6 research outputs found

    Comparative analysis of NDVI index and different satellite images classifications in determination the vegetation inventory of Vrčin settlement

    Get PDF
    The modern way of life has affected the extremely high level of environmental degradation. Modern technologies, on the one hand, degrade our environment, but on the other they can also be used to preserve and improve its quality. An efficient monitoring system is able to monitor the status and changes in the vegetation cover of a particular area. In this paper will be shown the determination of the vegetation inventory of the settlement Vrčin through the NDVI (Normalized Difference Vegetation Index) and comparison of the data thus obtained with the various available classifications of satellite images, in order to determine the best monitoring system in the environment through remote detection

    TOWARDS FINE SCALE CHARACTERIZATION OF GLOBAL URBAN EXTENT, CHANGE AND STRUCTURE

    Get PDF
    Urbanization is a global phenomenon with far-reaching environmental impacts. Monitoring, understanding, and modeling its trends and impacts require accurate, spatially detailed and updatable information on urban extent, change, and structure. In this dissertation, new methods have been developed to map urban extent, sub-pixel impervious surface change (ISC), and vertical structure at national to global scales. First, an innovative multi-level object-based texture classification approach was adopted to overcome spectral confusion between urban and nonurban land cover types. It was designed to be robust and computationally affordable. This method was applied to the 2010 Global Land Survey Landsat data archive to produce a global urban extent map. An initial assessment of this product yielded over 90% overall accuracy and good agreement with other global urban products for the European continent. Second, for sub-pixel ISC mapping, the uncertainty caused by seasonal and phenological variations is one of the greatest challenges. To solve this issue, I developed an iterative training and prediction (ITP) approach and used it to map the ISC of entire India between 2000 and 2010. At 95% confidence, the total ISC for India between 2000 and 2010 was estimated to be 2274.62±7.84 km2. Finally, using an object-based feature extraction approach and the synergy of Landsat and freely available elevation datasets, I produced 30m building height and volume maps for England, which for the first time characterized urban vertical structure at the scale of a country. Overall, the height RMSE was only ±1.61 m for average building height at 30m resolution. And the building volume RMSE was ±1142.3 m3. In summary, based on innovative data processing and information extraction methods, this dissertation seeks to fill in the knowledge gaps in urban science by advancing the fine scale characterization of global urban extent, change, and structure. The methods developed in this dissertation have great potentials for automated monitoring of global urbanization and have broad implications for assessing the environmental impact, disaster vulnerability, and long-term sustainability of urbanization

    Book of short Abstracts of the 11th International Symposium on Digital Earth

    Get PDF
    The Booklet is a collection of accepted short abstracts of the ISDE11 Symposium

    Geo-Information Technology and Its Applications

    Get PDF
    Geo-information technology has been playing an ever more important role in environmental monitoring, land resource quantification and mapping, geo-disaster damage and risk assessment, urban planning and smart city development. This book focuses on the fundamental and applied research in these domains, aiming to promote exchanges and communications, share the research outcomes of scientists worldwide and to put these achievements better social use. This Special Issue collects fourteen high-quality research papers and is expected to provide a useful reference and technical support for graduate students, scientists, civil engineers and experts of governments to valorize scientific research

    Optimized Sample Selection in SVM Classification by Combining with DMSP-OLS, Landsat NDVI and GlobeLand30 Products for Extracting Urban Built-Up Areas

    No full text
    The accuracy of training samples used for data classification methods, such as support vector machines (SVMs), has had a considerable positive impact on the results of urban area extractions. To improve the accuracy of urban built-up area extractions, this paper presents a sample-optimized approach for classifying urban area data using a combination of the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) for nighttime light data, Landsat images, and GlobeLand30, which is a 30-m global land cover data product. The proposed approach consists of three main components: (1) initial sample generation and data classification into built-up and non-urban built-up areas based on the maximum and minimum intervals of digital numbers from the DMSP-OLS data, respectively; (2) refined sample selection and optimization by the probability threshold of each pixel based on vegetation-cover, using the Landsat-derived normalized differential vegetation index (NDVI) and artificial surfaces extracted from the GlobeLand30 product as the constraints; (3) iterative classification and urban built-up area data extraction using the relationship between these three aspects of data collection together with the training sets. Experiments were conducted for several cities in western China using this proposed approach for the extraction of built-up areas, which were classified using urban construction statistical yearbooks and Landsat images and were compared with data obtained from traditional data collection methods, such as the threshold dichotomy method and the improved neighborhood focal statistics method. An analysis of the empirical results indicated that (1) the sample training process was improved using the proposed method, and the overall accuracy (OA) increased from 89% to 96% for both the optimized and non-optimized sample selection; (2) the proposed method had a relative error of less than 10%, as calculated by an accuracy assessment; (3) the overall and individual class accuracy were higher for artificial surfaces in GlobeLand30; and (4) the average OA obviously improved and the Kappa coefficient in the case of Chengdu increased from 0.54 to 0.80. Therefore, the experimental results demonstrated that our proposed approach is a reliable solution for extracting urban built-up areas with a high degree of accuracy

    Land Use Cover Datasets and Validation Tools

    Get PDF
    This open access book represents a comprehensive review of available land-use cover data and techniques to validate and analyze this type of spatial information. The book provides the basic theory needed to understand the progress of LUCC mapping/modeling validation practice. It makes accessible to any interested user most of the research community's methods and techniques to validate LUC maps and models. Besides, this book is enriched with practical exercises to be applied with QGIS. The book includes a description of relevant global and supra-national LUC datasets currently available. Finally, the book provides the user with all the information required to manage and download these datasets
    corecore