4 research outputs found

    Design Optimization and Dynamic Simulation of Steam Cycle Power Plants: A Review

    Get PDF
    After more than one century from its first use for electric power production, steam cycles are still the object of continuous research and development efforts worldwide. Indeed, owing to its favorable thermodynamic properties, steam cycles are not only used in coal-fired power plants but in a large variety of applications such as combined cycles, concentrated solar power plants and polygeneration plants. On the other hand, to cope with the efficiency and flexibility requirements set by today’s energy markets, the design and the operation of steam cycles must be carefully optimized. A key rule is played by the simulation and optimization codes developed in the last 30 years. This paper provides an introduction to the main types of simulation and optimization problems (design, off-design operation and dynamic), an overview of the mathematical background (possible solution approaches, numerical methods and available software), and a review of the main scientific contributions

    Advances in Data-Driven Modeling and Global Optimization of Constrained Grey-Box Computational Systems

    Get PDF
    The effort to mimic a chemical plant’s operations or to design and operate a completely new technology in silico is a highly studied research field under process systems engineering. As the rising computation power allows us to simulate and model systems in greater detail through careful consideration of the underlying phenomena, the increasing use of complex simulation software and generation of multi-scale models that spans over multiple length and time scales calls for computationally efficient solution strategies that can handle problems with different complexities and characteristics. This work presents theoretical and algorithmic advancements for a range of challenging classes of mathematical programming problems through introducing new data-driven hybrid modeling and optimization strategies. First, theoretical and algorithmic advances for bi-level programming, multi-objective optimization, problems containing stiff differential algebraic equations, and nonlinear programming problems are presented. Each advancement is accompanied with an application from the grand challenges faced in the engineering domain including, food-energy-water nexus considerations, energy systems design with economic and environmental considerations, thermal cracking of natural gas liquids, and oil production optimization. Second, key modeling challenges in environmental and biomedical systems are addressed through employing advanced data analysis techniques. Chemical contaminants created during environmental emergencies, such as hurricanes, pose environmental and health related risks for exposure. The goal of this work is to alleviate challenges associated with understanding contaminant characteristics, their redistribution, and their biological potential through the use of data analytics
    corecore