237 research outputs found

    Collective behavior of "electronic fireflies"

    Full text link
    A simple system composed of electronic oscillators capable of emitting and detecting light-pulses is studied. The oscillators are biologically inspired, their behavior is designed for keeping a desired light intensity, W, in the system. From another perspective, the system behaves like modified integrate and fire type neurons that are pulse-coupled with inhibitory type interactions: the firing of one oscillator delays the firing of all the others. Experimental and computational studies reveal that although no driving force favoring synchronization is considered, for a given interval of W phase-locking appears. This weak synchronization is sometimes accompanied by complex dynamical patterns in the flashing sequence of the oscillators.Comment: 4 pages, 4 figures include

    Global analysis of a continuum model for monotone pulse-coupled oscillators

    Full text link
    We consider a continuum of phase oscillators on the circle interacting through an impulsive instantaneous coupling. In contrast with previous studies on related pulse-coupled models, the stability results obtained in the continuum limit are global. For the nonlinear transport equation governing the evolution of the oscillators, we propose (under technical assumptions) a global Lyapunov function which is induced by a total variation distance between quantile densities. The monotone time evolution of the Lyapunov function completely characterizes the dichotomic behavior of the oscillators: either the oscillators converge in finite time to a synchronous state or they asymptotically converge to an asynchronous state uniformly spread on the circle. The results of the present paper apply to popular phase oscillators models (e.g. the well-known leaky integrate-and-fire model) and draw a strong parallel between the analysis of finite and infinite populations. In addition, they provide a novel approach for the (global) analysis of pulse-coupled oscillators.Comment: 33 page

    Cluster synchronization of diffusively-coupled nonlinear systems: A contraction based approach

    Full text link
    Finding the conditions that foster synchronization in networked oscillatory systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with neuronal spiking dynamics, we show that our new sufficient condition is tighter than those found in previous analyses which used nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex oscillatory systems

    Synchronization in dynamical networks of locally coupled self-propelled oscillators

    Get PDF
    Systems of mobile physical entities exchanging information with their neighborhood can be found in many different situations. The understanding of their emergent cooperative behaviour has become an important issue across disciplines, requiring a general conceptual framework in order to harvest the potential of these systems. We study the synchronization of coupled oscillators in time-evolving networks defined by the positions of self-propelled agents interacting in real space. In order to understand the impact of mobility in the synchronization process on general grounds, we introduce a simple model of self-propelled hard disks performing persistent random walks in 2dd space and carrying an internal Kuramoto phase oscillator. For non-interacting particles, self-propulsion accelerates synchronization. The competition between agent mobility and excluded volume interactions gives rise to a richer scenario, leading to an optimal self-propulsion speed. We identify two extreme dynamic regimes where synchronization can be understood from theoretical considerations. A systematic analysis of our model quantifies the departure from the latter ideal situations and characterizes the different mechanisms leading the evolution of the system. We show that the synchronization of locally coupled mobile oscillators generically proceeds through coarsening verifying dynamic scaling and sharing strong similarities with the phase ordering dynamics of the 2dd XY model following a quench. Our results shed light into the generic mechanisms leading the synchronization of mobile agents, providing a efficient way to understand more complex or specific situations involving time-dependent networks where synchronization, mobility and excluded volume are at play
    • …
    corecore