PaaS should pay the QoS

violation cost for waiting time of each participant. Moreover, the maximum acceptable

waiting time is 𝜃. In addition, when the scaling request is sent to the IaaSs, it takes 𝛿 time

for the resources to be provisioned and a new scaling request will have to wait for the

realization of the previous request. Therefore, choosing the time to send the scaling request

101

can be challenging as it affects QoS violation and resource costs. On one hand, if resources

are not ready when a participant joins the conference, the participant will have to wait

which implies QoS violation costs for the PaaS. On the other hand, if resources are

allocated prior to the arrival of the participant, additional unnecessary resource costs may

be incurred.

7.2.2. Mathematical Model

This subsection presents the AOS problem formulation, which is modeled as an ILP

problem.

(iv) Problem Statement

Given 𝑛 time slots of equal duration as the total conference time, let 𝐹 represent a time

frame in the conference that spans over |𝐹| time slots, where |𝐹| is less than 𝑛. Also, let 𝐴𝐹

and 𝐷𝐹 represent the sets of real-time arrivals and departures of conference participants

during a time frame 𝐹, respectively. Such that, there will be 𝑎𝑖 ∈ 𝐴𝐹 and 𝑑𝑖 ∈

𝐷𝐹 participants joining and leaving the conference during time slot 𝑖, respectively. Since 𝐴𝐹

and 𝐷𝐹 are in real-time, the corresponding values are not known in advance. It is assumed

that there is a prediction model which can predict the arrivals and departures of the

conference participants for one time frame ahead, with the accuracy of 𝜀% and the

prediction intervals of ±𝛾%. That is, 𝜀% of predictions concur with the real-time number

of participants while mispredictions are within 𝛾%. Let 𝐴𝐹
′ and 𝐷𝐹

′ represent the sets of

predicted arrivals and departures of conference participants during a time frame 𝐹,

respectively. Such that, there will be a prediction of 𝑎′𝑖 ∈ 𝐴𝐹
′ and 𝑑′𝑖 ∈ 𝐷𝐹

′ participants

joining and leaving the conference during time slot 𝑖 in 𝐹, respectively. It is assumed that

the values of 𝐴𝐹, 𝐷𝐹, 𝐴𝐹
′ , and 𝐷𝐹

′ for all previous time frames are saved in 𝐴𝑃, 𝐷𝑃, 𝐴′𝑃,

and 𝐷′𝑃 sets, respectively. 𝐴𝐹
′ and 𝐷𝐹

′ are generated during the conference and use the values

of 𝐴𝑃 and 𝐷𝑃 to tune the prediction.

We assume that the scaling process has no effect on the conferencing services during

runtime. That is, adding or releasing of resources during runtime is supported. We also

assume that 𝛿 and 𝜃 are multiples of time slots and 𝛿s for adding resources (i.e., scaling

102

up/out) and releasing resources (i.e., scaling down/in) are equal. We consider this to simplify

the problem.

In a cloud environment, IaaSs do not accept parallel scale up and scale down requests for

a specific resource (i.e., a virtual machine or a container) [25]. Therefore, we assume the

IaaS does not accept parallel scaling requests for the same conferencing service.

Consequently, there are at least 𝛿 time slots between two consecutive scaling requests. In

our problem, we consider the same 𝛿 for all IaaSs. Hence, we do not choose the best offered

time between different available IaaSs. In addition, we assume 𝛿 < 𝜃 to simplify the

problem. Moreover, since we consider the prediction knowledge for a time frame, we

assume 𝛿 and 𝜃 are less than |𝐹|. These assumptions ensure the feasibility of using the

predicted information to make the scaling decisions over one time frame.

The goal is to find an optimal online scaling schedule, such that, the total cost of allocated

resources and QoS violations are minimized over the conference duration. We model the

problem as an ILP problem, where we assume that each conference participant needs the

same amount of resources to join the conference. Tables 7.1 and 7.2 delineate the inputs and

variables of our problem, respectively.

(v) Objectives

We assume that the cost of using resources at each time slot depends on the total number

of participants in the conference at that time slot. Also, we assume that the cost of QoS

violation at each time slot depends on the total number of participants waiting to join the

conference. Our objective is to minimize the total resource allocation and QoS violation

costs while considering QoS requirements. We aim to reach this objective by minimizing

these costs over each individual prediction time frame while accounting for the decisions

made in the previous time frames.

We consider that the resources and QoS violation costs are evaluated in terms of the

number of participants. The resource allocation cost is calculated based on the remaining

time of the conference after provisioning the resources. We use 𝑥𝑖,𝑗 and 𝑦𝑖,𝑗 to represent a

request sent at time slot 𝑗 to allocate and de-allocate resources for time slot 𝑖, respectively.

103

Since the result of the scaling request will be ready after 𝛿 time slots, the remaining time of

the conference after the request takes effect will be 𝑛 − (𝑗 + 𝛿). Let 𝐶𝐹
𝑅 represent the total

resource allocation cost over a prediction time frame. Equations (1) and (2) depict 𝐶𝐹
𝑅 for a

Table 7.1. Problem Inputs

Input Definition

𝑛 Total number of time slots in the entire conference duration

|𝐹| The duration of a time frame

𝐴𝐹
A set of real-time arrivals of conference participants in time frame 𝐹, such that in

time slot 𝑖, 𝑎𝑖 ∈ 𝐴𝐹 participants join the conference

𝐷𝐹
A set of real-time departures of conference participants in time frame 𝐹, such that in

time slot 𝑖, 𝑑𝑖 ∈ 𝐷𝐹 participants leave the conference

𝐴𝑃
A set of actual arrivals of conference participants during past time frames, such that

in time slot 𝑖, 𝑎𝑖
𝑃 ∈ 𝐴𝑃 participants joined the conference

𝐷𝑃
A set of actual departures of conference participants during past time frames, such

that in time slot 𝑖, 𝑑𝑖
𝑃 ∈ 𝐷𝑃 participants left the conference

𝐴′𝐹
A set of predicted arrivals of conference participants in time frame 𝐹, such that

during time slot 𝑖, 𝑎′𝑖 ∈ 𝐴𝐹
′ participants are predicted to join the conference

𝐷′𝐹
A set of predicted departures of conference participants in time frame 𝐹, such that

during time slot 𝑖, 𝑑′𝑖 ∈ 𝐷𝐹
′ participants are predicted to leave the conference

𝐴′𝑃
A set of predicted arrivals of conference participants during past time frames, such

that in time slot 𝑖, 𝑎′𝑖
𝑃 ∈ 𝐴′𝑃 participants were expected to join the conference

𝐷′𝑃
A set of predicted departures of conference participants during past time frames,

such that in time slot 𝑖, 𝑑′𝑖
𝑃 ∈ 𝐷′𝑃 participants were expected to leave the conference

𝐿𝐹
A set of the number of conference participants, such that in time slot 𝑖, maximum

𝑙𝑖 ∈ 𝐿𝐹 participants had been in the conference for more than 𝜃 time slots

𝑋𝑃
A set of allocated resources in the past time frames, such that 𝑥𝑖,𝑗

𝑃 ∈ 𝑋𝑃 represents

the allocated resource for time slot 𝑖 whose request was sent at time slot 𝑗

𝑌𝑃

A set of de-allocated resources in the past time frames, such that 𝑦𝑖,𝑗
𝑃 ∈ 𝑌𝑃

represents the de-allocated resource for time slot 𝑖 whose request was sent at time

slot 𝑗

𝑃𝑡−1
The gap between existing number of participants and allocated resources before a

time frame starts at time slot 𝑡

𝛿
The time lag, stipulated in the conferencing IaaS SLA for meeting the resource

provisioning request. 𝛿 > 1 time slot, otherwise the problem is trivial

𝜃 The acceptable delay for preparing the conference service

𝜀 The accuracy rate of the prediction model

𝛾 The prediction interval of the prediction model

𝛽
The weighting coefficient between resource cost and QoS violation cost in the

objective

𝑀 Large enough constant

104

time frame which starts at time slot 𝑡. Since each resource allocation or de-allocation takes 𝛿

time slots, we do not consider requests in the last 𝛿 time slots of the conference duration

(i.e., in the last time frame) in these equations.

𝐶𝐹
𝑅 = ∑ ∑ [𝑥𝑖,𝑗 − 𝑦𝑖,𝑗] × [𝑛 − (𝑗 + 𝛿)]

𝑡+|𝐹|

𝑗=𝑡

𝑡+|𝐹|

𝑖=𝑡

(1)

∀ 𝑖, 𝑗 | 1 ≤ 𝑡 ≤ 𝑖, 𝑗 ≤ 𝑡 + |𝐹| < 𝑛 − 𝛿 − |𝐹|

𝐶𝐹
𝑅 =∑∑[𝑥𝑖,𝑗 − 𝑦𝑖,𝑗] × [𝑛 − (𝑗 + 𝛿)]

𝑛−𝛿

𝑗=𝑡

𝑛

𝑖=𝑡

(2)

∀ 𝑖, 𝑗 | 𝑛 − 𝛿 − |𝐹| ≤ 𝑡 ≤ 𝑖, 𝑗 ≤ 𝑛 − 𝛿

The resource de-allocation can exceed the resource allocation in one time-frame. This

might happen when there are some allocated resources in previous time frames and some

participants are leaving in the current time frame. Therefore, the value of resource allocation

cost can be negative or positive in a time frame. The positive value indicates that more

resources are allocated in a time frame while the negative value shows that more resources

are released.

The QoS violation cost at each time slot is calculated based on the difference between

the total required resources and total provisioned resources up to that time slot. Let 𝑐𝑘
𝑄

represent the QoS violation cost at time slot 𝑘. Equation (3) depicts 𝑐𝑘
𝑄

 for a time frame that

Table 7.2. Problem Variables

Variable Definition

𝑋

|𝐹| × |𝐹| matrix, where 𝑥𝑖,𝑗 is the allocated resources to the service, in terms of

number of participants, at time slot 𝑖 whose request is sent from PaaS to the IaaS

at time slot 𝑗

𝑌

|𝐹| × |𝐹| matrix, where 𝑦𝑖,𝑗 is the de-allocated resource from the service, in

terms of number of participants, at time slot 𝑖 whose request is sent from PaaS to

the IaaS at time slot 𝑗

𝑅
A vector of binary variables, where

 𝑟𝑗 = {
1, 𝑖𝑓 𝑃𝑎𝑎𝑆 𝑠𝑒𝑛𝑑𝑠 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡𝑜 𝐼𝑎𝑎𝑆 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶𝐹
𝑅 Total resource allocation cost in a time frame

𝐶𝐹
𝑄

 Total QoS violation cost in a time frame

105

starts at time slot 𝑡. Each time frame may start while there are some provisioned resources

in the previous time frames. Let 𝑃𝑡−1 in (3) denote the gap between real conference size

and provisioned resources from the previous time frames. This gap shows the number of

participants who are waiting to join the conference. Note that resource scaling will take

effect 𝛿 time slots after sending the request. Thus, in the first 𝛿 time slots of each time frame,

there is no change in the amount of existing resources and QoS violation cost only depends

on the previous allocated resources and the expected demand.

𝑐𝑘
𝑄
= {

 𝑃𝑡−1 +∑[𝑎𝑖
′ − 𝑑𝑖

′] − ∑ ∑[𝑥𝑖,𝑗 − 𝑦𝑖,𝑗]

𝑘−𝛿

𝑗=𝑡

𝑡+|𝐹|

𝑖=𝑡

𝑘

𝑖=t

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,
 𝑖𝑓 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(3)

∀ 𝑘 | 1 ≤ 𝑡 + 𝛿 ≤ 𝑘 ≤ 𝑡 + |𝐹|

The value of 𝑃𝑡−1 is calculated based on equation (4). We assume all allocation and de-

allocation requests in previous time frames are saved as 𝑋𝑃 and 𝑌𝑃 sets, respectively. Such

that, 𝑥𝑖,𝑗
𝑃 ∈ 𝑋𝑃 and 𝑦𝑖,𝑗

𝑃 ∈ 𝑌𝑃 represent the amount of allocated and de-allocated resources

for time slot 𝑖 with the request sent at time slot 𝑗 in previous time frames, respectively.

𝑃𝑡−1 = {
∑[𝑎𝑖

𝑃 − 𝑑𝑖
𝑃]

𝑡−1

𝑖=1

−∑∑[𝑥𝑖,𝑗
𝑃 − 𝑦𝑖,𝑗

𝑃]

𝑡−1

𝑗=1

𝑡−1

𝑖=1

0, 𝑡 = 1

 ∀ 𝑡 > 1 (4)

The QoS violation cost cannot have negative values. In fact, if the resources are under-

provisioned, the PaaS should pay the QoS violation. However, in the case of the resource

over-provisioning, there is no violation and the cost is 0.

Our objective is depicted in equation (5). We use 𝐶𝐹
𝑄

 to represent the total QoS violation

cost over a prediction time frame. Also, we use a coefficient 𝛽 as a weighting factor between

resource cost and QoS violation cost in our objective.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝛽 × 𝐶𝐹
𝑅 + (1 − 𝛽) × 𝐶𝐹

𝑄
} (5)

106

(vi) Constraints

Since QoS violation cost in (3) is non-linear, we add two constraints to linearize it. These

constraints are depicted in equations (6) and (7).

𝑐𝑘
𝑄
≥ 0 ∀ 𝑘 | 1 ≤ 𝑡 ≤ 𝑘 ≤ 𝑡 + |𝐹| ≤ 𝑛 (6)

𝑐𝑘
𝑄 ≥ 𝑃𝑡−1 +∑[𝑎𝑖

′ − 𝑑𝑖
′] − ∑ ∑[𝑥𝑖,𝑗 − 𝑦𝑖,𝑗]

𝑘−𝛿

𝑗=𝑡

𝑡+|𝐹|

𝑖=𝑡

𝑘

𝑖=𝑡

(7)

∀ 𝑘 | 1 ≤ 𝑡 + 𝛿 ≤ 𝑘 ≤ 𝑡 + |𝐹| ≤ 𝑛

To respect the acceptable delay (i.e., threshold 𝜃), the allocated resources, in terms of

conference participants, between time slot 𝑖 and 𝑖 + 𝜃 should be greater than or equal to the

expected number of participants arriving at time slot 𝑖. In other words, in the SLA between

PaaS and the application providers, the conferencing PaaS guarantees that there is a

maximum [(1 − 𝜀)% × γ%] of participants waiting for more than 𝜃 time slots to be served

before the conference ends. Equation (8) enforces this constraint. Note that resource

allocation takes 𝛿 time slots, an aspect that needs to be taken into account in this equation.

Moreover, resources can be reserved before or after participants’ arrivals. Thus, the scaling

request time (i.e., 𝑗) can be anytime between the start of the time frame (i.e., time slot 𝑡) and

its end.

∑ 𝑥𝑖,𝑗

𝑖+𝜃−𝛿

𝑗=𝑡

≥ 𝑎′𝑖

(8)

∀ 𝑖 | 1 ≤ 𝑡 ≤ 𝑖 ≤ 𝑡 + |𝐹| − 𝜃 + 𝛿 ≤ 𝑛 − 𝛿

If there are some participants in the conference and PaaS provides them their required

service, the conference size cannot be scaled down more than the number of participants

that are expected to remain in the conference. In fact, the conference size cannot shrink

before participants leave the conference, as shown in equations (9), (10), and (11). Note, in

(100 − 𝜀)% of times, the prediction is not correct. Also, there is a prediction interval

107

of ±𝛾%. Therefore, we consider mispredictions with +𝛾% interval to ensure this constraint

is satisfied.

∑ 𝑦𝑖,𝑗

𝑡+|𝐹|

𝑗=𝑡

≤ 𝑑′𝑖 − ⌈
𝛾 × (1 − 𝜀)

1 + 𝛾
× 𝑑′𝑖⌉ (9)

∀ 𝑖 | 1 ≤ 𝑡 ≤ 𝑖 < 𝑡 + 𝛿 ≤ 𝑛 − 𝛿

∑ 𝑦𝑖,𝑗

𝑡+|𝐹|

𝑗=𝑖−𝛿

≤ 𝑑′𝑖 − ⌈
𝛾 × (1 − 𝜀)

1 + 𝛾
× 𝑑′𝑖⌉

(10)

∀ 𝑖 | 1 ≤ 𝑡 ≤ 𝑡 + 𝛿 ≤ 𝑖 ≤ 𝑡 + |𝐹| ≤ 𝑛 − 𝛿

∑ 𝑦𝑖,𝑗

𝑖−𝛿−1

𝑗=𝑡

= 0
(11)

∀ 𝑖 | 1 ≤ 𝑡 ≤ 𝑡 + 𝛿 ≤ 𝑖 ≤ 𝑡 + |𝐹| ≤ 𝑛 − 𝛿

The maximum amount of scaling down requests at each time slot cannot be more than

the maximum of total allocated resources before that time slot. This is guaranteed in

equation (12). The allocated and de-allocated resources in previous time frames also need

to be considered in this equation.

∑∑𝑥𝑤,𝑧
𝑃

𝑡−1

𝑧=1

𝑡−1

𝑤=1

+ ∑ ∑𝑥𝑖,𝑘

𝑗

𝑘=𝑡

𝑡+|𝐹|

𝑖=𝑡

≥ ∑∑𝑦𝑤,𝑧
𝑃

𝑡−1

𝑧=1

𝑡−1

𝑤=1

+ ∑ ∑𝑦𝑖,𝑘

𝑗

𝑘=𝑡

𝑡+|𝐹|

𝑖=𝑡

(12)

∀ 𝑗 | 𝑡 ≤ 𝑗 ≤ 𝑡 + |𝐹|

Based on 𝐴𝑃, 𝐷𝑃, 𝐴𝐹
′ , and 𝐷𝐹

′ , the set 𝐿𝐹 can be defined such that there will be a

maximum of 𝑙𝑖 ∈ 𝐿𝐹 participants in time slot 𝑖, that had been in the conference for more

than 𝜃 time slots. Therefore, at each time slot, the prepared conference size should at least

have the required resources for the participants that have been in the conference for more

than 𝜃 time slots. Equations (13) and (14) represent this constraint.

108

∑∑(𝑥𝑤,𝑧
𝑃 − 𝑦𝑤,𝑧

𝑃)

𝑡−1

𝑧=1

𝑡−1

𝑤=1

+ ∑ ∑(𝑥𝑖,𝑘 − 𝑦𝑖,𝑘)

𝑗−𝛿

𝑘=𝑡

𝑡+|𝐹|

𝑖=𝑡

≥ 𝑙𝑗 (13)

∀ 𝑗 | 𝑡 + 𝛿 ≤ 𝑗 ≤ 𝑡 + |𝐹| ≤ 𝑛

∑∑(𝑥𝑤,𝑧
𝑃 − 𝑦𝑤,𝑧

𝑃)

𝑡−1

𝑧=1

𝑡−1

𝑤=1

+ ∑ ∑(𝑥𝑖,𝑘 − 𝑦𝑖,𝑘)

𝑗

𝑘=𝑡

𝑡+|𝐹|

𝑖=𝑡

≥ 𝑙𝑗 (14)

∀ 𝑗 | |𝐹| − 𝛿 < 𝑗 ≤ 𝑡 + |𝐹| ≤ 𝑛

The conferencing IaaSs can accept the new scaling request from the PaaS when the

previous request is processed completely. Therefore, two consecutive scaling requests from

the conferencing PaaS must be separated by 𝛿, as depicted in (15).

∑ 𝑟𝑗

𝑖+𝛿−1

𝑗=𝑖

≤ 1 ∀ 𝑖 | 1 ≤ 𝑡 ≤ 𝑖 ≤ 𝑡 + |𝐹| − 𝛿 + 1 ≤ 𝑛 − 𝛿 (15)

Moreover, any changes in the conference size made at time slot 𝑗, should be mapped to

their scaling request at the same time slot, as shown in equations (16) and (17). We

assume 𝑀 is a large enough constant in these equations.

𝑀 × 𝑟𝑗 ≥ 𝑥𝑖,𝑗 ∀ 𝑖, 𝑗 | 1 ≤ 𝑡 ≤ 𝑖, 𝑗 ≤ 𝑡 + |𝐹| ≤ 𝑛 (16)

𝑀 × 𝑟𝑗 ≥ 𝑦𝑖,𝑗 ∀ 𝑖, 𝑗 | 1 ≤ 𝑡 ≤ 𝑖, 𝑗 ≤ 𝑡 + |𝐹| ≤ 𝑛 (17)

To avoid unnecessary resource allocation or de-allocation, there should be no scaling

request over the last 𝛿 time slots of the conference. In fact, such a request, if made, will take

effect after the end of the conference. We ensure not to send such requests through equation

(18). Note that this equation only affects the last time frame of the conference.

𝑟𝑗 = 0 ∀ 𝑛 − 𝛿 < 𝑗 ≤ 𝑛 (18)

To solve the problem, we operate over time frames dynamically throughout the

conference period. The first time frame starts at time slot 𝑡 = 1. Throughout the conference,

109

for each time slot 𝑖, if solving the problem implies a scaling request, the next time frame

starts at 𝑖 + 𝛿. Otherwise, the next time frame starts from time slot 𝑖 + 1.

7.3. AOS Heuristic

Based on the proposed mathematical model, reaching the optimal solution for the large-

scale scenarios is very time-consuming. Since the end to end delay is one of the main factors

in the conferencing applications, reaching the scaling decision in terms of minutes and

seconds are not acceptable [84]. Therefore, we propose an AOS heuristic to solve the

problem in a reasonable time. The AOS heuristic operates over each individual time frame.

It takes as main inputs: (i) the actual number of participants from previous time frames, (ii)

the output of the heuristic over the last time frame, and (iii) the predicted number of

participants for the current time frame. It finds a scaling schedule, together with the amount

of resources for each scaling request while respecting SLAs. Algorithm 7.1 delineates the

AOS heuristic. We consider some of the constants shown in Table 7.1 as the input of this

algorithm. AOS algorithm has two outputs. The first one is an integer array 𝑆𝐹 with |𝐹|

elements. Each 𝑠𝑖 ∈ 𝑆𝐹 represents the required scaling amount at time slot 𝑖. The second

output is an integer value 𝑈𝐹, which represents the total amount of existing resources.

Algorithm 7.1 iterates over each time frame throughout the conference while considering

the total existing resources. Therefore, the second output of this algorithm (i.e., 𝑈𝐹) is used

as an input for running the AOS heuristic over the next time frame.

AOS heuristic has three main phases, as depicted in Fig. 7.1. In the first phase (Fig.

7.1(a)), AOS heuristic targets to tune the misallocations caused by mispredictions in the

previous time frame. Thus, it calculates the actual amount of resources needed before

starting the current time frame. In the second phase (Fig. 7.1(b)), it identifies the minimum

possible conference size and the best time for scaling the conference in the current time

frame. This phase takes both resource and QoS violation costs into account to make a

decision. In phase three (Fig. 7.1(c)), it ensures that all scaling requests are separated by at

least 𝛿 time slots. In addition, this phase controls running the heuristic in the current time

frame if enough time remains for having another scaling request. Otherwise, it stops the

110

Algorithm 7.1. AOS Heuristic

Input:

|𝐹|, 𝛿, 𝜃, 𝐴𝐹
′ , 𝐷𝐹

′ , 𝐴𝑃, 𝐷𝑃 , 𝐿𝐹 , 𝛽; // same as the inputs of Table 7.1

𝑈(𝐹−1); // the 𝑈𝐹 output of previous time frame. If it is the first run of the AOS heuristic, the 𝑈(𝐹−1) = 0

Output:

𝑆;//a schedule set of scaling decisions

𝑈𝐹; // total existing resources

1. 𝑡 ← 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 // first time slot of the time frame. It is 1 for the first time frame

2. 𝑈𝐹 ← 𝑈(𝐹−1)

Phase 1: Find previous actual required resources

3. actual_size ← 0

4. If (𝑡 > 1) Then

5. For k = 1 → 𝑡 − 1 do

6. actual_size ← actual_size + 𝑎𝑘
𝑃 − 𝑑𝑘

𝑃

7. end for

8. end if //end of phase 1

Phase 2: Find the best possible time for sending the scaling request

9. For each 𝑖 ∈ 𝐹 do

10. best_t ← 𝑡
11. min_size ← ∞ // minimum required changes in the conference size

12. min_cost← ∞

13. For k = 𝑖 + 𝛿 → 𝑖 + 𝜃 do

14. For p= 𝑡 → k do

15. actual_size ← actual_size + 𝑎′𝑝 − 𝑑′𝑝

16. end for

17. 𝑙𝑀𝐴𝑋 ← 0

18. For z= 𝑘 → k+𝛿 do

19. If (𝑙𝑧 > 𝑙𝑀𝐴𝑋) Then

20. 𝑙𝑀𝐴𝑋 ← 𝑙𝑧

21. end if

22. end for

23. result ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2(𝑎𝑐𝑡𝑢𝑎𝑙_𝑠𝑖𝑧𝑒, 𝑙𝑀𝐴𝑋 , 𝑈𝐹 , 𝛽)
24. If (min_cost> result[total_cost]) Then

25. min_cost ← result[total_cost]// total cost at time slot k

26. min_size← result[size]// resources at time slot k

27. best_t ← k − 𝛿

28. end if

29. end for // end of phase 2

Phase 3: Set the amount of scaling request for the best found time and move 𝑖 to the next available time for

sending request to the IaaSs

30. 𝑆[𝑏𝑒𝑠𝑡_𝑡] ← min_size

31. 𝑈𝐹 ← 𝑈𝐹 + min_size

32. 𝑖 ← best_t + 𝛿 − 1; // -1 because it is in the loop and 𝑖 for next cycle will be (best_t+ 𝛿)

33. If (𝑖 + 𝜃 + 𝛿 > |𝐹|) Then

34. Break // it ends running the heuristic for current time frame since the predicted

information is not enough

35. end if

36. end for each

Return 𝑆𝐹 , 𝑈𝐹 , 𝑄𝑜𝑆𝑐𝑜𝑠𝑡

111

AOS heuristic in the current time frame and consequently, the next time frame will start

sooner.

The AOS heuristic runs over the whole conference duration and tries to minimize the

total resource and QoS violation cost. The resource cost depends on the amount of

provisioned resources and their usage over time. Thus, to reduce the resource cost, AOS

heuristic should reserve the least of resources, as late as possible. This reservation

respects 𝛿, 𝜃, and the number of participants who were in the conference. On the other hand,

minimizing the QoS violation cost leads to allocating resources as much as demanded and

as soon as possible. The AOS heuristic aims to solve this challenge and find the best possible

time and amount for resource allocation to minimize the total cost.

AOS should consider the misallocations caused by mispredictions in the previous time

frames. Therefore, in phase 1, it checks the actual required resources from the beginning of

the conference until the start of the current time frame. This result is based on the real

number of participants who had joined or left the conference in the past time frames. AOS

will use this information to tune the possible previous misallocations in the new scaling

requests at phase 2.

…

…

Past time frames

Calculates total number of actually

joined and left participants

Beginning of current time frame

Time……

(a) Phase 1

1 t t+|F|-1 n

…

… Time……

2- If there is no time for

another scaling, break

1- Move to 𝛿 time slots ahead after last scaling

(c) Phase 3

1 t t+|F|-1 nk+δk
δ

… Time……

𝜃

𝛿

2- Find minimum resource
and QoS violation cost

3- Scaling time (e.g., k)
is 𝛿 time slot before

(b) Phase 2

…1 t t+|F|-1 ni+δ i+θ

1- Minimum decided size
should support participants
for next δ time slots

ki

…

Fig. 7.1. AOS Heuristic Phase

112

In phase 2, AOS tries to derive the scaling solution that leads to the minimum total cost

of resources and QoS violations. Also, in this phase, AOS finds the best time to send the

scaling request and the best amount of resources to fulfill the requirements. This phase

considers the total required resources and allocated resources in the previous time slots to

tune possible misallocations. Based on the inputs, conference scaling takes 𝛿 time slots.

Therefore at each time slot 𝑖, AOS should consider the total conference size of 𝛿 time slots

ahead. Also, new participants can wait up to 𝜃 time slots to join the conference. Although

waiting time increases the QoS violation cost, AOS can consider it as well and checks the

total conference size up to 𝜃 time slots ahead. In consequence, AOS finds the minimum

total cost between time slot 𝑖 + 𝛿 and 𝑖 + 𝜃. Moreover, to ensure that the minimum required

size of the conference (i.e., 𝐿𝐹) is respected, for any time slot 𝑧 between 𝑖 + 𝛿 and 𝑖 + 𝜃,

the minimum existing resources should at least support the participants in time slot 𝑧 + 𝛿.

In phase 3, the AOS heuristic ensures that consecutive scaling requests are separated by

more than 𝛿 time slots. Also, it keeps track of the best time for sending the scaling request

and the scaling amount as the first output of the algorithm (i.e., 𝑆𝐹). The positive value in

this array means the scaling up/out request while the negative one represents the scaling

down/in request. In addition, this phase keeps track of the total amount of added and released

resources during the current time frame in the second output of this heuristic (i.e., 𝑈𝐹) to be

used for the next scaling requests. At the end of this phase, AOS checks the remaining time

to the end of the current time frame. If the remaining time is less than (𝜃 + 𝛿) time slots, it

means that there are not enough predicted information to be used for having another scaling

request in the current time frame. In this case, the AOS heuristic will stop in the current time

frame and a new one will start.

The total cost for a single time slot is calculated in Algorithm 7.2. This algorithm

calculates the minimum total cost with respect to the minimum required size of the

conference and the weighting factor (i.e., 𝛽) between resource cost and QoS violation cost.

The output of this algorithm is a set with two elements. The first element indicates the

minimum possible cost. The second one has the required changes to the amount of

resources. Algorithm 7.1 in phase 2 uses the output of this algorithm for deciding the best

time and amount of resources to send the scaling request.

113

7.4. Validations and Measurements

In this section, we will describe our evaluation scenarios and the simulation settings

followed by comparison results.

7.4.1. Evaluation Scenarios and Simulation Settings

We consider three different conferencing applications as the evaluation scenarios. (i)

Massively Multiplayer Online Game (MMOG), (ii) Online Distance Learning (ODL), and

(iii) Online Political Party Discussion (OPPD). In all scenarios, the users, as the conference

participants, are sharing their video and audio in the logic of the application. In MMOG,

users join and leave the game from different geographical locations. Thus, there is a huge

fluctuation in the number of participants. In contrast, in ODL and OPPD, since the

participants are limited, there is less fluctuation in the conference size. Moreover, in

MMOG, participants’ waiting time is more tolerated than it is in OPPD and ODL. This

means that in MMOG, minimizing the resource cost is more important than minimizing the

QoS violation cost. In contrast, in OPPD, reducing the QoS violation cost and minimizing

the participants’ waiting time is much more important than the resource cost. In ODL, the

resource cost and QoS violation cost are equally important.

Algorithm 7.2. Find Minimum Cost and Required Changes

Input:

𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒; // expected conference size

𝑙𝑀𝐴𝑋; // maximum participants from time slot 𝑘 to 𝑘 + 𝛿, who can be in the conference for more than 𝜃 time

slots.

𝑈𝐹 , 𝛽; // use 𝑈𝐹 to keep track of all existing resources

Output:

𝑟𝑒𝑠𝑢𝑙𝑡; // an array with three elements to keep total cost, QoS cost, and required conference size

1. 𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] ← ∞, 𝑟𝑒𝑠𝑢𝑙𝑡[𝑠𝑖𝑧𝑒] ← 0;

2. 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒 ← 𝑙𝑀𝐴𝑋

3. For 𝑘 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒 → 𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 do

4. resource_cost ← 𝑘 ∗ 𝛽

5. QoScost ← (𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 − 𝑘) ∗ (1 − 𝛽)

6. If (𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] > resourcecost + QoScost) Then

7. 𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] ← resourcecost + QoScost

8. 𝑟𝑒𝑠𝑢𝑙𝑡[𝑠𝑖𝑧𝑒] ← 𝑘 − 𝑈𝐹

9. end if

10. end for

Return 𝒓𝒆𝒔𝒖𝒍𝒕

Algorithm 7.2. Find Minimum Cost and Required Changes

Input:

𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒; // expected conference size

𝑙𝑀𝐴𝑋; // maximum participants from time slot 𝑘 to 𝑘 + 𝛿, who can be in the conference for more than 𝜃 time

slots.

𝑈𝐹 , 𝛽; // use 𝑈𝐹 to keep track of all existing resources

Output:

𝑟𝑒𝑠𝑢𝑙𝑡; // an array with three elements to keep total cost, QoS cost, and required conference size

11. 𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] ← ∞, 𝑟𝑒𝑠𝑢𝑙𝑡[𝑠𝑖𝑧𝑒] ← 0;

12. 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒 ← 𝑙𝑀𝐴𝑋

13. For 𝑘 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒 → 𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 do

14. resource_cost ← 𝑘 ∗ 𝛽

15. QoScost ← (𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 − 𝑘) ∗ (1 − 𝛽)

16. If (𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] > resourcecost + QoScost) Then

17. 𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] ← resourcecost + QoScost

18. 𝑟𝑒𝑠𝑢𝑙𝑡[𝑠𝑖𝑧𝑒] ← 𝑘 − 𝑈𝐹

19. end if

20. end for

Return 𝒓𝒆𝒔𝒖𝒍𝒕

Table 7.3. Simulation Parameters and SettingsAlgorithm 7.2. Find Minimum Cost and Required Changes

Input:

𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒; // expected conference size

𝑙𝑀𝐴𝑋; // maximum participants from time slot 𝑘 to 𝑘 + 𝛿, who can be in the conference for more than 𝜃 time

slots.

𝑈𝐹 , 𝛽; // use 𝑈𝐹 to keep track of all existing resources

Output:

𝑟𝑒𝑠𝑢𝑙𝑡; // an array with three elements to keep total cost, QoS cost, and required conference size

21. 𝑟𝑒𝑠𝑢𝑙𝑡[𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡] ← ∞, 𝑟𝑒𝑠𝑢𝑙𝑡[𝑠𝑖𝑧𝑒] ← 0;

114

For our simulations, we randomly generate the number of participants joining and

leaving the conference at each time slot as the real-time number of participants. This dataset

contains increased, fixed, and decreased number of participants over the conference

duration. The fixed number of participants over some time slots means the total number of

joining and leaving users are the same. We generate the predicted number of participants by

applying the 𝜀 and 𝛾 on the real-time dataset for each time frame. In fact, we generate the

results of assumed prediction model described in section 7.2.

In our simulations, we consider dividing the conference duration into 100 time slots. To

study the impact of time frame duration, resource provisioning time, and acceptable delay

on all scenarios, we consider different settings of simulation parameters. In addition, we set

the user fluctuation up to 12000 users in MMOG and 2000 users in ODL and OPPD.

Moreover, we assume 𝛽 for MMOG is 0.8 to stress more on reducing the resource allocation

cost rather than QoS violation cost. Also, we assume 𝛽 for ODL is 0.5 and for OPPD is 0.2.

Simulation parameters and settings are depicted in Table 7.3.

7.4.2. Results

We implement the AOS algorithm in JAVA. Also, we use the LPSolve engine [83] to

find the AOS optimal solution for our mathematical model. We study the impact of different

settings on the results of the optimal solution and our heuristic. Also, we compare the results

of our algorithm with those of the optimal solution. Fig. 7.2, 7.3, and 7.4 depict the

corresponding costs for MMOG, ODL, and OPPD scenarios, respectively. These costs are

normalized and cumulative. In MMOG, since resource cost is much more important, AOS

Table 7.3. Simulation Parameters and Settings

 MMOG ODL OPPD

Fluctuation 0-12000 0-2000 0-2000

𝛽 0.8 0.5 0.2

Variable

Parameters

𝛿 = 3, 𝜃 = 4 𝐹 = {8, 10, 20, 30}

𝛿 = 3, 𝜃 = 9 𝐹 = {20, 30}

𝛿 = 8, 𝜃 = 9 𝐹 = {20, 30}

Fixed

Parameters

𝑛 𝜀 𝛾 𝑀

100 80% ±10% 1000000

115

aims to reduce the resource cost, while considering the QoS requirements and the total cost.

In ODL, the resource cost and QoS violation cost are equally important. So, AOS aims to

(a) QoS Violation Cost

(b) Resource Cost – Noteworthy Cost

(c) Total Cost

Fig. 7.2. MMOG Cumulative Normalized Costs – Value of β = 0.8

80K

100K

120K

140K

160K

180K

200K

220K

8 10 20 30

C
o

st

Frame Size

Optimal, δ=3, θ=4 Heuristic, δ=3, θ=4 Optimal, δ=3, θ=9

Heuristic, δ=3, θ=9 Optimal, δ=8, θ=9 Heuristic, δ=8, θ=9

300K

350K

400K

450K

8 10 20 30

C
o

st

Frame Size

Optimal, δ=3, θ=4 Heuristic, δ=3, θ=4 Optimal, δ=3, θ=9

Heuristic, δ=3, θ=9 Optimal, δ=8, θ=9 Heuristic, δ=8, θ=9

505K

510K

515K

520K

525K

8 10 20 30

C
o

st

Frame Size

Optimal, δ=3, θ=4 Heuristic, δ=3, θ=4 Optimal, δ=3, θ=9

Heuristic, δ=3, θ=9 Optimal, δ=8, θ=9 Heuristic, δ=8, θ=9

116

minimize the total cost by equally reducing the resource and QoS violation costs. In OPPD,

the noteworthy cost is QoS violation and AOS tries to minimize it while considering another

(a) QoS Violation Cost

(b) Resource Cost

(c) Total Cost – Noteworthy Cost

Fig. 7.3. ODL Cumulative Normalized Costs – Value of β = 0.5

8K

13K

18K

23K

8 10 20 30

C
o

st

Frame Size

Optimal, δ=3, θ=4 Heuristic, δ=3, θ=4 Optimal, δ=3, θ=9

Heuristic, δ=3, θ=9 Optimal, δ=8, θ=9 Heuristic, δ=8, θ=9

32K

37K

42K

47K

52K

8 10 20 30

C
o

st

Frame Size

Optimal, δ=3, θ=4 Heuristic, δ=3, θ=4 Optimal, δ=3, θ=9

Heuristic, δ=3, θ=9 Optimal, δ=8, θ=9 Heuristic, δ=8, θ=9

56K

57K

58K

59K

60K

61K

8 10 20 30

C
o

st

Frame Size

Optimal, δ=3, θ=4 Heuristic, δ=3, θ=4 Optimal, δ=3, θ=9

Heuristic, δ=3, θ=9 Optimal, δ=8, θ=9 Heuristic, δ=8, θ=9

117

objective, which is minimizing the total cost.

(a) QoS Violation Cost – Noteworthy Cost

(b) Resource Cost

(c) Total Cost

Fig. 7.4. OPPD Cumulative Normalized Costs – Value of β = 0.2

0

2K

4K

6K

8K

10K

12K

14K

8 10 20 30

C
o

st

Frame Size

Optimal, δ=3, θ=4 Heuristic, δ=3, θ=4 Optimal, δ=3, θ=9

Heuristic, δ=3, θ=9 Optimal, δ=8, θ=9 Heuristic, δ=8, θ=9

40K

50K

60K

70K

8 10 20 30

C
o

st

Frame Size

Optimal, δ=3, θ=4 Heuristic, δ=3, θ=4 Optimal, δ=3, θ=9

Heuristic, δ=3, θ=9 Optimal, δ=8, θ=9 Heuristic, δ=8, θ=9

56K

58K

60K

62K

64K

66K

68K

8 10 20 30

C
o

st

Frame Size

Optimal, δ=3, θ=4 Heuristic, δ=3, θ=4 Optimal, δ=3, θ=9

Heuristic, δ=3, θ=9 Optimal, δ=8, θ=9 Heuristic, δ=8, θ=9

118

(i) Impact of the Prediction Time Frame

The results in Fig. 7.2, 7.3, and 7.4 show that by increasing the time frame, the AOS

optimal solutions have more information about the future and it helps them to make better

scaling decisions. However, as it is observed in Fig. 7.2(b), 7.3(c), and 7.4(a), increasing the

future knowledge after some threshold is not helpful and the decisions are the same. This

means that the scaling decisions towards minimizing the noteworthy cost for each scenario

in these time frames are the same. In contrast, the results of AOS heuristic show that the

bigger prediction time frame size has small negative impacts towards minimizing the

noteworthy cost. This result is explicitly visible in Fig. 7.4(a) when 𝛿 = 3 and 𝜃 = 4. The

main reason is at each time slot 𝑖, the AOS heuristic focuses on the information between

𝑖 + 𝛿 and 𝑖 + 𝜃 + 𝛿. Since each time frame should have this information, there should be

no impact by the time frame size. However, the AOS heuristic reruns as long as the time

frame is not over. Therefore, lower time frame size leads to starting the heuristic sooner and updating the

prediction information for previous time frames. This allows to tune the allocations better and leads to lower

the noteworthy cost.

(ii) Impact of the Acceptable Waiting Time

The results of MMOG and ODL in Fig. 7.2(b) and 7.3(b) show that with the same value

of 𝛿, the higher value of 𝜃 can lead to a lower resource cost. Consequently, as it is shown in

Fig. 7.2(c) and 7.3(c), their total costs are lower in this setting for both optimal and heuristic

solutions. In fact, in this setting, AOS can allocate resources later. However, in OPPD, since

waiting time is not much tolerated, the higher value of 𝜃 has no impact on the resource cost

of optimal solutions and their results in Fig. 7.4(b) are almost the same.

(iii) Impact of the Resource Provisioning Time

The MMOG and ODL results in Fig. 7.2(b) and 7.3(b) show that with the same 𝜃, a

higher value of 𝛿 leads to an increase in the resource cost and consequently an increase in

the total cost, as it is shown in Fig. 7.2(c) and 7.3(c). The reason is that AOS should ensure

the QoS requirements. Since provisioning the resources takes longer when 𝛿 is higher, AOS

should allocate sooner and it causes an increase in the resource cost in these scenarios.

However, it does not affect the resource cost of OPPD. In OPPD, as it is shown in Fig.

119

7.4(a), with the same 𝜃, a higher value of 𝛿 leads to an increase in the QoS violation cost.

In fact, in OPPD, AOS aims to allocate resources sooner. Thus, a higher provisioning time

leads to higher waiting times for participants and an increase in the QoS violation cost.

(iv) AOS Heuristic Performance

The results in Fig. 7.2(b) show that the AOS heuristic in MMOG can perform between

90% and 99% close to the results of the optimal solutions. Also, its performance in ODL is

between 97% and 99% based on the results shown in Fig. 7.3(c). However, the heuristic

result in OPPD shown in Fig. 7.4(a) is far from the optimal solution in minimizing the QoS

violation cost. The main reason is that AOS heuristic relies on the acceptable waiting time

for the users and for each time slot 𝑖, it finds the solution that leads to the minimum cost in

a period of time between 𝑖 + 𝛿 and 𝑖 + 𝜃. Meaning that it finds the minimum QoS violation

cost in a period of time while the optimal solution finds the solution that leads to the

minimum QoS violation cost per each time slot. Thus, the heuristic leads to a greater waiting

time compared to the optimal solution in OPPD and in consequence, a higher QoS violation

cost.

Note that each scenario has a noteworthy cost which is the main objective of AOS to

minimize. Therefore, the heuristic might have lower values at the other costs compared to

those of the optimal solution. The main reason is that the existing trade-off between the

resource cost and the QoS violation cost. For instance, the aim of AOS in MMOG is to

minimize the resource cost as its noteworthy cost. Thus, as it is depicted in Fig. 7.2(b), the

resource costs of AOS optimal solutions are lower than those of the heuristic solutions,

while their QoS violation costs in Fig. 7.2(a) are higher. Similarly, the results of OPPD in

Fig. 7.4(a) show that the optimal solutions have lower values in QoS violation costs

compared to those of the heuristic solutions, while their resource costs are higher in Fig.

7.4(b).

The processing time of the AOS heuristic to reach the scaling solution is significantly

lower than that of the AOS optimal solution. The results of the average processing time for

AOS heuristic and optimal solutions are summarized in Table 7.4. The results show that

120

although increasing the prediction time frame can help the AOS optimal solution to get

better results, it significantly increases the processing time.

7.5. Conclusion

This chapter presents AOS as a novel scaling algorithm for cloud-based multimedia

conferencing applications. The AOS produces a cost-efficient scaling schedule while

considering the QoS requirements and the future demands of the conferencing services. The

AOS algorithm minimizes the resource cost and QoS violation cost as multiple objectives.

It performs in an online manner and it takes into account the uncertainty in the prediction

model. We model AOS as an optimization problem and design a heuristic to solve it in

large-scale scenarios. We solve the problem and evaluate the performance of the AOS

heuristic on different multimedia conferencing applications. We also study the impact of

resource provisioning time, acceptable delay, and the prediction time frame on the resource

cost and QoS violation cost. The evaluation shows that the AOS heuristic derives results

that are more than 90% close to the results of the optimal solutions while the main objective

is reducing the resource cost as well as the total cost.

Table 7.4. AOS Heuristic and Optimal Solutions’ Running Time

Scenario
Parameter

Settings

Frame = 8 Frame = 10 Frame = 20 Frame = 30

Optimal Heuristic Optimal Heuristic Optimal Heuristic Optimal Heuristic

MMOG

𝛽 = 0.8

𝛿 = 3, 𝜃 = 4 19 sec 13.0 ms 45 sec 12.97 ms 3 min 13.20 ms 13 min 12.58 ms

𝛿 = 3, 𝜃 = 9

3.2 min 15.60 ms 86 min 15.61 ms

𝛿 = 8, 𝜃 = 9 58 sec 11.91 ms 4 min 11.46 ms

ODL

𝛽 = 0.5

𝛿 = 3, 𝜃 = 4 14 sec 10.37 ms 26 sec 10.31 ms 78 sec 10.13 ms 2.17 min 10.44 ms

𝛿 = 3, 𝜃 = 9

125 sec 11.8 ms 73 min 12.1 ms

𝛿 = 8, 𝜃 = 9 11 sec 5.1 ms 82 sec 5.2 ms

OPPD

𝛽 = 0.2

𝛿 = 3, 𝜃 = 4 15 sec 10.90 ms 31 sec 11.05 ms 51 sec 10.71 ms 7 min 10.91 ms

𝛿 = 3, 𝜃 = 9

71 sec 12.35 ms 34.5 min 11.88 ms

𝛿 = 8, 𝜃 = 9 15 sec 4.38 ms 125 sec 4.34 ms

121

Chapter 8

8. Conclusion and Future Work

Cloud-based provisioning of multimedia conferencing applications will bring several

benefits, including rapid provisioning, resource efficiency, scalability, and elasticity.

However, it is quite challenging. This thesis addressed architectural and algorithmic

challenges associated with cloud-based provisioning of multimedia conferencing

applications. It presented three main contributions. As the architectural contribution, in

chapter 3, it presented a holistic cloud-based architecture for multimedia conferencing

applications. It discussed the architectural components and the interfaces which cover both

the infrastructure and the platform layers of cloud. This contribution simplifies the

provisioning of the conferencing applications for expert and non-expert application

providers by proposing novel APIs and GUIs. It also allows the conferencing application

providers to utilize the offered conferencing services (e.g., audio and video mixing) without

having to deal with the complexities of conferences.

To scale the actual resources (e.g., compute, storage, and network) of conferencing

applications based on demand, we proposed a scaling manager component in the

conferencing IaaS layer. This component is equipped with the resource allocation

algorithms that can allocate and deallocate resources to cope with demands. The VMRA

and CRAM, two novel resource allocation algorithms for multimedia conferencing

applications that run in this component are proposed in chapter 4 and 5. These algorithms

scale the actual resources required for multimedia conferencing applications in an optimal

122

manner while guaranteeing the required QoS. Different multimedia conferencing

applications with video mixing and compressing services are also considered in designing

these algorithms.

The VMRA and CRAM can scale the actual resources in the IaaS layer. However,

finding the best time for scaling the conferencing applications and deciding the amount of

resources to be scaled for meeting both cost-efficiency objective and QoS requirements are

still challenging. Therefore, in our proposed architecture, we presented a scaling decision

maker component in the PaaS layer to get this decision. This component is equipped with

the algorithms for scaling the multimedia conferencing applications. The ADS and AOS,

two novel scaling algorithms for multimedia conferencing applications that run in this

component are presented in chapter 6 and 7. These algorithms enable the conferencing

applications to scale in an elastic manner with respect to the number of participants. The

proposed algorithms also guarantee to meet the QoS requirements while considering the

future demands of the conferencing applications and cost-efficiency objective. We

discussed the impact of uncertainty of the prediction model on the result of scaling the

multimedia conferencing applications as well.

In both algorithmic contributions, the problems are mathematically modeled as ILP

problems. We solve the mathematical models to achieve optimality for the small-case

scenarios using the optimization tools. In addition, to solve the problems for the large-scale

scenarios in an acceptable time, the heuristics were proposed.

8.1 Future Work

This thesis presented significant contributions in the cloud-based provisioning of

multimedia conferencing applications. Yet, there exist several research directions for the

future. To tackle all algorithmic challenges mentioned in this thesis, we assumed having a

prediction model that can forecast the future number of participants. As the future work,

prediction algorithms to predict participants’ arrivals and departures can be introduced.

In the CRAM heuristic, to allocate actual resources, we first found the minimum

number of video mixers and then allocated their required resources. After that, based on

allocated resources for video mixers, we found the minimum number of compressors and

123

then we allocated resources for compressors if needed. In fact, we solve the problem in a

local optimum manner. As future work, fining the global optimum solution can be

considered.

In the ADS and AOS algorithms, we assume all IaaS can offer the required resources

and all with the same price and QoS. However, as the future work, all these assumptions

can be relaxed. Therefore, selecting the best IaaS that complies with the objectives can be

considered in solving those problems.

Despite possible future works in the algorithmic dimensions, there are some research

directions in the conferencing architecture as well. As an example, our designed APIs and

GUIs are required a minimum knowledge of conferencing to create a conference. As the

future work, we can enhance the GUIs for non-expert providers to suggest the best possible

workflow to create a conference.

124

Bibliography

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011.

[2] R. H. Glitho, “Cloud-based multimedia conferencing: Business model, research

agenda, state-of-the-art,” in Commerce and Enterprise Computing (CEC), 2011 IEEE

13th Conference on, 2011, pp. 226–230.

[3] V. Nae, R. Prodan, and T. Fahringer, “Cost-efficient hosting and load balancing of

massively multiplayer online games,” in Grid Computing (GRID), 2010 11th

IEEE/ACM International Conference on, 2010, pp. 9–16.

[4] M. Jacobs and P. Leydekkers, “Specification of synchronization in multimedia

conferencing services using the TINA lifecycle model,” Distrib. Syst. Eng., vol. 3,

no. 3, p. 185, 1996.

[5] A. F. Alam, A. Soltanian, S. Yangui, M. A. Salahuddin, R. Glitho, and H. Elbiaze,

“A Cloud Platform-as-a-Service for multimedia conferencing service provisioning,”

in Computers and Communication (ISCC), 2016 IEEE Symposium on, 2016, pp. 289–

294.

[6] A. Soltanian, F. Belqasmi, S. Yangui, M. A. Salahuddin, R. Glitho, and H. Elbiaze,

“A Cloud-based Architecture for Multimedia Conferencing Service Provisioning,”

IEEE Access, vol. 6, no. 1, pp. 9792–9806, 2018.

[7] A. Soltanian, M. A. Salahuddin, H. Elbiaze, and R. Glitho, “A resource allocation

mechanism for video mixing as a cloud computing service in multimedia

conferencing applications,” in Network and Service Management (CNSM), 2015 11th

International Conference on, 2015, pp. 43–49.

125

[8] A. Soltanian, D. Naboulsi, R. Glitho, and H. Elbiaze, “Resource Allocation

Mechanism for Media Handling Services in Cloud Multimedia Conferencing,” IEEE

J. Sel. Areas Commun., no. (submitted), 2018.

[9] A. Soltanian, D. Naboulsi, M. A. Salahuddin, R. Glitho, H. Elbiaze, and C. Wette,

“ADS: Adaptive and Dynamic Scaling Mechanism for Multimedia Conferencing

Services in the Cloud,” in Consumer Communications & Networking Conference

(CCNC), 2018 15th IEEE Annual, 2018, pp. 1–6.

[10] A. Soltanian, D. Naboulsi, M. A. Salahuddin, R. Glitho, and H. Elbiaze, “AOS:

Adaptive and Online Scaling for Multimedia Conferencing Services in the Cloud,”

IEEE Trans. Cloud Comput., no. (submitted), 2018.

[11] P. Mell and T. Grance, “The NIST definition of cloud computing. National Institute

of Standards and Technology,” Inf. Technol. Lab. Version, vol. 15, no. 10.07, p. 2009,

2009.

[12] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research

challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18, 2010.

[13] National Institute of Standards and Technology, “NIST Cloud Computing Standards

Roadmap,” NIST Special Publication 500 - 291, 2013.

[14] L. Coyne, T. Hajas, M. Hallback, M. Lindström, C. Vollmar, and others, IBM Private,

Public, and Hybrid Cloud Storage Solutions. IBM Redbooks, 2016.

[15] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: a software platform for .NET-based

cloud computing,” High Speed Large Scale Sci. Comput., vol. 18, pp. 267–295, 2009.

[16] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual infrastructure

management in private and hybrid clouds,” IEEE Internet Comput., vol. 13, no. 5, pp.

14–22, 2009.

[17] D. B. Khedher, R. H. Glitho, and R. Dssouli, “Media handling aspects of multimedia

conferencing in broadband wireless ad hoc networks,” IEEE Netw., vol. 20, no. 2, pp.

42–49, 2006.

[18] J. Li, R. Guo, and X. Zhang, “Study on service-oriented Cloud conferencing,” in

Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE

International Conference on, 2010, vol. 6, pp. 21–25.

126

[19] P. Rodríguez, D. Gallego, J. Cerviño, F. Escribano, J. Quemada, and J. Salvachúa,

“Vaas: Videoconference as a service,” in Collaborative Computing: Networking,

Applications and Worksharing, 2009. CollaborateCom 2009. 5th International

Conference on, 2009, pp. 1–11.

[20] F. Taheri, J. George, F. Belqasmi, N. Kara, and R. Glitho, “A cloud infrastructure for

scalable and elastic multimedia conferencing applications,” in Network and Service

Management (CNSM), 2014 10th International Conference on, 2014, pp. 292–295.

[21] Y. Feng, B. Li, and B. Li, “Airlift: Video conferencing as a cloud service using inter-

datacenter networks,” in Network Protocols (ICNP), 2012 20th IEEE International

Conference on, 2012, pp. 1–11.

[22] R. Cheng, W. Wu, Y. Lou, and Y. Chen, “A cloud-based transcoding framework for

real-time mobile video conferencing system,” in Mobile Cloud Computing, Services,

and Engineering (MobileCloud), 2014 2nd IEEE International Conference on, 2014,

pp. 236–245.

[23] J. Liao, C. Yuan, W. Zhu, P. Chou, and others, “Virtual mixer: Real-time audio

mixing across clients and the cloud for multiparty conferencing,” in Acoustics, Speech

and Signal Processing (ICASSP), 2012 IEEE International Conference on, 2012, pp.

2321–2324.

[24] “Cloud Foundry Overview.” [Online]. Available:

http://docs.cloudfoundry.org/concepts/overview.html. [Accessed: 04-Nov-2015].

[25] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, “Comparison of open-source cloud

management platforms: OpenStack and OpenNebula,” in Fuzzy Systems and

Knowledge Discovery (FSKD), 2012 9th International Conference on, 2012, pp.

2457–2461.

[26] O. Litvinski and A. Gherbi, “Openstack scheduler evaluation using design of

experiment approach,” in 16th IEEE International Symposium on

Object/component/service-oriented Real-time distributed Computing (ISORC 2013),

2013, pp. 1–7.

[27] S. U. Malik, S. U. Khan, and S. K. Srinivasan, “Modeling and Analysis of State-of-

the-art VM-based Cloud Management Platforms,” IEEE Trans. Cloud Comput., vol.

1, no. 1, pp. 1–1, 2013.

127

[28] N. Milanovic and M. Malek, “Current solutions for web service composition,” IEEE

Internet Comput., vol. 8, no. 6, p. 51, 2004.

[29] A. Urbieta, G. Barrutieta, J. Parra, and A. Uribarren, “A survey of dynamic service

composition approaches for ambient systems,” in Proceedings of the 2008 Ambi-Sys

workshop on Software Organisation and MonIToring of ambient systems, 2008, p. 1.

[30] C. Peltz, “Web Services Orchestration and Choreography,” Computer, vol. 36, no.

10, pp. 46–52, 2003.

[31] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu, “Web

services composition: A decade’s overview,” Inf. Sci., vol. 280, pp. 218–238, 2014.

[32] W. Chareonsuk and W. Vatanawood, “Formal Verification of Cloud Orchestration

Design with TOSCA and BPEL.”

[33] D. Martin et al., “OWL-S: Semantic markup for web services,” W3C Memb. Submiss.,

vol. 22, pp. 2007–04, 2004.

[34] A. Kim, M. Kang, C. Meadows, E. Ioup, and J. Sample, “A framework for automatic

web service composition,” DTIC Document, 2009.

[35] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski, “Introducing

STRATOS: A Cloud Broker Service.,” IEEE CLOUD, vol. 12, pp. 891–898, 2012.

[36] S. Yangui, I.-J. Marshall, J.-P. Laisne, and S. Tata, “CompatibleOne: The open source

cloud broker,” J. Grid Comput., vol. 12, no. 1, pp. 93–109, 2014.

[37] J. George, F. Belqasmi, R. H. Glitho, and N. Kara, “A Substrate Description

Framework and Semantic Repository for Publication and Discovery in Cloud Based

Conferencing.,” in CSWS, 2013, pp. 41–44.

[38] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,

“Network function virtualization: State-of-the-art and research challenges,” IEEE

Commun. Surv. Tutor., vol. 18, no. 1, pp. 236–262, 2016.

[39] M. Dieye et al., “CPVNF: Cost-efficient Proactive VNF Placement and Chaining for

Value-Added Services in Content Delivery Networks,” IEEE Trans. Netw. Serv.

Manag., 2018.

[40] A. P. Negralo, M. Adaixo, L. Veiga, and P. Ferreira, “On-Demand Resource

Allocation Middleware for Massively Multiplayer Online Games,” in Network

128

Computing and Applications (NCA), 2014 IEEE 13th International Symposium on,

2014, pp. 71–74.

[41] G. Gao, W. Zhang, Y. Wen, Z. Wang, and W. Zhu, “Towards cost-efficient video

transcoding in media cloud: Insights learned from user viewing patterns,” IEEE

Trans. Multimed., vol. 17, no. 8, pp. 1286–1296, 2015.

[42] M. H. Hajiesmaili, L. T. Mak, Z. Wang, C. Wu, M. Chen, and A. Khonsari, “Cost-

Effective Low-Delay Design for Multiparty Cloud Video Conferencing,” IEEE

Trans. Multimed., vol. 19, no. 12, pp. 2760–2774, 2017.

[43] M. Abdallah, C. Griwodz, K.-T. Chen, G. Simon, P.-C. Wang, and C.-H. Hsu,

“Delay-Sensitive Video Computing in the Cloud: A Survey,” ACM Trans. Multimed.

Comput. Commun. Appl. TOMM, vol. 14, no. 3s, p. 54, 2018.

[44] R. Xavier, H. Moens, B. Volckaert, and F. De Turck, “Design and evaluation of elastic

media resource allocation algorithms using CloudSim extensions,” in Network and

Service Management (CNSM), 2015 11th International Conference on, 2015, pp.

318–326.

[45] R. Xavier et al., “Cloud resource allocation algorithms for elastic media collaboration

flows,” in Cloud Computing Technology and Science (CloudCom), 2016 IEEE

International Conference on, 2016, pp. 440–447.

[46] G. Gao, H. Hu, Y. Wen, and C. Westphal, “Resource provisioning and profit

maximization for transcoding in clouds: a two-timescale approach,” IEEE Trans.

Multimed., vol. 19, no. 4, pp. 836–848, 2017.

[47] Q. He, J. Liu, C. Wang, and B. Li, “Coping with heterogeneous video contributors

and viewers in crowdsourced live streaming: A cloud-based approach,” IEEE Trans.

Multimed., vol. 18, no. 5, pp. 916–928, 2016.

[48] C. Dong, Y. Jia, H. Peng, X. Yang, and W. Wen, “A Novel Distribution Service

Policy for Crowdsourced Live Streaming in Cloud Platform,” IEEE Trans. Netw.

Serv. Manag., 2018.

[49] J. Anselmi, D. Ardagna, and M. Passacantando, “Generalized nash equilibria for

saas/paas clouds,” Eur. J. Oper. Res., vol. 236, no. 1, pp. 326–339, 2014.

129

[50] S. García-Gómez et al., “4CaaSt: Comprehensive management of Cloud services

through a PaaS,” in Parallel and Distributed Processing with Applications (ISPA),

2012 IEEE 10th International Symposium on, 2012, pp. 494–499.

[51] R. Hu, Y. Li, and Y. Zhang, “Adaptive resource management in PaaS platform using

feedback control LRU algorithm,” in Cloud and Service Computing (CSC), 2011

International Conference on, 2011, pp. 11–18.

[52] M. Machado et al., “Prototyping a high availability PaaS: Performance analysis and

lessons learned,” in Integrated Network and Service Management (IM), 2017

IFIP/IEEE Symposium on, 2017, pp. 805–808.

[53] I. Satoh, “Self-adaptive resource allocation in cloud applications,” in Proceedings of

the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing,

2013, pp. 179–186.

[54] M. Babaioff et al., “ERA: A Framework for Economic Resource Allocation for the

Cloud,” in Proceedings of the 26th International Conference on World Wide Web

Companion, 2017, pp. 635–642.

[55] C. Bunch, V. Arora, N. Chohan, C. Krintz, S. Hegde, and A. Srivastava, “A pluggable

autoscaling service for open cloud PaaS systems,” in Proceedings of the 2012

IEEE/ACM Fifth International Conference on Utility and Cloud Computing, 2012,

pp. 191–194.

[56] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud using

predictive models for workload forecasting,” in Cloud Computing (CLOUD), 2011

IEEE International Conference on, 2011, pp. 500–507.

[57] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos, “An online mechanism

for resource allocation and pricing in clouds,” IEEE Trans. Comput., vol. 65, no. 4,

pp. 1172–1184, 2016.

[58] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic resource scaling for

multi-tenant cloud systems,” in Proceedings of the 2nd ACM Symposium on Cloud

Computing, 2011, p. 5.

[59] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource scaling for cloud

applications,” in Cluster, Cloud and Grid Computing (CCGrid), 2012 12th

IEEE/ACM International Symposium on, 2012, pp. 644–651.

130

[60] R. Xavier, H. Moens, B. Volckaert, and F. De Turck, “Resource Allocation

Algorithms for Multicast Streaming in Elastic Cloud-based Media Collaboration

Services,” in Cloud Computing (CLOUD), 2016 IEEE 9th International Conference

on, 2016, pp. 947–950.

[61] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for cloud

systems,” in Network and Service Management (CNSM), 2010 International

Conference on, 2010, pp. 9–16.

[62] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A comprehensive

survey,” IEEE Trans. Netw. Serv. Manag., vol. 13, no. 3, pp. 518–532, 2016.

[63] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow routing with

proactive demand prediction,”,” in IEEE INFOCOM, 2018.

[64] X. Wang, C. Wu, F. Le, and F. C. Lau, “Online Learning-Assisted VNF Service Chain

Scaling with Network Uncertainties,” in Cloud Computing (CLOUD), 2017 IEEE

10th International Conference on, 2017, pp. 205–213.

[65] S. Zhang, D. Niu, Y. Hu, and F. Liu, “Server selection and topology control for multi-

party video conferences,” in Proceedings of Network and Operating System Support

on Digital Audio and Video Workshop, 2014, p. 43.

[66] P. Yuen and G. Chan, “MixNStream: multi-source video distribution with stream

mixers,” in Proceedings of the 2010 ACM workshop on Advanced video streaming

techniques for peer-to-peer networks and social networking, 2010, pp. 77–82.

[67] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity: a low-delay multi-

party conferencing solution,” in Proceedings of the 19th ACM international

conference on Multimedia, 2011, pp. 493–502.

[68] M. H. Willebeek-LeMair, D. D. Kandlur, and Z.-Y. Shae, “On multipoint control

units for videoconferencing,” in Local Computer Networks, 1994. Proceedings., 19th

Conference on, 1994, pp. 356–364.

[69] “Web service glossary. Technical report.” W3C, 2004.

[70] T. Yu and K.-J. Lin, “Service Selection Algorithms for Composing Complex Services

with Multiple QoS Constraints,” in Service-Oriented Computing - ICSOC 2005, B.

Benatallah, F. Casati, and P. Traverso, Eds. Springer Berlin Heidelberg, 2005, pp.

130–143.

131

[71] S. Fu, J. Liu, X. Chu, and Y. Hu, “Toward a Standard Interface for Cloud Providers:

The Container as the Narrow Waist,” IEEE Internet Comput., vol. 20, no. 2, pp. 66–

71, 2016.

[72] A. B. Johnston and D. C. Burnett, WebRTC: APIs and RTCWEB protocols of the

HTML5 real-time web. Digital Codex LLC, 2012.

[73] “Activiti.” [Online]. Available: http://activiti.org/. [Accessed: 07-Nov-2016].

[74] M. Geiger, S. Harrer, J. Lenhard, M. Casar, A. Vorndran, and G. Wirtz, “BPMN

conformance in open source engines,” in Service-Oriented System Engineering

(SOSE), 2015 IEEE Symposium on, 2015, pp. 21–30.

[75] “Express - Node.js web application framework.” [Online]. Available:

https://expressjs.com/. [Accessed: 25-Mar-2017].

[76] “Advanced REST client.” [Online]. Available:

https://chrome.google.com/webstore/detail/advanced-rest-

client/hgmloofddffdnphfgcellkdfbfbjeloo. [Accessed: 27-Feb-2016].

[77] “OpenStack Open Source Cloud Computing Software.” [Online]. Available:

https://www.openstack.org/. [Accessed: 26-Feb-2016].

[78] “Asterisk.org.” [Online]. Available: http://www.asterisk.org/. [Accessed: 11-Sep-

2015].

[79] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel programming models and

tools in the multi and many-core era,” Parallel Distrib. Syst. IEEE Trans. On, vol. 23,

no. 8, pp. 1369–1386, 2012.

[80] X. Nan, Y. He, and L. Guan, “Optimal resource allocation for multimedia cloud based

on queuing model,” in Multimedia Signal Processing (MMSP), 2011 IEEE 13th

International Workshop on, 2011, pp. 1–6.

[81] R. Z. Farahani and M. Hekmatfar, Facility location: concepts, models, algorithms and

case studies. Springer, 2009.

[82] “Global Ping Statistics,” WonderNetwork. [Online]. Available:

https://wondernetwork.com/pings. [Accessed: 26-Aug-2018].

[83] M. Berkelaar, K. Eikland, P. Notebaert, and others, “lpsolve: Open source (mixed-

integer) linear programming system,” Eindh. U Technol., 2004.

[84] O. T. Time, “ITU-T Recommendation G. 114,” ITU-T May, 2000.

