3,277 research outputs found

    Making Indefinite Kernel Learning Practical

    Get PDF
    In this paper we embed evolutionary computation into statistical learning theory. First, we outline the connection between large margin optimization and statistical learning and see why this paradigm is successful for many pattern recognition problems. We then embed evolutionary computation into the most prominent representative of this class of learning methods, namely into Support Vector Machines (SVM). In contrast to former applications of evolutionary algorithms to SVM we do not only optimize the method or kernel parameters. We rather use evolution strategies in order to directly solve the posed constrained optimization problem. Transforming the problem into the Wolfe dual reduces the total runtime and allows the usage of kernel functions just as for traditional SVM. We will show that evolutionary SVM are at least as accurate as their quadratic programming counterparts on eight real-world benchmark data sets in terms of generalization performance. They always outperform traditional approaches in terms of the original optimization problem. Additionally, the proposed algorithm is more generic than existing traditional solutions since it will also work for non-positive semidefinite or indefinite kernel functions. The evolutionary SVM variants frequently outperform their quadratic programming competitors in cases where such an indefinite Kernel function is used. --

    On Using a Support Vector Machine in Learning Feed-Forward Control

    Get PDF
    For mechatronic motion systems, the performance increases significantly if, besides feedback control, also feed-forward control is used. This feed-forward part should contain the (stable part of the) inverse of the plant. This inverse is difficult to obtain if non-linear dynamics are present. To overcome this problem, learning feed-forward control can be applied. The properties of the learning mechanism are of importance in this setting. In the paper, a support vector machine is proposed as the learning mechanism. It is shown that this mechanism has several advantages over other learning techniques when applied to learning feed-forward control. The method is tested with simulation

    Robustness and Regularization of Support Vector Machines

    Full text link
    We consider regularized support vector machines (SVMs) and show that they are precisely equivalent to a new robust optimization formulation. We show that this equivalence of robust optimization and regularization has implications for both algorithms, and analysis. In terms of algorithms, the equivalence suggests more general SVM-like algorithms for classification that explicitly build in protection to noise, and at the same time control overfitting. On the analysis front, the equivalence of robustness and regularization, provides a robust optimization interpretation for the success of regularized SVMs. We use the this new robustness interpretation of SVMs to give a new proof of consistency of (kernelized) SVMs, thus establishing robustness as the reason regularized SVMs generalize well

    Regression depth and support vector machine

    Get PDF
    The regression depth method (RDM) proposed by Rousseeuw and Hubert [RH99] plays an important role in the area of robust regression for a continuous response variable. Christmann and Rousseeuw [CR01] showed that RDM is also useful for the case of binary regression. Vapnik?s convex risk minimization principle [Vap98] has a dominating role in statistical machine learning theory. Important special cases are the support vector machine (SVM), [epsilon]-support vector regression and kernel logistic regression. In this paper connections between these methods from different disciplines are investigated for the case of pattern recognition. Some results concerning the robustness of the SVM and other kernel based methods are given. --
    corecore