52 research outputs found

    Shallow Univariate ReLU Networks as Splines: Initialization, Loss Surface, Hessian, and Gradient Flow Dynamics

    Get PDF
    Understanding the learning dynamics and inductive bias of neural networks (NNs) is hindered by the opacity of the relationship between NN parameters and the function represented. Partially, this is due to symmetries inherent within the NN parameterization, allowing multiple different parameter settings to result in an identical output function, resulting in both an unclear relationship and redundant degrees of freedom. The NN parameterization is invariant under two symmetries: permutation of the neurons and a continuous family of transformations of the scale of weight and bias parameters. We propose taking a quotient with respect to the second symmetry group and reparametrizing ReLU NNs as continuous piecewise linear splines. Using this spline lens, we study learning dynamics in shallow univariate ReLU NNs, finding unexpected insights and explanations for several perplexing phenomena. We develop a surprisingly simple and transparent view of the structure of the loss surface, including its critical and fixed points, Hessian, and Hessian spectrum. We also show that standard weight initializations yield very flat initial functions, and that this flatness, together with overparametrization and the initial weight scale, is responsible for the strength and type of implicit regularization, consistent with previous work. Our implicit regularization results are complementary to recent work, showing that initialization scale critically controls implicit regularization via a kernel-based argument. Overall, removing the weight scale symmetry enables us to prove these results more simply and enables us to prove new results and gain new insights while offering a far more transparent and intuitive picture. Looking forward, our quotiented spline-based approach will extend naturally to the multivariate and deep settings, and alongside the kernel-based view, we believe it will play a foundational role in efforts to understand neural networks. Videos of learning dynamics using a spline-based visualization are available at http://shorturl.at/tFWZ2

    Limitations of the Empirical Fisher Approximation for Natural Gradient Descent

    Full text link
    Natural gradient descent, which preconditions a gradient descent update with the Fisher information matrix of the underlying statistical model, is a way to capture partial second-order information. Several highly visible works have advocated an approximation known as the empirical Fisher, drawing connections between approximate second-order methods and heuristics like Adam. We dispute this argument by showing that the empirical Fisher---unlike the Fisher---does not generally capture second-order information. We further argue that the conditions under which the empirical Fisher approaches the Fisher (and the Hessian) are unlikely to be met in practice, and that, even on simple optimization problems, the pathologies of the empirical Fisher can have undesirable effects.Comment: V3: Minor corrections (typographic errors

    Short-Term load forecasting using a neuro-fuzzy model based on entropy maximisation

    Get PDF
    International audienceThe paper presents a new short-term load forecasting approach based on dynamic fuzzy logic modelling. The developed model produces forecasts for the next 48 hours, which are updated every hour. Such a sliding window scheme is different than conventional models that operate usually once a day. The paper emphasizes on developing appropriate learning and on-line adaptation schemes based on the maximal entropy principle. In contrast to the traditional approach, such schemes permit to avoid overfitting of the model to the data. Thus, the ability of the model to predict new data (generalisation) is maximized. The architecture of the model is selected using non-linear optimisation techniques such the non-linear Simplex. The model has been developed in the frame of the EU research project More-Care and implemented for on-line use at the islands of Crete and Madeira. Results from the case studies are presented showing the efficiency of the approach

    On the Role of Optimization in Double Descent: A Least Squares Study

    Get PDF
    Empirically it has been observed that the performance of deep neural networks steadily improves as we increase model size, contradicting the classical view on overfitting and generalization. Recently, the double descent phenomena has been proposed to reconcile this observation with theory, suggesting that the test error has a second descent when the model becomes sufficiently overparameterized, as the model size itself acts as an implicit regularizer. In this paper we add to the growing body of work in this space, providing a careful study of learning dynamics as a function of model size for the least squares scenario. We show an excess risk bound for the gradient descent solution of the least squares objective. The bound depends on the smallest non-zero eigenvalue of the covariance matrix of the input features, via a functional form that has the double descent behavior. This gives a new perspective on the double descent curves reported in the literature. Our analysis of the excess risk allows to decouple the effect of optimization and generalization error. In particular, we find that in case of noiseless regression, double descent is explained solely by optimization-related quantities, which was missed in studies focusing on the Moore-Penrose pseudoinverse solution. We believe that our derivation provides an alternative view compared to existing work, shedding some light on a possible cause of this phenomena, at least in the considered least squares setting. We empirically explore if our predictions hold for neural networks, in particular whether the covariance of intermediary hidden activations has a similar behavior as the one predicted by our derivations

    Musings on Deep Learning: Properties of SGD

    Get PDF
    [previously titled "Theory of Deep Learning III: Generalization Properties of SGD"] In Theory III we characterize with a mix of theory and experiments the generalization properties of Stochastic Gradient Descent in overparametrized deep convolutional networks. We show that Stochastic Gradient Descent (SGD) selects with high probability solutions that 1) have zero (or small) empirical error, 2) are degenerate as shown in Theory II and 3) have maximum generalization.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216. H.M. is supported in part by ARO Grant W911NF-15-1- 0385
    • …
    corecore