19 research outputs found

    Generalized Decision Rule Approximations for Stochastic Programming via Liftings

    Get PDF
    Stochastic programming provides a versatile framework for decision-making under uncertainty, but the resulting optimization problems can be computationally demanding. It has recently been shown that, primal and dual linear decision rule approximations can yield tractable upper and lower bounds on the optimal value of a stochastic program. Unfortunately, linear decision rules often provide crude approximations that result in loose bounds. To address this problem, we propose a lifting technique that maps a given stochastic program to an equivalent problem on a higherdimensional probability space. We prove that solving the lifted problem in primal and dual linear decision rules provides tighter bounds than those obtained from applying linear decision rules to the original problem. We also show that there is a one-to-one correspondence between linear decision rules in the lifted problem and families of non-linear decision rules in the original problem. Finally, we identify structured liftings that give rise to highly flexible piecewise linear decision rules and assess their performance in the context of a stylized investment planning problem.

    Conditions under which adjustability lowers the cost of a robust linear program

    Get PDF
    The adjustable robust counterpart (ARC) of an uncertain linear program extends the robust counterpart (RC) by allowing some decision variables to adjust to the realizations of some uncertain parameters. The ARC may produce a less conservative and costly solution than the RC does but cases are known in which it does not. While the literature documents some examples of cost savings provided by adjustability (particularly affine adjustability), it is not straightforward to determine in advance whether they will materialize. The affine adjustable robust counterpart, while having a tractable structure, still may be much larger than the original problem. We establish conditions under which affine adjustability may lower the optimal cost with a numerical condition that can be checked in small representative instances. As demonstrated in applications, the conditions provide insights into constraint relationships that allow adjustability to have its intended effect

    Conditions under which adjustability lowers the cost of a robust linear program

    Get PDF
    The adjustable robust counterpart (ARC) of an uncertain linear program extends the robust counterpart (RC) by allowing some decision variables to adjust to the realizations of some uncertain parameters. The ARC may product a less conservative solution than the RC does but cases are known in which it does not. While the literature documents some examples of cost savings provided by adjustability (particularly affine adjustability), it is not straightforward to determine in advance whether they will materialize. The affine adjustable robust counterpart, while having a tractable structure, still may be much larger than the original problem. We establish conditions under which affine adjustability may lover the optimal cost with a numerical condition that can be checked in small representative instances. As demonstrated in applications, the conditions provide insights into constraint relationships that allow adjustability to make a difference

    On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

    Get PDF
    We consider a two-stage mixed integer stochastic optimization problem and show that a static robust solution is a good approximation to the fully adaptable two-stage solution for the stochastic problem under fairly general assumptions on the uncertainty set and the probability distribution. In particular, we show that if the right-hand side of the constraints is uncertain and belongs to a symmetric uncertainty set (such as hypercube, ellipsoid or norm ball) and the probability measure is also symmetric, then the cost of the optimal fixed solution to the corresponding robust problem is at most twice the optimal expected cost of the two-stage stochastic problem. Furthermore, we show that the bound is tight for symmetric uncertainty sets and can be arbitrarily large if the uncertainty set is not symmetric. We refer to the ratio of the optimal cost of the robust problem and the optimal cost of the two-stage stochastic problem as the stochasticity gap. We also extend the bound on the stochasticity gap for another class of uncertainty sets referred to as positive. If both the objective coefficients and right-hand side are uncertain, we show that the stochasticity gap can be arbitrarily large even if the uncertainty set and the probability measure are both symmetric. However, we prove that the adaptability gap (ratio of optimal cost of the robust problem and the optimal cost of a two-stage fully adaptable problem) is at most four even if both the objective coefficients and the right-hand side of the constraints are uncertain and belong to a symmetric uncertainty set. The bound holds for the class of positive uncertainty sets as well. Moreover, if the uncertainty set is a hypercube (special case of a symmetric set), the adaptability gap is one under an even more general model of uncertainty where the constraint coefficients are also uncertain.National Science Foundation (U.S.) (NSF Grant DMI-0556106)National Science Foundation (U.S.) (NSF Grant EFRI-0735905

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    On the Power and Limitations of Affine Policies in Two-Stage Adaptive Optimization

    Get PDF
    We consider a two-stage adaptive linear optimization problem under right hand side uncertainty with a min–max objective and give a sharp characterization of the power and limitations of affine policies (where the second stage solution is an affine function of the right hand side uncertainty). In particular, we show that the worst-case cost of an optimal affine policy can be Omega(m12−) times the worst-case cost of an optimal fully-adaptable solution for any delta > 0, where m is the number of linear constraints. We also show that the worst-case cost of the best affine policy is O(m) times the optimal cost when the first-stage constraint matrix has non-negative coefficients. Moreover, if there are only k ≤ m uncertain parameters, we generalize the performance bound for affine policies to O(k) , which is particularly useful if only a few parameters are uncertain. We also provide an O(k) -approximation algorithm for the general case without any restriction on the constraint matrix but the solution is not an affine function of the uncertain parameters. We also give a tight characterization of the conditions under which an affine policy is optimal for the above model. In particular, we show that if the uncertainty set, R+m is a simplex, then an affine policy is optimal. However, an affine policy is suboptimal even if is a convex combination of only (m + 3) extreme points (only two more extreme points than a simplex) and the worst-case cost of an optimal affine policy can be a factor (2 − delta) worse than the worst-case cost of an optimal fully-adaptable solution for any delta > 0.National Science Foundation (U.S.) (NSF Grants DMI-0556106)National Science Foundation (U.S.) (EFRI-0735905

    Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization

    Get PDF
    In recent years, decision rules have been established as the preferred solution method for addressing computationally demanding, multistage adaptive optimization problems. Despite their success, existing decision rules (a) are typically constrained by their a priori design and (b) do not incorporate in their modeling adaptive binary decisions. To address these problems, we first derive the structure for optimal decision rules involving continuous and binary variables as piecewise linear and piecewise constant functions, respectively. We then propose a methodology for the optimal design of such decision rules that have a finite number of pieces and solve the problem robustly using mixed-integer optimization. We demonstrate the effectiveness of the proposed methods in the context of two multistage inventory control problems. We provide global lower bounds and show that our approach is (i) practically tractable and (ii) provides high quality solutions that outperform alternative methods

    An efficient method to estimate the suboptimality of affine controllers

    Full text link
    corecore