973 research outputs found

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Assessing the Performance of a Speech Recognition System Embedded in Low-Cost Devices

    Get PDF
    The main purpose of this research is to investigate how an Amazigh speech recognition system can be integrated into a low-cost minicomputer, specifically the Raspberry Pi, in order to improve the system\u27s automatic speech recognition capabilities. The study focuses on optimizing system parameters to achieve a balance between performance and limited system resources. To achieve this, the system employs a combination of Hidden Markov Models (HMMs), Gaussian Mixture Models (GMMs), and Mel Frequency Spectral Coefficients (MFCCs) with a speaker-independent approach. The system has been developed to recognize 20 Amazigh words, comprising of 10 commands and the first ten Amazigh digits. The results indicate that the recognition rate achieved on the Raspberry Pi system is 89.16% using 3 HMMs, 16 GMMs, and 39 MFCC coefficients. These findings demonstrate that it is feasible to create effective embedded Amazigh speech recognition systems using a low-cost minicomputer such as the Raspberry Pi. Furthermore, Amazigh linguistic analysis has been implemented to ensure the accuracy of the designed embedded speech system

    Automated Testing of Speech-to-Speech Machine Translation in Telecom Networks

    Get PDF
    Globalisoituvassa maailmassa kyky kommunikoida kielimuurien yli käy yhä tärkeämmäksi. Kielten opiskelu on työlästä ja siksi halutaan kehittää automaattisia konekäännösjärjestelmiä. Ericsson on kehittänyt prototyypin nimeltä Real-Time Interpretation System (RTIS), joka toimii mobiiliverkossa ja kääntää matkailuun liittyviä fraaseja puhemuodossa kahden kielen välillä. Nykyisten konekäännösjärjestelmien suorituskyky on suhteellisen huono ja siksi testauksella on suuri merkitys järjestelmien suunnittelussa. Testauksen tarkoituksena on varmistaa, että järjestelmä säilyttää käännösekvivalenssin sekä puhekäännösjärjestelmän tapauksessa myös riittävän puheenlaadun. Luotettavimmin testaus voidaan suorittaa ihmisten antamiin arviointeihin perustuen, mutta tällaisen testauksen kustannukset ovat suuria ja tulokset subjektiivisia. Tässä työssä suunniteltiin ja analysoitiin automatisoitu testiympäristö Real-Time Interpretation System -käännösprototyypille. Tavoitteina oli tutkia, voidaanko testaus suorittaa automatisoidusti ja pystytäänkö todellinen, käyttäjän havaitsema käännösten laatu mittaamaan automatisoidun testauksen keinoin. Tulokset osoittavat että mobiiliverkoissa puheenlaadun testaukseen käytetyt menetelmät eivät ole optimaalisesti sovellettavissa konekäännösten testaukseen. Nykytuntemuksen mukaan ihmisten suorittama arviointi on ainoa luotettava tapa mitata käännösekvivalenssia ja puheen ymmärrettävyyttä. Konekäännösten testauksen automatisointi vaatii lisää tutkimusta, jota ennen subjektiivinen arviointi tulisi säilyttää ensisijaisena testausmenetelmänä RTIS-testauksessa.In the globalizing world, the ability to communicate over language barriers is increasingly important. Learning languages is laborious, which is why there is a strong desire to develop automatic machine translation applications. Ericsson has developed a speech-to-speech translation prototype called the Real-Time Interpretation System (RTIS). The service runs in a mobile network and translates travel phrases between two languages in speech format. The state-of-the-art machine translation systems suffer from a relatively poor performance and therefore evaluation plays a big role in machine translation development. The purpose of evaluation is to ensure the system preserves the translational equivalence, and in case of a speech-to-speech system, the speech quality. The evaluation is most reliably done by human judges. However, human-conducted evaluation is costly and subjective. In this thesis, a test environment for Ericsson Real-Time Interpretation System prototype is designed and analyzed. The goals are to investigate if the RTIS verification can be conducted automatically, and if the test environment can truthfully measure the end-to-end performance of the system. The results conclude that methods used in end-to-end speech quality verification in mobile networks can not be optimally adapted for machine translation evaluation. With current knowledge, human-conducted evaluation is the only method that can truthfully measure translational equivalence and the speech intelligibility. Automating machine translation evaluation needs further research, until which human-conducted evaluation should remain the preferred method in RTIS verification

    Losses Can Be Blessings: Routing Self-Supervised Speech Representations Towards Efficient Multilingual and Multitask Speech Processing

    Full text link
    Self-supervised learning (SSL) for rich speech representations has achieved empirical success in low-resource Automatic Speech Recognition (ASR) and other speech processing tasks, which can mitigate the necessity of a large amount of transcribed speech and thus has driven a growing demand for on-device ASR and other speech processing. However, advanced speech SSL models have become increasingly large, which contradicts the limited on-device resources. This gap could be more severe in multilingual/multitask scenarios requiring simultaneously recognizing multiple languages or executing multiple speech processing tasks. Additionally, strongly overparameterized speech SSL models tend to suffer from overfitting when being finetuned on low-resource speech corpus. This work aims to enhance the practical usage of speech SSL models towards a win-win in both enhanced efficiency and alleviated overfitting via our proposed S3^3-Router framework, which for the first time discovers that simply discarding no more than 10\% of model weights via only finetuning model connections of speech SSL models can achieve better accuracy over standard weight finetuning on downstream speech processing tasks. More importantly, S3^3-Router can serve as an all-in-one technique to enable (1) a new finetuning scheme, (2) an efficient multilingual/multitask solution, (3) a state-of-the-art ASR pruning technique, and (4) a new tool to quantitatively analyze the learned speech representation. We believe S3^3-Router has provided a new perspective for practical deployment of speech SSL models. Our codes are available at: https://github.com/GATECH-EIC/S3-Router.Comment: Accepted at NeurIPS 202

    Paralinguistic Privacy Protection at the Edge

    Full text link
    Voice user interfaces and digital assistants are rapidly entering our lives and becoming singular touch points spanning our devices. These always-on services capture and transmit our audio data to powerful cloud services for further processing and subsequent actions. Our voices and raw audio signals collected through these devices contain a host of sensitive paralinguistic information that is transmitted to service providers regardless of deliberate or false triggers. As our emotional patterns and sensitive attributes like our identity, gender, mental well-being, are easily inferred using deep acoustic models, we encounter a new generation of privacy risks by using these services. One approach to mitigate the risk of paralinguistic-based privacy breaches is to exploit a combination of cloud-based processing with privacy-preserving, on-device paralinguistic information learning and filtering before transmitting voice data. In this paper we introduce EDGY, a configurable, lightweight, disentangled representation learning framework that transforms and filters high-dimensional voice data to identify and contain sensitive attributes at the edge prior to offloading to the cloud. We evaluate EDGY's on-device performance and explore optimization techniques, including model quantization and knowledge distillation, to enable private, accurate and efficient representation learning on resource-constrained devices. Our results show that EDGY runs in tens of milliseconds with 0.2% relative improvement in ABX score or minimal performance penalties in learning linguistic representations from raw voice signals, using a CPU and a single-core ARM processor without specialized hardware.Comment: 14 pages, 7 figures. arXiv admin note: text overlap with arXiv:2007.1506
    corecore