5,083 research outputs found

    An Open Source Approach for Modern Teaching Methods: The Interactive TGUI System

    Get PDF
    In order to facilitate teaching complex topics in an interactive way, the authors developed a computer-assisted teaching system, a graphical user interface named TGUI (Teaching Graphical User Interface). TGUI was introduced at the beginning of 2009 in the Austrian Journal of Statistics (Dinges and Templ 2009) as being an effective instrument to train and teach staff on mathematical and statistical topics. While the fundamental principles were retained, the current TGUI system has been undergone a complete redesign. The ultimate goal behind the reimplementation was to share the advantages of TGUI and provide teachers and people who need to hold training courses with a strong tool that can enrich their lectures with interactive features. The idea was to go a step beyond the current modular blended-learning systems (see, e.g., Da Rin 2003) or the related teaching techniques of classroom-voting (see, e.g., Cline 2006). In this paper the authors have attempted to exemplify basic idea and concept of TGUI by means of statistics seminars held at Statistics Austria. The powerful open source software R (R Development Core Team 2010a) is the backend for TGUI, which can therefore be used to process even complex statistical contents. However, with specifically created contents the interactive TGUI system can be used to support a wide range of courses and topics. The open source R packages TGUICore and TGUITeaching are freely available from the Comprehensive R Archive Network at http://CRAN.R-project.org/.

    Persistent Homology Guided Force-Directed Graph Layouts

    Full text link
    Graphs are commonly used to encode relationships among entities, yet their abstractness makes them difficult to analyze. Node-link diagrams are popular for drawing graphs, and force-directed layouts provide a flexible method for node arrangements that use local relationships in an attempt to reveal the global shape of the graph. However, clutter and overlap of unrelated structures can lead to confusing graph visualizations. This paper leverages the persistent homology features of an undirected graph as derived information for interactive manipulation of force-directed layouts. We first discuss how to efficiently extract 0-dimensional persistent homology features from both weighted and unweighted undirected graphs. We then introduce the interactive persistence barcode used to manipulate the force-directed graph layout. In particular, the user adds and removes contracting and repulsing forces generated by the persistent homology features, eventually selecting the set of persistent homology features that most improve the layout. Finally, we demonstrate the utility of our approach across a variety of synthetic and real datasets

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem

    Get PDF
    This paper proposes a new method for the K-armed dueling bandit problem, a variation on the regular K-armed bandit problem that offers only relative feedback about pairs of arms. Our approach extends the Upper Confidence Bound algorithm to the relative setting by using estimates of the pairwise probabilities to select a promising arm and applying Upper Confidence Bound with the winner as a benchmark. We prove a finite-time regret bound of order O(log t). In addition, our empirical results using real data from an information retrieval application show that it greatly outperforms the state of the art.Comment: 13 pages, 6 figure

    Analyzing Learned Molecular Representations for Property Prediction

    Full text link
    Advancements in neural machinery have led to a wide range of algorithmic solutions for molecular property prediction. Two classes of models in particular have yielded promising results: neural networks applied to computed molecular fingerprints or expert-crafted descriptors, and graph convolutional neural networks that construct a learned molecular representation by operating on the graph structure of the molecule. However, recent literature has yet to clearly determine which of these two methods is superior when generalizing to new chemical space. Furthermore, prior research has rarely examined these new models in industry research settings in comparison to existing employed models. In this paper, we benchmark models extensively on 19 public and 16 proprietary industrial datasets spanning a wide variety of chemical endpoints. In addition, we introduce a graph convolutional model that consistently matches or outperforms models using fixed molecular descriptors as well as previous graph neural architectures on both public and proprietary datasets. Our empirical findings indicate that while approaches based on these representations have yet to reach the level of experimental reproducibility, our proposed model nevertheless offers significant improvements over models currently used in industrial workflows

    An Open Source Approach for Modern Teaching Methods: The Interactive TGUI System

    Get PDF
    In order to facilitate teaching complex topics in an interactive way, the authors developed a computer-assisted teaching system, a graphical user interface named TGUI (Teaching Graphical User Interface). TGUI was introduced at the beginning of 2009 in the Austrian Journal of Statistics (Dinges and Templ 2009) as being an effective instrument to train and teach staff on mathematical and statistical topics. While the fundamental principles were retained, the current TGUI system has been undergone a complete redesign. The ultimate goal behind the reimplementation was to share the advantages of TGUI and provide teachers and people who need to hold training courses with a strong tool that can enrich their lectures with interactive features. The idea was to go a step beyond the current modular blended-learning systems (see, e.g., Da Rin 2003) or the related teaching techniques of classroom-voting (see, e.g., Cline 2006). In this paper the authors have attempted to exemplify basic idea and concept of TGUI by means of statistics seminars held at Statistics Austria. The powerful open source software R (R Development Core Team 2010a) is the backend for TGUI, which can therefore be used to process even complex statistical contents. However, with specifically created contents the interactive TGUI system can be used to support a wide range of courses and topics. The open source R packages TGUICore and TGUITeaching are freely available from the Comprehensive R Archive Network at http://CRAN.R-project.org/
    corecore