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Abstract

In recent years, decision rules have been established as the preferred solution method for address-

ing computationally demanding, multistage adaptive optimization problems. Despite their success,

existing decision rules (a) are typically constrained by their a priori design and (b) do not incor-

porate in their modeling adaptive binary decisions. To address these problems, we first derive the

structure for optimal decision rules involving continuous and binary variables as piecewise linear and

piecewise constant functions, respectively. We then propose a methodology for the optimal design

of such decision rules that have finite number of pieces and solve the problem using mixed-integer

optimization. We demonstrate the effectiveness of the proposed methods in the context of two multi-

stage inventory control problems. We provide global lower bounds and show that our approach is (i)

practically tractable and (ii) provides high quality solutions that outperform alternative methods.

Keywords. Adaptive Optimization, Decision Rules, Mixed-integer optimization.

1 Introduction

Robust optimization has emerged as the leading modeling paradigm for optimization problems under

uncertainty. Its success stems from its ability to immunize problems against perturbations in model

parameters, while preserving computational tractability, see Ben-Tal et al. [8] and Bertsimas and Sim

[14]. The classical robust optimization framework involves only here-and-now decisions, i.e., decisions

that must be selected before any of the uncertain parameters are observed. In recent years, adaptive

robust optimization problems have attracted considerable interest. Such problems incorporate additional
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adaptive, wait-and-see decisions, which can be chosen after the parameter realizations are revealed. As

such, these decision rules are modeled as functions of the observed uncertain parameter realizations.

Adaptive optimization problems have been shown to be in general computationally intractable from

a theoretical point of view, see Shapiro and Nemirovski [33]. A drastic but very effective simplification

in gaining computational tractability proposed in Ben-Tal et al. [6], is to restrict the space of admissible

adaptive continuous decisions to those that admit a linear structure with respect to the random param-

eters. Specifically, given uncertainty ξ ∈ Ξ, the linear decision rule for an adaptive continuous variable

x(∙) is given by x(ξ) = x>ξ, ξ ∈ Ξ ⊆ Rk. This linear decision rule has attracted considerable interest

in recent years, since its simple structure enables scalability to multistage models. Even though linear

decision rules are known to be optimal for the linear quadratic regulator problem, see Anderson and

Moore [1], some one-dimensional robust control problems, see Bertsimas et al. [12], and some vehicle

routing problems, see Gounaris et al. [26], decision rules generically sacrifice a significant amount of

optimality in return for scalability. Indeed, Bertsimas and Goyal [11] have shown that the worst-case

cost associated with linear decision rules can be O(
√

k) suboptimal when applied to two-stage robust op-

timization problems with k uncertain parameters. The aforementioned work also shows that the optimal

decision rule for adaptive optimization problems is piecewise linear. This motivates the use of non-linear

decision rules.

There is a plethora of non-linear decision rules appearing in the literature. Under a non-linear

decision rule, the adaptive decision x(∙) is given by x(ξ) = x>L(ξ), where L : Rk → Rk′
, k ≤ k′,

is a non-linear operator, mapping the uncertain vector ξ to L(ξ) in a higher dimensional space L(Ξ).

Using the re-parameterization ξ′ = L(ξ), the adaptive decision rule x(ξ) = x>L(ξ) can be expressed

as a linear decision rule x(ξ′) = x>ξ′ for all ξ′ ∈ L(Ξ). The choice of the non-linear operator L(∙)

defines the non-linear structure of the decision rule. This formulation was first introduced by Chen and

Zhang [21] creating simple piecewise linear decision rule structures. The framework was later extended

to cover general non-linear decision rules by Goh and Sim [24] and Georghiou et al. [23] in the realm

of stochastic programming. Bertsimas et al. [13] also proposed the use of polynomial decision rules for

adaptive robust optimization problems, an idea that was later refined by Bampou and Kuhn [3] in the

context of stochastic programming. The strict advantage of the aforementioned approximations is that

the resulting decision rule problems can be cast as conic optimization problems, whose size grows only

polynomially with the input parameters. Nevertheless, there are two main disadvantages associated with

these non-linear decision rules: (i) The non-linear structure of the decision rule L(∙) needs to be decided

a priori by the user; (ii) An exact reformulation of the decision rule problem into a finite dimensional

conic optimization problem can only be done efficiently for certain classes of non-linear decision rules

and special structure of the uncertainty set Ξ, see Georghiou et al. [23] for more details. This restricts
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the choices of admissible decision rules, and can lead to the same worst-case performance as with linear

decision rules.

In contrast to the large effort dedicated in developing decision rules for continuous decisions, very little

effort is devoted in developing approximations for binary adaptive decisions. In most of the literature, all

binary decisions are treated as here-and-now decisions leading to conservative estimates for the optimal

solution. To the best of our knowledge, the work of Bertsimas and Caramanis in [10] is the only

framework that can address the binary decisions in an adaptive robust optimization setting. To simulate

the recourse nature of the binary decisions, the authors proposed to partition the uncertainty set into

finite subsets, assigning a binary decision for each subset. Although this idea is very effective when the

adaptive problem in hand has a small number of time stages, the exponential growth in the number

of binary decisions and constraints renders the method unsuitable for multistage problems with large

number of stages.

The goal of this paper is to design piecewise linear and piecewise constant decision rules for continuous

and binary decisions, respectively, in the context of multistage adaptive optimization problems. The

proposed decision rules overcome the shortfalls of existing approaches, while maintaining in part the

desirable tractability properties of existing methods. The main contributions of this paper may be

summarized as follows.

1. We derive the structure for the optimal decision rules involving both continuous and binary variables

as piecewise linear and piecewise constant functions, respectively.

2. We propose a methodology for the optimal design of such piecewise linear continuous and piecewise

linear binary decision rules that have fixed number of pieces. To the best of our knowledge, this is

the first decision rule that can address binary adaptive decisions. In contrast with the non-linear

continuous decision rules in the literature, the structure of the proposed decision rules is not decided

a priori, but rather is decided endogenously through the solution of a sequence of mixed-integer

optimization problems.

3. We demonstrate the effectiveness of the proposed methods in the context of two multistage inven-

tory control problems. We provide global lower bounds using the approach in Hadjiyiannis et al.

[27] and show that our approach is (i) practically tractable and (ii) provides high quality solutions

that outperform alternative methods.

The rest of this paper is organized as follows. In Section 2, we outline our approach for continuous

and binary adaptive decision in the context of one-stage adaptive optimization problems involving only

recourse decisions. Section 3 discusses the lower bounding technique proposed in Hadjiyiannis et al. [27].
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In Section 4, we extent the proposed approach to multistage adaptive optimization problems and in

Section 5, we present our computational results. Finally, Section 6 provides some concluding remarks.

Notation We denote scalar quantities by lowercase, non-bold face symbols and vector quantities by

lowercase, boldface symbols, e.g., x ∈ R and x ∈ Rn, respectively. Similarly, scalar and vector valued

functions will be denoted by, x(∙) ∈ R and x(∙) ∈ Rn, respectively. Matrices are denoted by uppercase

symbols , e.g., A ∈ Rn×m. Vector e ∈ Rk denotes the vector of ones. We denote by R the space of all

real-valued functions from Rk to R and B the space of binary functions from Rk to {0, 1}.

2 Design of Piecewise Linear Decision Rules

In this section, we present our approach for one-stage adaptive optimization problems. Given matrices

A ∈ Rm×n, B ∈ Rm×q, C ∈ Rm×k, vectors c ∈ Rn, d ∈ Rq and an uncertainty set Ξ for the uncertain

quantity ξ ∈ Rk, we are interested to choose functions x(∙) = (x1(∙), . . . , xn(∙))>, xi(∙) ∈ R and y(∙) =

(y1(∙), . . . , yq(∙))>, yi(∙) ∈ B in order to solve:

minimize max
ξ ∈Ξ

c>x(ξ) + d>y(ξ)

subject to xi(∙) ∈ R, i = 1, . . . , n,

yi(∙) ∈ B, i = 1, . . . , q,

Ax(ξ) + By(ξ) ≤ Cξ ∀ξ ∈ Ξ.

(1)

Here, we assume that Problem (1) has a non-empty and bounded feasible region and the uncertainty set

Ξ is a nonempty, convex and compact polyhedron

Ξ =
{
ξ ∈ Rk : Wξ ≥ g, ξ1 = 1

}
, (2)

where W ∈ Rl×k and g ∈ Rl. The parameter ξ1 is set equal to 1 without loss of generality as it allows us

to represent affine functions of the non-degenerate outcomes (ξ2, . . . , ξk) in a compact manner as linear

functions of ξ = (ξ1, . . . , ξk).

Problem (1) involves a continuum of decision variables and inequality constraints. Therefore, in

order to make the problem amenable to numerical solutions, there is a need for suitable functional

approximations for x(∙) and y(∙).
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2.1 Design of Piecewise Linear Decision Rules for Real-Valued Decisions

To present our approach we consider first a special case of Problem (1) involving only real-valued recourse

decisions:

minimize max
ξ ∈Ξ

c>x(ξ)

subject to xi(∙) ∈ R, i = 1, . . . , n,

Ax(ξ) ≤ Cξ ∀ξ ∈ Ξ.

(3)

Bemporad et al. [4] showed that the optimal decision rules for Problem (3) are piecewise linear continuous

functions.

Let PC be the space of piecewise linear continuous functions from Rk to R that admit the following

structure:

x(ξ) = max{x>
1 ξ, . . . ,x>

P ξ} − max{x>
1 ξ, . . . ,x>

P ξ}, (4)

for some P ∈ N+ and xp,xp ∈ Rk, p ∈ P := {1, . . . , P}.

Theorem 1 Every piecewise linear continuous function defined over a compact set Ξ is an element of PC.

Proof Given any piecewise linear convex function x : Rk → R, it can be written as the point-wise

supremum of a finite collection of P linear functions:

x(ξ) = sup
p=1,...,P

x>
p ξ,

for some P ∈ N+ and xp ∈ Rk. Since the uncertainty set Ξ in (3) is compact, we can replace the

supremum with the maximum operator, thus verifying that any piecewise linear convex function can be

written in the form x(ξ) = max{x>
1 ξ, . . . ,x>

P ξ}.

Hempel et al. [28, Lemma 4] states that for every piecewise linear continuous function x : Rk → R

defined over a convex polyhedral Ξ, there exists P ∈ N+ and two piecewise linear continuous and convex

functions x(ξ) = max{x>
1 ξ, . . . ,x>

P ξ} and x(ξ) = max{x>
1 ξ, . . . ,x>

P ξ} such that x(ξ) = x(ξ)−x(ξ). This

verifies that the space PC coincides with the space of all piecewise linear continuous functions defined

over a compact set Ξ.

The implication of Theorem 1 is that for every piecewise linear continuous function, there exists

P ∈ N+ such that the function can be written in the form (4). Since the optimal decision rules for

Problem (3) are piecewise linear continuous functions, see [4, Theorem 2], the optimal solution of Problem

(3) is an element of PC. Nevertheless, it will be computationally intractable to optimize over decisions

that have arbitrarily many linear pieces. To this end, we restrict the space of admissible solutions from

PC to PC(P ), where PC(P ) is the space of piecewise linear continuous functions where the number of
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linear pieces P ∈ N+ is fixed. This functional restriction yields the following semi-infinite problem, which

for fixed P , involves only a finite number of decision variables, and an infinite number of constraints:

minimize max
ξ ∈Ξ

c>x(ξ)

subject to xi(∙) ∈ PC(P ), i = 1, . . . , n,

Ax(ξ) ≤ Cξ ∀ξ ∈ Ξ.

(5)

The number of linear pieces P allows the decision maker to control the trade-off between tractability and

optimality. A large P will result in greater flexibility, and thus achieving near optimal solutions, while

setting P = 1 corresponds to the highly tractable linear decision rules. We emphasize that any feasible

solution in (5) is also feasible in (3), since for any number of linear pieces P the inclusion PC(P ) ⊆ PC

is valid. Therefore, the optimal value of Problem (5) provides an upper bound on the true optimal value

of Problem (3).

The proposed approach can also be seen as a generalization of the work presented in Gorissen and

den Hertog [25]. Their work, addresses the following type of constraints:

x>
1 ξ +

n∑

i=1

max{x>
i,1ξ, . . . ,x>

i,P ξ} ≤ 0 ∀ξ ∈ Ξ.

These constraints define a convex feasible region as they involve summation of maxima, each of which

has a positive sign. The authors present exact reformulations for this class of constraints, as well as

approximations through linear and polynomial decision rules. We emphasize that this type of constraints

can be cast as an instance of (5), using appropriate matrices A and C and the proposed decision rules.

2.2 Design of Piecewise Linear Decision Rules for Binary Decisions

We now concentrate our attention to the binary recourse decisions and to the corresponding special case

of Problem (1) involving only binary recourse decisions:

minimize max
ξ ∈Ξ

d>y(ξ)

subject to yi(∙) ∈ B, i = 1, . . . , q,

By(ξ) ≤ Cξ ∀ξ ∈ Ξ.

(6)

Let PB be the space of piecewise linear binary functions from Rk to {0, 1} that admit the following

structure:

y(ξ) =






1, max{y>
1 ξ, . . . ,y>

P ξ} − max{y>
1

ξ, . . . ,y>
P

ξ} ≤ 0,

0, otherwise,
(7)
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for some P ∈ N+ and yp,yp
∈ Rk, p ∈ P = {1, . . . , P}.

Theorem 2 Every piecewise linear binary function defined over a compact set Ξ is an element of PB.

Proof From Theorem 1, we know that any piecewise linear continuous function defined on Ξ can be

written in the form max{y>
1 ξ, . . . ,y>

P ξ}−max{y>
1

ξ, . . . ,y>
P

ξ}, for some P ∈ N+ and yp,yp
∈ Rk. Since

a function y(∙) ∈ PB is just the projection of such piecewise linear continuous function on {0, 1}, we can

conclude that PB coincides with the space of all piecewise linear binary functions defined over a compact

set Ξ.

As before, the implication of Theorem 2 is that for every piecewise linear binary function, there

exists P ∈ N+ such that the function can be written in the form (7). Even though PB coincides

with the space of piecewise linear binary functions, there are two main difficulties associated with

its computational implementation: (i) As in the case of PC, it is computationally intractable to op-

timize over decision rules that have an arbitrarily large number of linear pieces and (ii) it is not

clear how one will implement in an optimization problem the open set defined by the complement

of max{y>
1 ξ, . . . ,y>

P ξ}−max{y>
1

ξ, . . . ,y>
P

ξ} ≤ 0. To this end, we define the finite counterpart of PB.

Let ε > 0, and let PB(P ) be the space of piecewise linear binary functions from Rk to {0, 1} that have

P ∈ N+ linear pieces and admit the following structure:

y(ξ) =






1, max{y>
1 ξ, . . . ,y>

P ξ} − max{y>
1

ξ, . . . ,y>
P

ξ} ≤ 0,

0, max{y>
1 ξ, . . . ,y>

P ξ} − max{y>
1

ξ, . . . ,y>
P

ξ} ≥ ε,

(8)

for some yp,yp
∈ Rk, p ∈ P = {1, . . . , P}. The constant ε, which for practical purposes will be defined

as ε = 10−5, allows to express the open set max{y>
1 ξ, . . . ,y>

P ξ} − max{y>
1

ξ, . . . ,y>
P

ξ} > 0, within the

context of an optimization problem. We note that for the small interval defined by ε, the decision rule

can take arbitrarily the value 0 or 1.

Restricting the space of admissible solutions from PB to PB(P ), yields the following semi-infinite

problem, which for fixed number of linear pieces P , involves only a finite number of decision variables,

and an infinite number of constraints:

minimize max
ξ ∈Ξ

d>y(ξ)

subject to yi(∙) ∈ PB(P ), i = 1, . . . , q,

By(ξ) ≤ Cξ ∀ξ ∈ Ξ.

(9)

As in the case of Problems (5) and (3), any feasible solution in (9) is also feasible in (6), since for any

number of linear pieces P the inclusion PB(P ) ⊆ PB is valid. Therefore, the optimal value of of Problem
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(9) provides an upper bound on the true optimal value of Problem (6).

Remark 1 Note that the functional spaces PC and PB do not necessarily contain the optimal solution

of Problem (1). This is the case as in the presence of binary decision rules, the optimal real-valued

decision can be discontinuous. Nevertheless, PC and PB contain functions that are arbitrarily close to

the optimal solution of (1).

2.3 Solution Method

Combining the two decision rules, and introducing an epigraph formulation, results in the following

semi-infinite optimization problem, whose optimal value provides an upper bound for the optimal value

of (1):

Z(Ξ) = minimize
τ∈R

τ

subject to xi(∙) ∈ PC(P ), i = 1, . . . , n,

yi(∙) ∈ PB(P ), i = 1, . . . , q,

c>x(ξ) + d>y(ξ) ≤ τ

Ax(ξ) + By(ξ) ≤ Cξ





∀ξ ∈ Ξ.

(10)

Here, the optimal value of (10) is denoted by Z(Ξ) to emphasize the dependence on the set Ξ. The key

advantage of the proposed decision rules compared with the non-linear decision rules expressed by x(ξ) =

x>L(ξ) in [5, 13, 23, 24], is that the structure of the decision rule is designed by the optimization problem.

Moreover, as we will demonstrate in Section 2.3, reformulation of the problem into a finite dimensional

optimization problem does not depend on the structure of the decision rule and the uncertainty set,

unlike the decision rules discussed in [5, 23, 24], see [23, Section 4] for an extensive discussion. As we

will demonstrate in Section 5, the latter characteristic plays an important role in the performance of the

proposed decision rules.

There are two main difficulties associated with Problem (10):

1. It involves an infinite number of constraints as a result of the continuous structure of the uncertainty

set Ξ;

2. The non-linear structure of PC(P ) and PB(P ) results in non-convex constraints both with respect

to decision variables and the uncertain parameters ξ.

A typical solution strategy employed in robust optimization [5, 7] for reformulating the infinite number

of constraints, utilizes duality arguments. Unfortunately, the non-convex structure of the constraints

prohibits the use of these arguments.
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An alternative approach for solving semi-infinite problems is to employ a cutting plane algorithm,

first proposed in Blankenship and Falk [17]. Instead of solving a problem involving infinite number of

constraints, the algorithm iteratively identifies a finite subset of binding scenarios Ξ̂ ⊂ Ξ in Problem (10),

and solves the corresponding finite dimensional optimization problem. The overall algorithm converges

to an optimal solution of (10) but not necessarily in finite number of iterations. This type of solution

method directly addresses the semi-infinite structure of (10), but perhaps most importantly, it allows

us to reformulate the non-linear constraints associated with PC(P ) and PB(P ) and express them as

mixed-integer linear constrains. In this section, we overview the cutting plane algorithm [17], and in the

following section we provide reformulations for the constraints associated with PC(P ) and PB(P ).

For a finite set Ξ̂ ⊂ Ξ, we define the following finite dimensional variant of Problem (10):

Z(Ξ̂) = minimize
τ∈R

τ

subject to xi(∙) ∈ PC(P ), i = 1, . . . , n,

yi(∙) ∈ PB(P ), i = 1, . . . , q,

c>x(ξ) + d>y(ξ) ≤ τ

Ax(ξ) + By(ξ) ≤ Cξ





∀ξ ∈ Ξ̂.

(11)

As before, Z(Ξ̂) is the optimal value of Problem (11) and (x∗(∙), y∗(∙), τ∗) denotes its optimal solution.

As we will show in Section 2.4, Problem (11) can be reformulated as a mixed-integer linear optimization

problem. Before we introduce the cutting plane algorithm, notice that for any finite subset Ξ̂ ⊂ Ξ,

Problem (11) underestimates the optimal value of Problem (10), i.e.,

Z(Ξ̂) ≤ Z(Ξ).

Therefore, to achieve robust feasibility, it is important to check if there exists scenario realizations

ξ ∈ Ξ\Ξ̂, for which solution (x∗(∙), y∗(∙), τ∗) violates any of the m + 1 constraints in (10). To this end,

we formulate m+1 auxiliary problems that will determine if solution (x∗(∙), y∗(∙), τ∗) is robustly feasible,

or return a scenario ξ for which the constraint is violated.

The first auxiliary problem is associated with the epigraph formulation of the objective function.

Q0(x∗(∙), y∗(∙), τ∗) = maximize c>x∗(ξ) + d>y∗(ξ) − τ

subject to ξ ∈ Ξ,

x∗
i (∙) ∈ PC(P ), i = 1, . . . , n,

y∗
i (∙) ∈ PB(P ), i = 1, . . . , q.

(12a)
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Constraints x∗(∙) ∈ PC(P ) and y∗(∙) ∈ PB(P ) ensure that the fixed decision rules x∗(∙) and y∗(∙) maintain

their structure, i.e., vectors x∗
p,x

∗
p, p ∈ P and y∗

p,y
∗
p
, p ∈ P are fixed, while optimizing over ξ. If a

solution (x∗(∙), y∗(∙), τ∗) is feasible in constraint c>x∗(ξ)+d>y∗(ξ) ≤ τ∗ for all ξ ∈ Ξ, then the optimal

value Q0(x∗(∙), y∗(∙), τ∗) will be less than or equal to zero. If, however, (x∗(∙), y∗(∙), τ∗) is not robustly

feasible, then the optimal value Q0(x∗(∙), y∗(∙), τ∗) will be strictly positive, with the corresponding

optimal solution ξ∗
0 constituting a scenario for which (x∗(∙), y∗(∙), τ∗) violated the underlying constraint.

The same idea is used for the remaining constraints of Problem (10). Indeed, for each constraint [Ax∗(ξ)+

By∗(ξ) ≤ Cξ]j , j = 1, . . . , m, we formulate the following auxiliary problems:

Qj(x∗(∙), y∗(∙)) = maximize [Ax∗(ξ) + By∗(ξ) − Cξ]j

subject to ξ ∈ Ξ,

x∗
i (∙) ∈ PC(P ), i = 1, . . . , n,

y∗
i (∙) ∈ PB(P ), i = 1, . . . , q.

(12b)

Here, the notation [Ax∗(ξ) + By∗(ξ) − Cξ]j refers to the jth entry in vector Ax∗(ξ)+By∗(ξ)−Cξ. As

we will demonstrate in Section 2.4, all auxiliary problems can be reformulated as mixed-integer linear

optimization problems. We note that in the case where an auxiliary problem has more than one optimal

solutions, without loss of generality, one can use the optimal solution returned by the mixed-integer

linear solver.

The structure of the cutting plane algorithm is summarised as follows:

Algorithm 1 (Cutting plane [17])

Step 1: Initialize: set i = 1 and choose Ξ̂1 ⊂ Ξ.

Step 2: Solve the mixed-integer linear Problem (11) parameterised by Ξ̂i, and set the optimal solution

to (x∗(∙), y∗(∙), τ∗). If the problem is infeasible, then no feasible solution to Problem (10) exists

and the algorithm terminates.

Step 3: Solve the m + 1 auxiliary, mixed-integer linear optimization Problems (12) parameterised by

(x∗(∙), y∗(∙), τ∗), and let their optimal solutions to be ξ∗
j , j = 0, . . . , m, respectively. Also, let

Vi := {ξ∗
j : if Qj > 0, j = 0, . . . , m}.

Step 4: Check if the solution (x∗(∙), y∗(∙), τ∗) satisfies all constraints, i.e., if all the following inequalities

hold:

Q0(x∗(∙), y∗(∙), τ∗) ≤ 0

Qj(x∗(∙), y∗(∙)) ≤ 0, j = 1, . . . , m.
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If this is true, then the algorithm terminates and the optimal solution is (x∗(∙), y∗(∙), τ∗), with the

set of binding scenarios being Ξ̂∗ = Ξ̂i. Otherwise, set Ξ̂i+1 = Ξ̂i ∪ Vi and i = i + 1 and return to

Step 2.

For the remainder of the paper, we will refer to scenarios in set Ξ̂∗ as the critically binding scenarios

associated with the optimal solution of Problem (10). In Algorithm 1, the choice of Ξ̂1 is not crucial and

can be any arbitrary finite subset of Ξ. However, if the user has a priori knowledge on the position of the

critically binding scenarios for the problem in hand, these scenarios can be added to Ξ̂1, accelerating the

convergence of the algorithm. For example, in a problem involving only real-valued adaptive decisions,

one can first solve the linear decision rule problem and use the associated critically binding scenarios as

a starting point in a non-linear decision rule problem.

Algorithm 1 explicitly assumes that all optimization problems involved are solved to global optimality.

Under this condition, at termination, the algorithm will provide the best piecewise linear decision rules

for Problem (10), i.e.,

Z(Ξ̂∗) = Z(Ξ).

This equality relation is valid despite the fact that Problem (11) is a relaxation of Problem (10). This

is the case as the finite collection of scenarios Ξ̂∗ contains the worst-case scenarios associated with the

optimal decision rule of (10).

In practice, solving all optimization problems to global optimality can be computationally challenging.

Thus, ensuring that a solution is robustly feasible becomes the first priority. In this case, for given

decisions (x∗(∙), y∗(∙), τ∗), a user can choose to terminate the optimization of the auxiliary Problems

(12), if the objective value becomes strictly positive. This indicates that a realization ξ is found for

which (x∗(∙), y∗(∙), τ∗) violates some constraint in (10). If in addition, at every iteration Problem (11) is

solved to global optimality, then the algorithm will still provide the best piecewise linear decision rules

for Problem (10). This approach might require more iterations until the algorithm terminates but can

potentially accelerate the solution method.

In the case where Problem (11) is not solved to global optimality in every iteration, at termination

the algorithm can potentially provide a suboptimal solution to (10). Therefore, the solution obtained at

termination can be a conservative approximation to (10), i.e.,

Z(Ξ) ≤ Z(Ξ̂∗).

We emphasize that even if a suboptimal solution is achieved, the algorithm guarantees that all decisions

are robustly feasible in (10) and consequently robustly feasible in (1).
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2.3.1 Alternative Termination Criteria

In this section, we provide alternative termination criteria for Algorithm 1. Algorithm 1 can be com-

putationally cumbersome for some problem instances, as it may require a large number of iterations,

and consequently a large number of scenarios, until robust feasibility is achieved. To address this, we

introduce a relaxation for the termination criteria in Step 4, by alternatively checking if a solution

(x∗(∙), y∗(∙), τ∗) satisfies the following inequality:

p := P

{

ξ ∈ Ξ :
⋃m

j=1

{

[Ax∗(ξ) + By∗(ξ) > Cξ]j

}
⋃
{

c>x∗(ξ) + d>y∗(ξ) > τ∗

}}

≤ δ (13)

where P is the uniform distribution supported on Ξ, and δ ∈ [0, 1) is the violation level defined by the

user. We will refer to p as the violation probability. If one sets δ = 0, then (13) ensures robust feasibility

in Problem (10), while the degree of violation increases as the value of δ increases.

Evaluating analytically the violation probability p, can be difficult for arbitrary constraints and

uncertainty set Ξ. Therefore, we are forced to estimate this quantity using simulation, by computing the

empirical violation probability p̂N as follows:

p̂N :=
1
N

N∑

i=1

1

(
⋃m

j=1

{

[Ax∗(ξi) + By∗(ξi) > Cξi]j

}
⋃
{

c>x∗(ξi) + d>y∗(ξi) > τ∗

})

where 1(∙) is the indicator function and N is the number of samples used. The samples ξi ∈ Ξ can be

generated using techniques discussed in Calafiore and Dabbene [19].

A natural question that arises is: What is the number of samples N needed to accurately estimate p,

from the values of the empirical violation probability p̂N? To answer this, we use Hoeffding’s inequality

[29], which provides a lower bound on N . This idea was discussed in Calafiore and Campi [18]. The

Hoeffding’s inequality states that for a fixed solution (x∗(∙), y∗(∙), τ∗),

PN {|p̂N − p| ≤ ε̂} ≥ 1 − 2 exp(−2ε̂2N), where N ≥
log(2/β̂)

2ε̂2
,

which ensures that |p̂N − p| ≤ ε̂ with confidence greater than 1 − β̂. Here, PN is the empirical uniform

distribution constructed using the N i.i.d. samples, while ε̂ ∈ [0, 1) and β̂ ∈ [0, 1) are fixed constants

defined by the user. In other words, by computing the empirical violation probability p̂N using at least

N ≥ log(2/β̂)/(2ε̂2) samples, we are guarantied to be within ε̂ of the exact violation probabilities p,

with confidence greater than 1 − β̂. We emphasize that N can be potentially large depending on the

choice of ε̂ and β̂. Nevertheless, calculating the empirical violation probability using N samples is not a

computationally intensive process as it does not involve an optimization problem.
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The alternative termination criterion to Step 4 is given as follows:

Step 4′: Given fixed δ ∈ [0, 1), ε̂ ∈ [0, 1) and β̂ ∈ [0, 1), generate N ≥ log(2/β̂)/(2ε̂2) i.i.d. samples

from the uniform distribution supported on Ξ and check if the solution (x∗(∙), y∗(∙), τ∗) satisfies

the following inequality:

1
N

N∑

i=1

1

(
⋃m

j=1

{

[Ax∗(ξi) + By∗(ξi) > Cξi]j

}
⋃
{

c>x∗(ξi) + d>y∗(ξi) > τ∗

})

≤ δ

If the inequality hold, then the algorithm terminates and the optimal solution is (x∗(∙), y∗(∙), τ∗),

with the set of binding scenarios being Ξ̂∗ = Ξ̂i. Otherwise, set Ξ̂i+1 = Ξ̂i ∪ Vi and i = i + 1 and

return to Step 2.

We define Algorithm 2 that has Step 1-3 from Algorithm 1 and Step 4′.

To illustrate the implications of Step 4′, we present an example for fixed parameters δ, ε̂ and β̂.

Example 1 Set the violation level δ = 1%, and let ε̂ = 0.005 and β̂ = 10−4 such that N ≥ 198070. If for

a given solution (x∗(∙), y∗(∙), τ∗) the empirical violation probability is, say, p̂N = 70%, then Hoeffding’s

inequality ensures that the exact violation probability p lays within

69.5% ≤ p ≤ 70.5%,

with a confidence greater 99.99%. Since δ = 1%, we require that the algorithm terminates when at least

99% feasibility is achieved. Therefore, we can conclude that solution (x∗(∙), y∗(∙), τ∗) does satisfy (13),

thus a violating scenario is determined using the auxiliary Problems (12), and Problem (11) is resolved

using an updated Ξ̂.

2.3.2 Probabilistic Guarantees for the Convergence Properties of Algorithm 2

In this section, we provide probabilistic guarantees for the convergence properties of Algorithm 2 by

providing an alternative scenario selection procedure. Given a solution (x∗(∙), y∗(∙), τ∗), Step 3 of

Algorithm 2 generates scenarios by solving the auxiliary Problems (12). From a theoretical standpoint,

this scenario selection does not guarantee that the algorithm terminates in a finite number of iterations.

This is particularly true if Problem (10) involves binary recourse decisions. To address this, we introduce

an alternative scenario selection procedure which ensures that Algorithm 2 will terminate in a finite

number of steps under the termination criteria Step 4′ with a high confidence level.

Before we introduce the alternative scenario selection, a natural question that arises is: What is the

number of samples N needed such that the solution of Problem (11) satisfies constraint (13) with high
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confidence, without necessarily applying Algorithm 2? To answer this, we use the following result from

statistical learning theory discussed in Anthony and Biggs [2], and was first utilized in the optimization

literature by de Farias and Van-Roy [22] and Caramanis [20].

Proposition 1 Given fixed δ ∈ [0, 1) and β ∈ [0, 1), construct the finite set Ξ̃N ⊆ Ξ containing N i.i.d.

samples from the uniform distribution supported on Ξ such that

N ≥
4
δ

(

Vx(∙),y (∙),τ ln

(
12
δ

)

+ ln

(
2
β

))

, (14)

where Vx(∙),y (∙),τ = 2(1+2P (n+q)k) log2

(
4e(m+1)(2P )(n+q)

)
. Then, any feasible solution of Problem

(11) satisfies constraint (13) with probability at least 1 − β.

Proof From [20, Proposition 4.6] we have that any feasible solution of Problem (11) satisfies constraint

(13) with probability at least 1−β, provided that N i.i.d. samples are drawn from the uniform distribution

supported on Ξ with

N ≥
4
δ

(

V ln

(
12
δ

)

+ ln

(
2
β

))

. (15)

Here, V is the V C-dimension of set C := {Cx(∙),y (∙),τ : xi(∙) ∈ PC(P ), i = 1, . . . , n, yi(∙) ∈ PB(P ), i =

1, . . . , q, τ ∈ R}, where

Cx(∙),y (∙),τ :=

{

ξ ∈ Ξ :
⋃m

j=1

{

[Ax(ξ) + By(ξ) ≤ Cξ]j

}
⋃
{

c>x(ξ) + d>y(ξ) ≤ τ

}}

.

It is generally a hard problem to calculate exactly the V C-dimension of set C. Nevertheless, since
⋃m

j=1{[Ax(ξ)+By(ξ) ≤ Cξ]j}
⋃
{c>x(ξ)+d>y(ξ) ≤ τ} can be expressed as a Boolean formula involving

standard logical connectives, Vidyasagar [34, Theorem 4.6] provides the following upper bound on the

V C-dimension of C:

V C-dimension(C) ≤ Vx(∙),y (∙) = 2(1 + 2P (n + q)k) log2

(
4e(m + 1)(2P )(n + q)

)
,

where the constant e is the Euler’s number. We therefore conclude that the bound (14) is a conservative

approximation to (15) and thus the result follows.

From Proposition 1, we see that the number of samples needed such that the solution of Problem

(11) satisfies constraint (13) with high confidence, grows polynomially with respect to the dimension of

the uncertainty set, k, the number of continuous and binary decision rules, (n + q), and the number of

linear pieces in the decision rule, 2P . In addition, since the number of constraints, m, and the confidence

level, β, appears in the logarithm, their size does not contribute significantly to the final sample size.
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Nevertheless, for a small choice of δ ∈ [0, 1), the number of samples can render Problem (11) intractable.

To this end, we formulate m + 1 variants of the auxiliary Problems (12) that identify a critical subset of

these scenarios. For fixed δ ∈ [0, 1), β ∈ [0, 1) and solution (x∗(∙), y∗(∙), τ∗), the m+1 auxiliary problems

are defined as follows:

Q′
0(x

∗(∙), y∗(∙), τ∗) = maximize c>x∗(ξ) + d>y∗(ξ) − τ

subject to ξ ∈ Ξ̃N

x∗
i (∙) ∈ PC(P ), i = 1, . . . , n,

y∗
i (∙) ∈ PB(P ), i = 1, . . . , q,

(16a)

where Ξ̃N is finite subset of Ξ containing N i.i.d. samples from the uniform distribution supported on

Ξ, generated using bound (14). Similarly, for each constraint [Ax∗(ξ) + By∗(ξ) ≤ Cξ]j , j = 1, . . . , m,

we have

Q′
j(x

∗(∙), y∗(∙)) = maximize [Ax∗(ξ) + By∗(ξ) − Cξ]j

subject to ξ ∈ Ξ̃N ,

x∗
i (∙) ∈ PC(P ), i = 1, . . . , n,

y∗
i (∙) ∈ PB(P ), i = 1, . . . , q.

(16b)

Problems (16) are difficult to solve due to the discrete nature of Ξ̃N . Nevertheless, one can solve Problems

(16), by evaluating and sorting the objective function for each Ξ̃N . This can be done efficiently as the

number of samples grow polynomially with the input parameters and it does not require to solve a

mixed-integer linear optimization problem.

The alternative scenario selection procedure to Step 3 is given as follows:

Step 3a′: Solve the m + 1 auxiliary Problems (16) parameterized by (x∗(∙), y∗(∙), τ∗), and let their

optimal solutions to be ξ∗
j , j = 0, . . . , m, respectively. Also, let Vi := {ξ∗

j : if Q′
j > 0, j = 0, . . . , m}.

We define Algorithm 3 that has Step 1-2 from Algorithm 1 together with Step 3′ and Step 4′.

Note also, that the scenario selection Step 3′ can be used together with Step 3 for improved scenario

selection. We close this section by emphasizing that since Ξ̃N contains only finitely many scenarios, in

the worst-case, Algorithm 3 will converge when all scenarios in Ξ̃N are added to Ξ̂∗.

2.4 Mixed-Integer Linear Optimization Formulations

In this section, we show that Problems (11), (12), have mixed-integer linear optimization reformulations.

We now present three equivalent mixed-integer linear reformulations for each functional space PC(P )

and PB(P ). These reformulations use Big-M, special ordered sets (SOS) and indicator constraints (IC),
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respectively, see Bertsimas and Weismantel [15] for more details. In particular, we will use special ordered

sets of type 1 (SOS1) and type 2 (SOS2). Special ordered sets of type 1 ensure that in a set of variables,

say z1, . . . , zn, at most one variable may be nonzero. This will be denoted by SOS1(z1, . . . , zn). Similarly,

special ordered sets of type 2 ensure that in a set of variables, at most two consecutive variables may

be nonzero and this will be denoted by SOS2(z1, . . . , zn). Indicator constraints express relationships

among variables by identifying binary variables to control whether or not specified linear constraints

are active. For example, the indicator constraint z = 1 ⇐⇒ x>ξ ≤ 0, ensures that the inequality

constraint x>ξ ≤ 0 is satisfied if and only if the binary variable z is equal to 1. SOS and indicator

constraints are supported in many commercial and non-commercial optimization software such as IBM

ILOG CPLEX [30] and SCIP [32]. Choosing which formulation to use depends on the problem structure

and the efficiency of the optimization software used.

The functional spaces PC(P ) and PB(P ) can be parameterised in terms of the decision variables

xp,xp, p ∈ P and yp,yp
, p ∈ P , and the uncertain vector ξ. Indeed, with slight abuse of notation,

PC(P ) can be equivalently written as

PC(P,xp,xp, ξ) =

{

x ∈ R : x = max{x>
1 ξ, . . . ,x>

P ξ} − max{x>
1 ξ, . . . ,x>

P ξ}

}

, (17)

and PB(P ) can be equivalently written as

PB(P,yp,yp
, ξ) =





y ∈ {0, 1} : ψ(∙) ∈ PC(P,yp,yp

, ξ), y =






1, ψ(ξ) ≤ 0,

0, ψ(ξ) ≥ ε,





. (18)

The following proposition provides three alternative formulations for the set of piecewise linear con-

tinuous decision rules PC(P ).

Proposition 2 The feasible region given by (17) is equivalent to:

PCBig-M :






x ∈ R : ∃ (z, x), (z, x) ∈ {0, 1}P × R, such that x = x − x, e>z = e>z = 1,

x ≥ x>
p ξ, x ≥ x>

p ξ,

x ≤ x>
p ξ + M(1 − zp), x ≤ x>

p ξ + M(1 − zp),





∀p ∈ P






, (19)

given a sufficiently large constant M ∈ R+;
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PCSOS :






x ∈ R : ∃(z, χ, x), (z, χ, x) ∈ {0, 1}P × RP
+ × R,

such that x = x − x, e>z = e>z = 1, e>χ ≤ M, e>χ ≤ M,

x ≥ x>
p ξ, x ≥ x>

p ξ,

x ≤ x>
p ξ + χp, x ≤ x>

p ξ + χ
p
,

SOS1(zp, χp), SOS1(zp, χp
),






∀p ∈ P ,






, (20)

given a sufficiently large constant M ∈ R+;

PCIC :






x ∈ R : ∃ (z, x), (z, x) ∈ {0, 1}P × R, such that x = x − x, e>z = e>z = 1,

zp = 1 ⇐⇒ x = x>
p ξ,

zp = 1 ⇐⇒ x = x>
p ξ,





∀p ∈ P .






. (21)

Proof We first introduce a simplified version of (17) involving a single max function:

P̂C(P,xp, ξ) =

{

x ∈ R : x = max{x>
1 ξ, . . . ,x>

P ξ}

}

. (22)

The feasible region (22) is known to be equivalent to

P̂CBig-M(P,xp, ξ) =






x ∈ R : ∃z ∈ {0, 1}P , such that e>z = 1,

x ≥ x>
p ξ,

x ≤ x>
p ξ + M(1 − zp),





∀p ∈ P






, (23)

given a sufficiently large constant M ∈ R, see [25, Section 2]. It is therefore easy to see that (17) can

be expressed as (19), with the variables (z, x) being used to reformulate x = max{x>
1 ξ, . . . ,x>

P ξ} and

(z, x) being used to reformulate x = max{x>
1 ξ, . . . ,x>

P ξ}.

To show that (17) can be expressed as (20), we first show that the feasible region (22) is equivalent

to

P̂CSOS(P,xp, ξ) =






x ∈ R : ∃(z, χ) ∈ {0, 1}P × RP
+, such that e>z = 1, e>χ ≤ M

x ≥ x>
p ξ,

x ≤ x>
p ξ + χp,

SOS1(zp, χp),






∀p ∈ P






. (24)

given a sufficiently large constant M ∈ R. Notice that (24) share similarities with (23). Indeed, the

constraints x ≤ x>
p ξ + M(1 − zp), p ∈ P used to underestimate the max function in (22), are replaced
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by constraints x ≤ x>
p ξ + χp, p ∈ P together with e>χ ≤ M and SOS1(zp, χp), p ∈ P . Given a feasible

point (22) and assuming that there exists M ∈ R+ such that x>
i ξ ≤ M + x>

p ξ for all i, p ∈ P , we can

verify that

if zp = 1 =⇒ χp = 0 and x = x>
p ξ,

if zp = 0 =⇒ χp ≥ 0 and x ≤ x>
p ξ + χp,

Therefore, any feasible point in (22) is feasible in (20). The result that any feasible point in (20) is

feasible in (22) follows trivially. Using similar arguments as before, we deduce that the feasible region of

(17) can be expressed as (20).

To show that (17) can be expressed as (21), we first show that the feasible region (22) is equivalent

to

P̂CIC(P,xp, ξ) =

{

x ∈ R : ∃z ∈ {0, 1}P , e>z = 1, zp = 1 ⇐⇒ x = x>
p ξ, ∀p ∈ P .

}

. (25)

It is easy to see that x = max{x>
1 ξ, . . . ,x>

P ξ} is equivalent to x = x>
p ξ for exactly one p ∈ P . This

is equivalently expressed as the indicator constraints zp = 1 ⇐⇒ x = x>
p ξ, ∀p ∈ P together with

e>z = 1. Using similar arguments as before, we deduce that the feasible region of (17) can be expressed

as (21).

Note that for fixed ξ ∈ Ξ̂, the constraint x(ξ) ∈ PC(P ) in Problem (11) can be reformulate using

(19), (20), (21), thus allowing to optimize over vectors xp,xp ∈ Rk, p ∈ P . Similarly, for fixed vectors

x∗
p,x

∗
p, p ∈ P , the constraint x∗(∙) ∈ PC(P ) in Problems (12) can be reformulate using (19), (20), (21),

thus allowing to optimize over ξ ∈ Ξ.

The following proposition provides three alternative formulations for the set of piecewise linear binary

decision rules PB(P ).

Proposition 3 The feasible region given by (18) is equivalent to:

PBBig-M :






y ∈ {0, 1} : ψ(ξ) ∈ PCBig-M(P,yp,yp
, ξ),

such that ε + My ≤ ψ(ξ) ≤ M(1 − y)





, (26)

given sufficiently large constant M ∈ R+ and sufficiently small constant M ∈ R−;

PBSOS :






y ∈ {0, 1} : ∃φ, χ ∈ R+ such that ψ(ξ) ∈ PCSOS(P,yp,yp
, ξ),

with ε − φ ≤ ψ(ξ) ≤ χ, SOS2(φ, y, 1 − y, χ), φ + χ ≤ M





, (27)

given sufficiently large constants M ∈ R+;
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PBIC :

{

y ∈ {0, 1} : ψ(ξ) ∈ PCIC(P,yp,yp
, ξ), y = 1 ⇐⇒ ψ(ξ) ≤ 0

}

. (28)

Proof We first show that any feasible point in (18) is feasible in (26). Under the assumption that there

exists constants M ∈ R+ and M ∈ R− such that ε + M ≤ ψ(ξ) ≤ M , we can verify that

if y = 1 =⇒ ε + M ≤ ψ(ξ) ≤ 0,

if y = 0 =⇒ ε ≤ ψ(ξ) ≤ M.

Therefore, any feasible point in (18) is feasible in (26). The result that any feasible point in (26) is

feasible in (18) follows trivially.

To show that any feasible point in (18) is feasible in (27), we assume that there exists constant

M ∈ R+ such that ε + M ≤ ψ(ξ) ≤ M . Therefore,

if y = 1 =⇒ χ = 0 and ε − φ ≤ ψ(ξ) ≤ 0,

if y = 0 =⇒ φ = 0 and ε ≤ ψ(ξ) ≤ ψ,

and thus, any feasible point in (18) is feasible in (27). The result that any feasible point in (26) is feasible

in (18) follows trivially. Finally, the equivalence between the feasible regions (18) and (28), follows from

definition (7).

Note that for fixed ξ ∈ Ξ̂, the constraint y(ξ) ∈ PB(P ) in Problem (11) can be reformulate using

(26), (27), (28), thus allowing to optimize over vectors yp,yp
∈ Rk, p ∈ P . Similarly, for fixed vectors

y∗
p,y

∗
p
, p ∈ P , the constraint y∗(∙) ∈ PB(P ) in Problems (12) can be reformulate using (26), (27), (28),

thus allowing to optimize over ξ ∈ Ξ.

We end this section by pooling together the central insights of Section 2. If Problem (1) has a non-

empty and bounded feasible region, and a polyhedral uncertainty set, then the cutting plane Algorithms

1, 2 or 3 can be applied to Problem (10). At each iteration of the algorithms, Problems (11) and (12) can

be reformulated into mixed-integer linear optimization problems using (19), (20), (21) for the continuous

decision rules and (26), (27), (28) for the binary decision rules. In particular, if one uses reformulations

(19) and (26), then Problem (11) has a total of 1 + (3|Ξ̂|+ 2Pk)n + (3|Ξ̂|+ 2Pk)q continuous variables,

|Ξ̂|2Pn + |Ξ̂|(1 + 2P )q binary variables and (m + 1) + |Ξ̂|(3 + 4P )n + |Ξ̂|(5 + 4P )q constraints, where |Ξ̂|

indicates the cardinality of Ξ̂. Similarly, each of the Problems (12) has a total of k + 3n + 3q continuous

variables, 2Pn + (1 + 2P )q binary variables and l + (3 + 4P )n + (5 + 3P )q constraints. The number of

decision variables and constraints in the reformulations of Problems (11) and (12) using (20), (21) and

(27), (28) is of similar order.
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3 Lower Bounds on the Optimal Adaptive Solution

In this section, we survey the main results from the literature for assessing the quality of the decision

rules, and discuss how we can utilize the ideas in Hadjiyiannis et al. [27] in conjunction with the proposed

decision rules.

The functional spaces PC(P ) and PB(P ) restrict the feasible region of the continuous and binary

decisions, thus providing an upper bound on the optimal solution of (1). Although one can improve the

quality of the decision rule by increasing the number of linear pieces at the expense of computational

tractability, it is not clear what is the absolute loss of optimality compared to the true optimal solution

of Problem (1). There are a number of papers devoted to assessing this loss of optimality for adaptive

optimization problems involving only continuous decisions. These papers can be divided to a priori and

a posteriori assessments.

An a priori result was proposed by Bertsimas and Goyal in [11]. Here, the authors proved that for

any problem instance (3), the worst-case cost associated with the linear decision rules can be of the

order O(
√

k) suboptimal, where k is the number of random parameters in the problem. This result is

also valid for non-linear decision rules. In addition, Bertsimas and Bidkhori [9] show that the quality of

linear decision rules is directly linked with the geometric properties of the uncertainty set.

A posteriori results were developed in [23, 27, 31]. In this context, the label “a posteriori” means that

the resulting quality measure is specific for each problem instance. To measure the loss of optimality,

Kuhn et al. [31] proposed to apply the linear decision rule approximation to the dual version of (3). Their

work was motivated by the fact that any feasible solution to the dual problem provides a progressive

approximation to the optimal value of (3). Since the dual of (3) shares similar structure as its primal

problem, applying linear decision rules to the dual adaptive decisions results to a progressive approxi-

mation. The corresponding optimal value constitutes a lower bound on the optimal value of (3). An

estimation of the quality for any upper bounding approximation can therefore be obtained by comparing

the gap between the upper and lower bounds. If this gap is small, then the upper bounding approxima-

tion can be thought as nearly optimal. On the other hand if the gap is big, then linear decision rules

are potentially suboptimal, and the user should consider using a richer class of decision rules. Utilizing

the dual version of (3) was later refined in Georghiou et al. [23], where it was extended for classes of

non-linear decision rules. The extra functional flexibility offered by non-linear decision rules translated to

improved lower bounds, giving improved estimates for the loss of optimality. An alternative a posteriori

bound proposed by Hadjiyiannis et al. [27] generates a lower bound by solving the scenario counterpart

of Problem (3). Since the scenario counterpart is constructed using a finite subset of the constraints in

(3), its optimal solution will overestimate the optimal solution of (3). As before, the comparison between
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the upper bound and this lower bound can be used as an indication for the loss of optimality.

We now present an adaptation of the idea in Hadjiyiannis et al. [27], for problems involving both

continuous and binary decisions and discuss its implications. The scenario counterpart of Problem (1)

is given by the following optimization problem:

S(Ξ̂) = minimize max
ξ ∈Ξ̂

c>x(ξ) + d>y(ξ)

subject to x(ξ) ∈ Rn, y(ξ) ∈ {0, 1}q

Ax(ξ) + By(ξ) ≤ Cξ





∀ξ ∈ Ξ̂.

(29)

Here, Ξ̂ is a finite subset of the uncertainty set Ξ and S(Ξ̂) denotes the optimal value of Problem (29).

Since (29) is a relaxation of the original problem, the inequality S(Ξ̂) ≤ S(Ξ) is always valid for any

Ξ̂ ⊂ Ξ. The quality of lower bound from (29) depends on the choice of the finite set Ξ̂. Bertsimas and

Goyal [11] have shown that if (1) involves only continuous decisions and set Ξext consists of the extreme

points of Ξ, then the optimal value of scenario counterpart coincide with (1), i.e., S(Ξext) = S(Ξ). Of

course, for most practical problems, one cannot enumerate the extreme points of Ξ as these can be

exponentially many. Furthermore, if (1) involves both continuous and binary adaptive decisions, then

the equality S(Ξext) = S(Ξ), does not necessarily hold. This is demonstrated in the following example.

Example 2 Consider the following instance of Problem (1):

minimize τ

subject to y(∙) ∈ B, τ ∈ R,

y(ξ) − ξ2 ≤ τ

y(ξ)≥ ξ2





∀ξ ∈ Ξ,

(30)

where Ξ =
{
ξ ∈ R2 : ξ1 = 1, − 1

2 ≤ ξ2 ≤ 1
2

}
. It can be easily seen that the optimal value of (30) equals

to 1, while the scenario counterpart involving the extreme scenarios (1,− 1
2 )> and (1, 1

2 )> results to the

optimal value of 1
2 . Nevertheless, the optimal value of the scenario counterpart constitutes a lower bound

on the true solution.

The set of worst-case realizations Ξw for Problem (1), can be computed through the solution of the

following problem:

Ξw := arg max
ξ ∈Ξ

min
x∈Rn, y∈{0,1}q

c>x + d>y

subject to Ax + By ≤ Cξ.

(31)

By construction, any subset of Ξw is guaranteed to provide a tight lower bound, i.e., S(Ξw) = S(Ξ). Of
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course, solving Problem (31) is at least as hard as solving Problem (1). As an alternative, Hadjiyiannis

et al. [27] propose to use the critically binding scenarios Ξ̂LDR resulting from linear decision rules, as a

proxy to set Ξw. This choice is motivated by the hypothesis that there may exist at least one worst-case

uncertainty realization for (1) that is also a worst-case realization for linear decision rule approximation.

In any case, even if Ξ̂LDR ∩ Ξw = ∅, Ξ̂LDR is still a finite subset of Ξ, and thus S(Ξ̂LDR) will be a valid

lower bound on the optimal value of (1).

The flexibility of the proposed decision rules can be used as a tool for identifying a collection of

critically binding scenarios that outperform the critically binding scenarios Ξ̂LDR resulting from linear

decision rules. From Theorems 1 and 2 we know that the functional spaces PC and PB coincides with the

space of all piecewise linear continuous and binary functions, respectively. Therefore, solving Problem

(29) parameterized with the binding scenarios from problem (10), can lead to tight overestimates for the

optimal value of (1). A nice property of algorithms discussed in Section 2.3, is that at termination they

provide as a byproduct the set of scenarios Ξ̂∗ for which the optimal decision rules are binding. These

scenarios can directly be used in the scenario counterpart of (1), with the following relations being valid

at optimality:

S(Ξ̂∗) ≤ S(Ξ) = Z(Ξ) ≤ Z(Ξ̂∗).

We emphasize that even if the decision rules are optimal for Problem (1), there is no guarantee that

S(Ξ̂∗) = S(Ξ). This is the case as there is no mechanism for selecting binding scenarios in Ξ̂∗ that are

also elements in Ξw, see [27] for more details. Nevertheless, in Section 5, we show that this approach

produces good results in conjunction with the proposed functional approximations PC(P ) and PB(P ).

4 Multistage Adaptive Optimization

In this section, we extend the methodology presented in Sections 2 and 3 to cover multistage adaptive

optimization problems. This adaptive decision process can be described as follows: A decision maker first

observes an uncertain parameter ξ1 ∈ Rk1 and then takes the pair of real-valued decision x1(ξ1) ∈ Rn1

and a binary decision y1(ξ1) ∈ {0, 1}q1 . Subsequently, a second uncertain parameter ξ2 ∈ Rk2 is

revealed, in response to which the decision maker takes the a second pair of decision x2(ξ1, ξ2) ∈ Rn2 and

y2(ξ1, ξ2) ∈ {0, 1}q2 . This sequence of alternating observations and decisions extends over T time stages.

To enforce the non-anticipative structure of the decisions, a decision taken at stage t can only depend on

the observed parameters up to and including stage t, i.e., xt(ξt) and yt(ξt) where ξt = (ξ1, . . . , ξt)> ∈

Rkt

, with kt =
∑t

s=1 ks. For consistency with the previous sections, and with slight abuse of notation,

we assume that k1 = 1 and ξ1 = 1. As before, setting ξ1 = 1 is a non-restrictive assumption allows to
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represent affine functions of the non-degenerate outcomes (ξ2, . . . , ξt)> in a compact manner as linear

functions of (ξ1, . . . , ξt)>. We denote by ξ = (ξ1, . . . , ξT )> ∈ Rk the vector of all uncertain parameters,

where k = kT . Finally, we denote by Rt the space of all real-valued functions from Rkt

to R and Bt the

space of binary functions from Rkt

to {0, 1}.

Given matrices Ats ∈ Rmt×ns , Bts ∈ Rmt×qs and Ct ∈ Rmt×kt

, vectors ct ∈ Rnt , dt ∈ Rqt and

uncertainty set Ξ given by (2), we are interested to choose function xt(∙) = (x1,t(∙), . . . , xnt,t(∙))>, xit ∈

Rt and yt(∙) = (y1,t(∙), . . . , yqt,t(∙))
>, yit ∈ Bt for all t = 1, . . . , T in order to solve:

minimize max
ξ ∈Ξ

(
T∑

t=1

c>t xt(ξ
t) + d>yt(ξ

t)

)

subject to
t∑

s=1

Atsxs(ξ
s) + Btsys(ξ

s) ≤ Ctξ
t ∀ξ ∈ Ξ,

xi,t(∙) ∈ Rt, i = 1, . . . , nt, yi,t(∙) ∈ Bt, i = 1, . . . , qt





∀t = 1, . . . , T.

(32)

Problem (32) is computationally challenging. To make the problem amenable to numerical solutions,

we make similar restrictions to the function space of real-valued and binary recourse decisions as in

Section 2. For real-valued decision rules chosen at stage t, let PCt(P ) be the space of piecewise linear

continuous functions from Rkt

to R, that have P ∈ N+ linear pieces, and admit the following structure,

x(ξt) = max{x>
1 ξt, . . . ,x>

P ξt} − max{x>
1 ξt, . . . ,x>

P ξt},

for some xp,xp ∈ Rkt

, p ∈ P := {1, . . . , P}. The information set of the decision rule ensures the non-

anticipativity nature of the decision by allowing dependance only on observed parameters up to stage

t and not on future outcomes {ξt+1, . . . , ξT }. Similarly, for binary decision rules chosen at stage t, fix

ε > 0 and let PBt(P ) be the space of piecewise linear binary functions from Rkt

to {0, 1}, that have

P ∈ N+ linear pieces, and admit the following structure,

yt(ξ
t) =






1, max{y>
1 ξt, . . . ,y>

P ξt} − max{y>
1

ξt, . . . ,y>
P

ξt} ≤ 0,

0, max{y>
1 ξt, . . . ,y>

P ξt} − max{y>
1

ξt, . . . ,y>
P

ξt} ≥ ε,

for some yp,yp
∈ Rkt

, p ∈ P = {1, . . . , P}.

Restricting the space of admissible solutions from Rt to PCt(P ) and from Bt to PBt(P ), yields the

following semi-infinite problem which for fixed number of linear pieces P , involves only a finite number
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of decision variables, and an infinite number of constraints.

minimize
τ∈R

τ

subject to
T∑

t=1

c>t xt(ξ
t) + d>yt(ξ

t) ≤ τ, ∀ξ ∈ Ξ,

t∑

s=1

Atsxs(ξ
s) + Btsys(ξ

s) ≤ Ctξ
t, ∀ξ ∈ Ξ,

xi,t(∙) ∈ PCt(P ), i = 1, . . . , nt,

yi,t(∙) ∈ PBt(P ), i = 1, . . . , qt,






∀t = 1, . . . , T.
(33)

Problem (33) has a similar structure as (10). Therefore, one can directly use the solution method

presented in Sections 2.3 and 2.4, for finding the optimal solution to Problem (33).

Similar to Section 3, a lower bound for the optimal solution of Problem (32) can be achieved by

solving the following scenario tree problem for any Ξ̂ ⊂ Ξ.

minimize max
ξ ∈Ξ̂

(
T∑

t=1

c>t xt(ξ
t) + d>yt(ξ

t)

)

subject to
t∑

s=1

Atsxs(ξ
s) + Btsys(ξ

s) ≤ Ctξ
t,

xi,t(ξ
t) ∈ R, i = 1, . . . , nt, yi,t(ξ

t) ∈ {0, 1}, i = 1, . . . , qt






∀ξ ∈ Ξ̂, ∀t = 1, . . . , T,

if ξj = ξk then xi,t(ξt
j) = xi,t(ξt

k), i = 1, . . . , n, t = 1, . . . , T

if ξj = ξk then yi,t(ξt
j) = yi,t(ξt

k), i = 1, . . . , q, t = 1, . . . , T





∀ξj , ξk ∈ Ξ̂, j 6= k,

(34)

Here, scenarios ξj , ξk are distinct elements of the finite set Ξ̂. The last two constraints in Problem (34)

model the non-anticipative nature of the adaptive decisions xt(∙) and yt(∙). As before, we propose to use

the critically binding scenarios Ξ̂∗ associated with Problem (33), to produce lower bounds on the optimal

solution of (32). For an introduction to scenario tree problems, we refer to Birge and Louveaux [16].

We end this section by pooling together the central insights of Section 4. If Problem (32) has

a non-empty and bounded feasible region, and a polyhedral uncertainty set, then the cutting plane

Algorithms 1, 2 or 3 can be applied to Problem (33). At each iteration of the algorithms, the constituent

problems can be reformulated into mixed-integer linear optimization problems using (19), (20), (21) for

the continuous decision rules and (26), (27), (28) for the binary decision rules. In particular, if one uses

reformulations (19) and (26), then the multistage variant of Problem (11) has a total of 1+
∑T

t=1[(3|Ξ̂|+

2Pkt)nt + (3|Ξ̂| + 2Pkt)qt] continuous variables,
∑T

t=1[|Ξ̂|2Pnt + |Ξ̂|(1 + 2P )qt] binary variables and

1 +
∑T

t=1[mt + |Ξ̂|(3 + 4P )nt + |Ξ̂|(5 + 4P )qt] constraints, where |Ξ̂| indicates the cardinality of Ξ̂.

Similarly, each of the multistage variants of Problems (12) has a total of k +
∑T

t=1[3nt + 3qt] continuous
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variables,
∑T

t=1[2Pnt + (1 + 2P )qt] binary variables and l +
∑T

t=1(3 + 4P )nt + (5 + 3P )qt constraints.

The number of decision variables and constraints is of similar order if reformulations (20), (21), (27),

(28) are used.

5 Computational Results

In this section, we apply the proposed decision rules to two variants of inventory control problems, and

benchmark them against decision rules that appear in the literature. We solve the proposed decision

rule problems using Algorithm 3, see Section 2.3. In particular, we use constants δ = 0.005, β = 10−4,

ε̂ = 0.005 and β̂ = 10−4. Moreover, we use the special ordered sets formulation (20) for the reformulation

of continuous decisions and the indicator constraint formulation (28) for the reformulation of binary

decisions. All of our numerical results are carried out using the IBM ILOG CPLEX 12.5 optimization

package on a Intel Core i7-2600 3.40GHz machine with 8GB RAM [30].

5.1 Multistage Inventory Control

In this case study, we consider a single item inventory control model that involves only continuous

decisions. The problem can be described as follows. At the beginning of each time period t ∈ T :=

{2, . . . , T}, the decision maker observes the product demand ξt. This demand can be served by either

placing an order xt(∙), with unit cost cx, which is delivered at the beginning of the next period, or by

placing an order zt(∙), having a more expensive unit cost cz, cx < cz, that is delivered immediately. If

the ordered quantity is greater than the demand, the excess units are stored in a warehouse, incurring

a unit holding cost ch, and can be used to serve future demand. If there is a shortfall in the available

quantity, then the orders are backlogged incurring a unit cost cb. The level of available inventory at each

period is given by It(∙). In addition, the cumulative volume of advance orders xt(∙) must not exceed

the ordering budget xtot,t at any time point t. The decision maker wishes to determine the ordering

levels xt(∙) and zt(∙) that minimize the total ordering, backlogging and holding costs, associated with

the worst- case demand realization over the planning horizon T . The problem can be formulated as the
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following multistage adaptive optimization problem.

minimize max
ξ ∈Ξ

∑

t∈T

cx xt−1(ξt−1) + cz zt(ξt) + max
{
cb It(ξt), ch It(ξt)

}

subject to xt−1(∙) ∈ Rt−1, zt(∙) ∈ Rt, It(∙) ∈ Rt ∀t ∈ T

It(ξ
t) = It−1(ξ

t−1) + xt−1(ξ
t−1) + zt(ξ

t) − ξt

0 ≤ xt−1(ξ
t−1), 0 ≤ zt(ξ

t)
t−1∑

s=1

xs(ξ
s) ≤ xtot,t






∀t ∈ T , ∀ξ ∈ Ξ.

(35)

The uncertainty set Ξ is given by,

Ξ :=

{

ξ ∈ Rk : ξ1 = 1, li ≤ ξi ≤ ui, i = 2, . . . , k,

∥
∥
∥
∥ξ−1 −

ξmax

2
e

∥
∥
∥
∥

1

≤
ξmax

2

}

, (36)

where constant ξmax denote the maximum demand that can occur in each period, and u, l ∈ Rk−1 denotes

denotes the upper and lower bounds on the random quantities ξ−1, respectively. Here, ξ−1 denotes the

subvector of the k − 1 last components of ξ ∈ Rk.

To bring Problem (35) in the standard form (32), we provide a reformulation for the maximum

appearing in the objective. Since all the maxima appear with a positive sign, they can be replaced by

introducing auxiliary decision variables ot(∙) ∈ Rt for all t ∈ T , serving as over-estimators for the max

functions. Therefore, the objective function can be replaced with

minimize max
ξ ∈Ξ

∑

t∈T

cx xt−1(ξ
t−1) + cz zt(ξ

t) + ot(ξ
t),

and the following set of linear constraints are added to Problem (35).

cb It(ξt) ≤ ot(ξt)

ch It(ξt) ≤ ot(ξt)





∀t ∈ T , ∀ξ ∈ Ξ.

We emphasize that ot(∙) are adaptive decisions, and the quality of the reformulation will depend on

the decision rules used. Exact reformulations for the summation of maxima that is independent of the

decision rule approximation used, are discussed in [25].

For our computational experiments we randomly generated 25 instances of Problem (35). The param-

eters are randomly chosen using a uniform distribution from the following sets: Advanced and instant

ordering costs are chosen from cx ∈ [0, 5] and cz ∈ [0, 10], respectively, such that cx < cz. Back-

logging and holding costs are elements of cb ∈ [−10, 0] and ch ∈ [0, 5], respectively. The maximum
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Global optimality 1% optimality 5% optimality

T PCt(2) LDR Time PCt(2) LDR Time PCt(2) LDR Time
5 2.9% 28.1% 2.7sec 4.8% 27.0% 0.6sec 4.6% 28.3% 0.5sec
10 2.5% 34.1% 3.9sec 3.8% 35.2% 3.3sec 4.7% 34.4% 3.0sec
15 1.2% 23.6% 46.8sec 1.3% 23.5% 95.7sec 3.1% 23.4% 9.6sec
20 1.3% 28.1% 2681.1sec 2.1% 33.4% 2083.7sec 4.7% 26.2% 607.9sec
25 0.4% 38.7% 3489.1sec 0.5% 45.3% 695.1sec 2.3% 39.7% 3763.1sec
30 1.6% 52.5% 36703.8sec 3.1% 57.1% 7883.7sec 4.2% 43.9% 4974.6sec

Table 1: Average optimality gaps from 25 randomly chosen instances for the linear decision
rules (LDR), piecewise linear decision rules x( ξ t) = x>L( ξ t) discussed in [5, 23] and the
proposed piecewise linear decision rules PCt(2) with two linear pieces. The piecewise linear
decisions rule x( ξ t) = x>L( ξ t), perform the same as the linear decision rules due to the
structure of L(∙) and uncertainty set (36), see [23, Section 4.1] for further discussion. The
time presented corresponds to the average time taken to solve the optimization problems for the
proposed approximation. All problems with linear decision rules and piecewise linear decisions
rule x( ξ t) = x>L( ξ t) were solved within 10 seconds.

demand parameter is set to ξmax = 100, and the lower and upper bounds for each random parameter

are chosen from li ∈ [0, 25] and ui ∈ [75, 100] for i = 2, . . . , k. The cumulative ordering budget equals

to xtot,t =
∑t

s=1 xs, for t = 2, . . . , T , with xt ∈ [0, 100]. We also assume that the initial inventory

level equals to zero, i.e., I1 = 0.

In the first test series we compare the performance of different decision rules, on randomly generated

instances of Problem (35) with planning horizons up to 30 time periods. Note that for a horizon of T ,

Problem (35) has a total of 4T real-valued adaptive decisions, 6T semi-infinite constraints and T − 1

uncertain parameters. For all adaptive decisions in the problem, we consider the following decision rules:

1. Linear decision rules;

2. Piecewise linear decisions expressed in the form x(ξt) = x>L(ξt), where the non-linear operator L

creates 4 piecewise linear components for each ξi, i = 2, . . . , k, see [23, Section 4.1] for more details;

3. The proposed piecewise linear decision rules with 2 linear pieces PCt(2).

The approximations are benchmarked against the lower bounding, scenario tree problem (34) constructed

using the binding scenarios from the proposed decision rules. Table 1 presents the results from this test

series in terms of the average relative gap between the optimal value of the decision rule problem and the

optimal value of the lower bounding problem. The relative gap is defined as quantity (ub−lb)
2(ub+lb) , where ub

and lb are the corresponding objective values for the upper and lower bounding problems. Moreover, we

present the performance of the approximation when the termination criteria for the mixed-integer linear

optimization problem in Step 2 of the algorithms is set to global optimality, 1% and 5% optimality gap.

We emphasize that for linear and piecewise linear decisions expressed in the form x(ξt) = x>L(ξt), the

corresponding decision rule problems are solved to global optimality.
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An interesting first observation is that the linear and piecewise linear decision rules x(ξt) = x>L(ξt)

perform exactly the same. This is an artifact of the additional approximation needed in order to refor-

mulate the problem as a linear optimization problem, see Georghiou et al. [23, Section 4] for an extensive

discussion. Nevertheless, the optimal solution of these decision rules is no worse than that of the linear

decision rules. Indeed, for an arbitrary non-linear operator L(∙), and uncertainty set Ξ, producing the

exact reformulation for the decision rule problem into a linear optimization problem is NP-hard [23,

Lemma 4.4]. We emphasize that the proposed piecewise linear decision rules PCt(P ) do not require this

additional approximation, thus achieving the best piecewise linear decision rule within the functional

space PCt(P ).

In general, the linear decision rules produce suboptimal solutions. The average relative gap is more

than 20% and can reach 60%. On the other hand, the proposed approach always produces near optimal

solutions with the average gap being below the 5% threshold. It is interesting to notice that the solution

quality of the proposed approximation does not deteriorate excessively as the termination criteria for the

mixed-integer linear optimization problem in Step 2 is relaxed. Nevertheless, the computational time

for these problems is significantly improved.
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Figure 1: Performance of decision rule approximations in the problem instance with cx = 5,

cz = 10, cb = −10, ch = 5, li = 0, ui = 100, i = 2, . . . , k, and xt = 50. The left diagram illustrates

the performance of the different decision rule approximations considered for Problem (35). The

diagram also includes the lower bound proposed in [23, 31] using uniform distribution. The relative

performance of the approximations in run times is reported in the center diagram, while the diagram

in the right reports the total number of binding scenarios required by the cutting plane algorithm to

converge.

To better understand the behaviour of the proposed approach, Figure 1 presents the results of a

single problem instance. For this example we also benchmark the proposed approximation against the

lower bound proposed in [23, 31] using uniform distribution. In this particular example, the objective

value of the proposed decision rule problem exactly matches the objective value of the lower bounding,

scenario tree problem, verifying that it achieves the global optimal solution. Relaxing the termination

criteria for the mixed-integer linear optimization problems also produces near optimal solutions, with

the relative gap being always below 4%. It is interesting to see that the total number of samples needed
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for the cutting plane algorithm to converge decreases as the termination criterion is relaxed, Figure 1

(right). This has also a great impact on the solution time as the total number of binary variables needed

for the reformulation of Problem (11) grow linearly with respect to the number of binding scenarios.

It is also interesting to see the behavior of the lower bound proposed in [31] which vastly overestimates

the true optimal value of the problem. This is a result of the unsuitable choice of the distribution used, a

drawback that is not shared by the lower bounding, scenario tree problem (34), see [27] for more details.

Our key conclusions from this study are:

1. The proposed piecewise linear continuous decision rules are practically scalable and provide provable

near optimal solutions;

2. Relaxing the termination criteria optimality tolerance for the mixed-integer optimization problems,

can boost the scalability of the proposed method;

3. Utilizing the scenario based lower bounding technique in conjunction with the proposed approach

can provide tight lower bounds to the global optimal solution of the problem in hand, producing

good estimates for the loss of optimality.

5.2 Multistage Lot Sizing

In the second case study, we consider a variant of the inventory control problem presented in the previous

section that includes both continuous and binary decisions. This problem features two main differences:

(i) The continuous ordering quantity zt is replaced with N binary ordering decisions ynt, n = 1 . . . , N that

deliver immediately fixed quantities qn, n = 1 . . . , N and incur unit cost cyn , n = 1 . . . , N , respectively;

(ii) Unlike the previous problem where unsatisfied demand could be backlogged, in this problem the

decision maker needs to robustly satisfy all uncertainty demand ξt that arise at every period. As before,

the decision maker aims to determine ordering levels that minimize the total ordering and holding costs

associated with the worst- case demand realization over the planning horizon T . The problem can be

formulated as the following multistage adaptive optimization problem.

minimize max
ξ ∈Ξ

∑

t∈T

cx xt−1(ξ
t−1) + cb It(ξ

t) +
N∑

n=1

cynqn ynt(ξ
t)

subject to xt−1(∙) ∈ Rt−1, It(∙) ∈ Rt, ynt(∙),∈ Bt ∀n = 1, . . . , N, ∀t ∈ T

It(ξ
t) = It−1(ξ

t−1) + xt−1(ξ
t−1) +

N∑

n=1

qn ynt(ξ
t) − ξt

0 ≤ xt−1(ξ
t−1), 0 ≤ It(ξ

t)
t−1∑

s=1

xs(ξ
s) ≤ xtot,t






∀t ∈ T , ∀ξ ∈ Ξ.

(37)
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Binary ordering decisions per stage: N = 2
1% optimality 5% optimality

T PBt(1) Non-adaptive Time PBt(1) Non-adaptive Time
2 0.0% 17.6% 0.1sec 0.6% 17.6% 0.4sec
4 24.2% 68.6% 50.6sec 27.3% 68.6% 45.5sec
6 37.4% 62.0% 4833.8sec 38.9% 62.1% 956.8sec
8 37.9% 84.4% 27531.1sec 38.0% 84.4% 19573.1sec
10 39.7% 89.9% 35716.6sec 42.0% 89.9% 31464.1sec

Binary ordering decisions per stage: N = 3
1% optimality 5% optimality

T PBt(1) Non-adaptive Time PBt(1) Non-adaptive Time
2 0.0% 27.6% 0.1sec 1.2% 27.6% 0.1sec
4 17.2% 73.3% 3381.8sec 23.9% 73.3% 781.6sec
6 34.5% 66.2% 9181.0sec 38.4% 66.1% 3298.1sec
8 37.6% 83.4% 28742.7sec 38.1% 83.7% 21885.5sec
10 - 89.7% - 41.1% 90.7% 39141.5sec

Table 2: Average optimality gaps from 25 randomly chosen instances. The lower bounding
problems are formulated using the binding scenarios from the corresponding adaptive PB(1)
and non-adaptive problems. The solution time presented correspond to the average time taken
to solve the optimization problems for the adaptive binary decision rules PB(1). All problems
involving non-adaptive decisions were solved within 15 seconds.

The uncertainty set Ξ is given by,

Ξ :=
{
ξ ∈ Rk : ξ1 = 1, li ≤ ξi ≤ ui, i = 2, . . . , k

}
.

For our computational experiments we randomly generate 25 instances of Problem (37). The pa-

rameters are randomly chosen using a uniform distribution from the following sets: Advanced and

instant ordering costs are chose from cx ∈ [0, 5] and cyn ∈ [0, 10] for all n = 1, . . . , N , respectively,

such that cx < cyn
. Holding costs are elements of ch ∈ [0, 10] with the fixed ordering quantities set to

qn = 100/N for all n = 1, . . . , N . As before the cumulative ordering budget equals to xtot,t =
∑t

s=1 xs,

for t = 2, . . . , T , with xt ∈ [0, 100] and the lower and upper bounds for each random parameter are

chosen from li ∈ [0, 25] and ui ∈ [75, 100], i = 2, . . . , k. We also assume that the initial inventory level

equals to zero.

In the first test series, we compare the performance of adaptive versus non-adaptive binary decisions

on instances of Problem (37) with planning horizons up to 10 periods. Note that for a horizon of

T , Problem (37) has a total of 2T real-valued adaptive decisions, NT binary adaptive decisions, 4T

semi-infinite constraints and T − 1 uncertain parameters. To this end, we apply linear decision rules

to continuous ordering decisions, i.e., xt ∈ PCt(1) for all t ∈ T , and compare the performance of the

piecewise constant binary decision rules with one piece, ynt ∈ PBt(1), for all n = 1, . . . , N , versus

the non-adaptive binary decision, ynt ∈ {0, 1}, for all n = 1, . . . N . In addition to the functional
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approximation ynt ∈ PBt(1), we restrict the information available to the binary decision rules ynt to be

only on the random parameter at stage t, i.e., ξt = ξt and ynt(ξt) = ynt(ξt). As we will demonstrate

later, this secondary approximation boosts the computational tractability of the approximation. Table 2

presents the results from this test series in terms of the average relative gaps. We emphasize that

the lower bounding problems (34) are formulated using the binding scenarios from the corresponding

adaptive PB(1) and non-adaptive problems. From the results, it is evident that the adaptive PB(1)

binary decision rule problem achieves a much better performance than the non-adaptive problem both

in the N = 2 and N = 3 case. The poor relative gaps achieved in the non-adaptive problem are partly

attributed to the poor performance of the lower bounding problem, see Figure 2 (left). Since the binding

scenarios of the non-adaptive problem do not correspond to the worst-case realization of the adaptive

problem (37), the lower bounding problem (34) significantly overestimates the true optimal value of

Problem (37).
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Figure 2: The left diagram illustrates the performance of the adaptive PB(1) versus non-adaptive

binary decisions together with their corresponding lower bounding problems. The center diagram il-

lustrate the performance of the binary decisions in terms of runtime when we restrict the information

available to the decisions, while the diagram in the right reports the total number of binding scenarios

required by the cutting plane algorithm to converge. Both tests are run on an instance of (37) with

N = 2, cx = 5, cyn = 10 for n = 1, 2, ch = 10, li = 0, ui = 100, i = 2, . . . , k and xt = 50.

In the second test series, we compare the performance of the piecewise linear binary decision rules

in terms of run times, when the information available to the decision rule is restricted. The three

restrictions are (i) ξt = ξt, i.e., ynt(ξt) = ynt(ξt), (ii) ξt = (ξt−1, ξt)>, i.e., ynt(ξt) = ynt(ξt−1, ξt) and

(iii) ξt = (ξt−2, ξt−1, ξt)>, i.e., ynt(ξt) = ynt(ξt−2, ξt−1, ξt). The results are presented in Figure 2 (center).

Our results show that all three restrictions produce the same solution for Problem (37). Nevertheless,

restriction ynt(ξt) = ynt(ξt) achieves the fastest solution runtime. On the other hand, it is only possible

to solve problems with ynt(ξt) = ynt(ξt−1, ξt) and ynt(ξt) = ynt(ξt−2, ξt−1, ξt) within a reasonable amount

of time for problem instances of T = 4 and T = 3, respectively. This is directly related to the total

number of binding scenarios needed for the cutting plane algorithm to converge. From Figure 2 (right),

we see that these numbers can be quite large, rendering Problem (11) computationally intractable. We
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note that for the given input parameters δ = 0.005, β = 10−4, the worst- case number of scenarios needed

to solve the problem with ynt(ξt) = ynt(ξt−2, ξt−1, ξt) and T = 4, calculated using the multistage version

of bound (14), is close to 9 million.

Our key conclusions from this study are:

1. Although the results are not as strong as in Section 5.1, the proposed binary decision rules out-

putperform the simple, non-adaptive binary decisions, and produce good quality results.

2. By controlling the information available to the decision rule, one is able to solve large instances of

the problem in hand.

3. We demonstrate that the quality of the scenario-based lower bounding problem (34) benefits from

the proposed approach, giving an efficient indication for the loss of optimality.

6 Conclusions

In this paper we present a framework to address the design of decision rules involving both continuous

and binary variables as piecewise linear and piecewise constant functions, respectively. The methodology

presented addresses the shortcoming of non-linear decision rules appearing in the literature which requires

the structure of the decision rules being decided a priori. Instead, we first derive the structure for the

optimal decision rules involving both continuous and binary variables as piecewise linear and piecewise

constant functions, respectively, and present a solution method that designs the structure of the decision

rules endogenously through a sequence of mixed-integer optimization problems. The effectiveness of

the proposed methods is demonstrated in the context of two multistage inventory control problems,

where we show that our approach is (i) practically tractable and (ii) provides high quality solutions that

outperform alternative methods.
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