2 research outputs found

    Efficient Fast-Convolution-Based Waveform Processing for 5G Physical Layer

    Get PDF
    This paper investigates the application of fast-convolution (FC) filtering schemes for flexible and effective waveform generation and processing in the fifth generation (5G) systems. FC-based filtering is presented as a generic multimode waveform processing engine while, following the progress of 5G new radio standardization in the Third-Generation Partnership Project, the main focus is on efficient generation and processing of subband-filtered cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM) signals. First, a matrix model for analyzing FC filter processing responses is presented and used for designing optimized multiplexing of filtered groups of CP-OFDM physical resource blocks (PRBs) in a spectrally well-localized manner, i.e., with narrow guardbands. Subband filtering is able to suppress interference leakage between adjacent subbands, thus supporting independent waveform parametrization and different numerologies for different groups of PRBs, as well as asynchronous multiuser operation in uplink. These are central ingredients in the 5G waveform developments, particularly at sub-6-GHz bands. The FC filter optimization criterion is passband error vector magnitude minimization subject to a given subband band-limitation constraint. Optimized designs with different guardband widths, PRB group sizes, and essential design parameters are compared in terms of interference levels and implementation complexity. Finally, extensive coded 5G radio link simulation results are presented to compare the proposed approach with other subband-filtered CP-OFDM schemes and time-domain windowing methods, considering cases with different numerologies or asynchronous transmissions in adjacent subbands. Also the feasibility of using independent transmitter and receiver processing for CP-OFDM spectrum control is demonstrated

    Optimized fast convolution based filtered-OFDM processing for 5G

    Get PDF
    This paper investigates the application of flexible fast-convolution (FC) filtering scheme for multiplexing orthogonal frequency-division multiplexing (OFDM) physical resource blocks (PRBs) in a spectrally well-localized manner. This scheme is able to suppress interference leakage between adjacent PRBs, thus supporting independent waveform parametrization and numerologies for different PRBs, as well as asynchronous multiuser operation. These are considered as important features in the 5G waveform development. This contribution focuses on optimizing FC based OFDM transmultiplexers such that the in-band interference is minimized subject to the given out-of-band emission constraint. The performance of the optimized designs is demonstrated using resource block groups (RBGs) of different sizes and with various design parameters. The proposed scheme has great flexibility in tuning the filtering bandwidths dynamically according the resource allocation to different users with different requirements regarding the OFDM waveform numerology. Also the computational complexity is competitive with existing time-domain filtering approaches and becomes superior when the number of filtering bands is increased.acceptedVersionPeer reviewe
    corecore