3,235 research outputs found

    Integrating Feedback into the Transportation Planning Mode

    Get PDF
    This research develops and applies a new structure for the transportation planning model that includes feedback between demand, assignment, and traffic control. New methods, combined with a renewed interest in transportation planning models prompted by the Clean Air Act of 1990 and the Intermodal Surface Transportation Efficiency Act of 1991, warrant a reconsideration of the traditional "four-step" transportation planning model. This paper presents an algorithm for feedback which results in consistent travel times as input to travel demand and output from route assignment. The model, including six stages of Trip Generation, Destination Choice, Mode Choice, Departure Time Choice, Route Assignment and Intersection Control is briefly outlined. This is followed by an application comparing a base year 1990 application with a forecast year of 2010. The 2010 forecast is solved both with and without feedback for comparison purposes. Incorporation of feedback gives significantly different results than the standard model. l.

    The correlation of externalities in marginal cost pricing: lessons learned from a real-world case study

    Get PDF
    Negative externalities cause inefficiencies in the allocation of capacities and resources in a transport system. Marginal social cost pricing allows to correct for these inefficiencies in a simulation environment and to derive real-world policy recommendations. In this context, it has been shown for analytical models considering more than one externality, that the correlation between the externalities needs to be taken into account. Typically, in order to avoid overpricing, this is performed by introducing correction factors which capture the correlation effect. However, the correlation structure between, say, emission and congestion externalities changes for every congested facility over time of day. This makes it close to impossible to calculate the factors analytically for large-scale systems. Hence, this paper presents a simulation-based approach to calculate and internalize the correct dynamic price levels for both externalities simultaneously. For a real-world case study, it is shown that the iterative calculation of prices based on cost estimates from the literature allows to identify the amplitude of the correlation between the two externalities under consideration: for the urban travelers of the case study, emission toll levels—without pricing congestion—turn out to be 4.0% too high in peak hours and 2.8% too high in off-peak hours. In contrary, congestion toll levels—without pricing emissions—are overestimated by 3.0% in peak hours and by 7.2% in off-peak hours. With a joint pricing policy of both externalities, the paper shows that the approach is capable to determine the amplitude of the necessary correction factors for large-scale systems. It also provides the corrected average toll levels per vehicle kilometer for peak and off-peak hours for the case study under consideration: again, for urban travelers, the correct price level for emission and congestion externalities amounts approximately to 38 EURct/km in peak hours and to 30 EURct/km in off-peak hours. These toll levels can be used to derive real-world pricing schemes. Finally, the economic assessment indicators for the joint pricing policy provided in the paper allow to compare other policies to this benchmark state of the transport system

    Measuring Marginal Congestion Costs of Urban Transportation: Do Networks Matter?

    Get PDF
    In determining the marginal cost of congestion, economists have traditionally relied upon directly measuring traffic congestion on network links, disregarding any “network effects,” since the latter are difficult to estimate. While for simple networks the comparison can be done within a theoretical framework, it is important to know whether such network effects in real large-scale networks are quantitatively significant. In this paper we use a strategic transportation planning model (START) to compare marginal congestion costs computed link-by-link with measures taking into account network effects. We find that while in aggregate network effects are not significant, congestion measured on a single link is a poor predictor of total congestion costs imposed by travel on that link. Also, we analyze the congestion proliferation effect on the network to see how congestion is distributed within an urban area.marginal congestion costs, congestion pricing, urban networks

    Assessing the Impact of Game Day Schedule and Opponents on Travel Patterns and Route Choice using Big Data Analytics

    Get PDF
    The transportation system is crucial for transferring people and goods from point A to point B. However, its reliability can be decreased by unanticipated congestion resulting from planned special events. For example, sporting events collect large crowds of people at specific venues on game days and disrupt normal traffic patterns. The goal of this study was to understand issues related to road traffic management during major sporting events by using widely available INRIX data to compare travel patterns and behaviors on game days against those on normal days. A comprehensive analysis was conducted on the impact of all Nebraska Cornhuskers football games over five years on traffic congestion on five major routes in Nebraska. We attempted to identify hotspots, the unusually high-risk zones in a spatiotemporal space containing traffic congestion that occur on almost all game days. For hotspot detection, we utilized a method called Multi-EigenSpot, which is able to detect multiple hotspots in a spatiotemporal space. With this algorithm, we were able to detect traffic hotspot clusters on the five chosen routes in Nebraska. After detecting the hotspots, we identified the factors affecting the sizes of hotspots and other parameters. The start time of the game and the Cornhuskers’ opponent for a given game are two important factors affecting the number of people coming to Lincoln, Nebraska, on game days. Finally, the Dynamic Bayesian Networks (DBN) approach was applied to forecast the start times and locations of hotspot clusters in 2018 with a weighted mean absolute percentage error (WMAPE) of 13.8%
    • …
    corecore