4,708 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Aerial Access and Backhaul in mmWave B5G Systems: Performance Dynamics and Optimization

    Get PDF
    The use of unmanned aerial vehicle (UAV)-based communication in millimeter-wave (mmWave) frequencies to provide on-demand radio access is a promising approach to improve capacity and coverage in beyond-5G (B5G) systems. There are several design aspects to be addressed when optimizing for the deployment of such UAV base stations. As traffic demand of mobile users varies across time and space, dynamic algorithms that correspondingly adjust the UAV locations are essential to maximize performance. In addition to careful tracking of spatio-temporal user/traffic activity, such optimization needs to account for realistic backhaul constraints. In this work, we first review the latest 3GPP activities behind integrated access and backhaul system design, support for UAV base stations, and mmWave radio relaying functionality. We then compare static and mobile UAV-based communication options under practical assumptions on the mmWave system layout, mobility and clusterization of users, antenna array geometry, and dynamic backhauling. We demonstrate that leveraging the UAV mobility to serve moving users may improve the overall system performance even in the presence of backhaul capacity limitations.Comment: 7 pages, 5 figures. This work has been accepted to IEEE Communications Magazine, 201
    • …
    corecore