118 research outputs found

    Symbol-Level Selective Full-Duplex Relaying with Power and Location Optimization

    Get PDF
    In this paper, a symbol-level selective transmission for full-duplex (FD) relaying networks is proposed to mitigate error propagation effects and improve system spectral efficiency. The idea is to allow the FD relay node to predict the correctly decoded symbols of each frame, based on the generalized square deviation method, and discard the erroneously decoded symbols, resulting in fewer errors being forwarded to the destination node. Using the capability for simultaneous transmission and reception at the FD relay node, our proposed strategy can improve the transmission efficiency without extra cost of signalling overhead. In addition, targeting on the derived expression for outage probability, we compare it with half-duplex (HD) relaying case, and provide the transmission power and relay location optimization strategy to further enhance system performance. The results show that our proposed scheme outperforms the classic relaying protocols, such as cyclic redundancy check based selective decode-and-forward (S-DF) relaying and threshold based S-DF relaying in terms of outage probability and bit-error-rate. Moreover, the performances with optimal power allocation is better than that with equal power allocation, especially when the FD relay node encounters strong self-interference and/or it is close to the destination node.Comment: 34 pages (single-column), 14 figures, 2 tables, accepted pape

    Performance Analysis and Cooperation Mode Switch in HARQ-based Relaying

    Get PDF
    We study the optimal, in terms of power-limited outage probability (OP), placement of the relay and investigate the effect of relay placement on the optimal cooperation mode of the source and the relay nodes. Using hybrid automatic repeat request (HARQ) based relaying techniques, general expressions for the OP and the average transmit power are derived. The results are then particularized to the repetition time diversity (RTD) protocol. The analytical expressions are used to find the transmit powers minimizing the power-limited OP. Our results demonstrate that adaptive power allocation reduces the OP significantly. For instance, consider a Rayleigh fading channel, an OP of 10^-3 and a maximum of 2 RTD-based retransmissions. Then, compared to equal power allocation, the required transmission signal-to-noise ratio (SNR) is reduced by 5 dB, if adaptive power allocation is utilized. Another important observation is that, depending on the relay positions and the total power budget, the system should switch between the single-node transmission mode and the joint transmission mode, in order to minimize the outage probability

    Cooperative Relaying in Wireless Networks under Spatially and Temporally Correlated Interference

    Full text link
    We analyze the performance of an interference-limited, decode-and-forward, cooperative relaying system that comprises a source, a destination, and NN relays, placed arbitrarily on the plane and suffering from interference by a set of interferers placed according to a spatial Poisson process. In each transmission attempt, first the transmitter sends a packet; subsequently, a single one of the relays that received the packet correctly, if such a relay exists, retransmits it. We consider both selection combining and maximal ratio combining at the destination, Rayleigh fading, and interferer mobility. We derive expressions for the probability that a single transmission attempt is successful, as well as for the distribution of the transmission attempts until a packet is transmitted successfully. Results provide design guidelines applicable to a wide range of systems. Overall, the temporal and spatial characteristics of the interference play a significant role in shaping the system performance. Maximal ratio combining is only helpful when relays are close to the destination; in harsh environments, having many relays is especially helpful, and relay placement is critical; the performance improves when interferer mobility increases; and a tradeoff exists between energy efficiency and throughput

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model

    Optimisation of relay placement in wireless butterfly networks

    Get PDF
    As a typical model of multicast network, wireless butterfly networks (WBNs) have been studied for modelling the scenario when two source nodes wish to convey data to two destination nodes via an intermediary node namely relay node. In the context of wireless communications, when receiving two data packets from the two source nodes, the relay node can employ either physical-layer network coding or analogue network coding on the combined packet prior to forwarding to the two destination nodes. Evaluating the energy efficiency of these combination approaches, energy-delay trade-off (EDT) is worth to be investigated and the relay placement should be taken into account in the practical network design. This chapter will first investigate the EDT of network coding in the WBNs. Based on the derived EDT, algorithms that optimize the relay position will be developed to either minimize the transmission delay or minimize the energy consumption subject to constraints on power allocation and location of nodes. Furthermore, considering an extended model of the WBN, the relay placement will be studied for a general wireless multicast network with multiple source, relay and destination nodes

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Relay Technologies in IEEE 802.16j Mobile Multi-hop Relay (MMR) Networks

    Get PDF
    IEEE 802.16 standard is created to compete with cable access networks. In the beginning end users are immobile and have a line of sight with base station, now it moved to mobile non line of sight (NLOS) with the new standard IEEE 802.16e and IEEE 802.16j. The new IEEE 802.16j standard which is an amendment to IEEE 802.16e is mobile multi hop relay (MMR) specification for wireless networks. This paper discusses relay modes, relay transmission schemes and relay pairing schemes of IEEE 802.16j. Relay technologies such as transparent relay modes, non transparent relay mode, relay pairing schemes such as centralized relay pairing schemes, distributed relay pairing scheme, characterises of relay based networks such as throughput enhancement, capacity increase, cost reduction , relay techniques such as time domain frequency domain relay techniques and relay placement are also discussed in this paper. The paper also discusses about integration of IEEE 802.16j with IEEE 802.11. Keywords: IEEE 802.16j, Relay pairing schemes, relay techniques, Relay modes, WIMAX, NCTUns, et
    • …
    corecore