4 research outputs found

    Optimal Wavelength Allocation in Hybrid Quantum-Classical Networks

    Get PDF
    An efficient algorithm for optimal allocation of wavelengths in a hybrid dense-wavelength-division-multiplexing system, carrying both quantum and classical data, is proposed. The transmission of quantum bits alongside intense classical signals on the same fiber faces major challenges arising from the background noise generated by classical channels. Raman scattering, in particular, is shown to have detrimental effects on the performance of quantum key distribution systems. Here, by using an optimal wavelength allocation technique, we minimize the Raman induced background noise on quantum channels, hence maximize the achievable secret key generation rate for quantum channels. It turns out the conventional solution that the optimal arrangement would involve splitting the spectrum into only two bands, one for quantum and one for classical channels, is only a suboptimal one. We show that, in the optimal arrangement, we might need several quantum and classical bands interspersed among each other

    Crosstalk Reduction in Hybrid Quantum-Classical Networks

    Get PDF
    In this paper, we propose and investigate several crosstalk reduction techniques for hybrid quantum-classical dense-wavelength-division-multiplexing systems. The transmission of intense classical signals alongside weak quantum ones on the same fiber introduces some crosstalk noise, mainly due to Raman scattering and nonideal channel isolation, that may severely affect the performance of quantum key distribution systems. We examine the conventional methods of suppressing this crosstalk noise, and enhance them by proposing an appropriate channel allocation method that reduces the background crosstalk effectively. Another approach proposed in this paper is the usage of orthogonal frequency division multiplexing, which offers efficient spectral and temporal filtering features

    Wavelength Assignment in Hybrid Quantum-Classical Networks

    Get PDF
    Optimal wavelength assignment in dense-wavelength-division-multiplexing (DWDM) systems that integrate both quantum and classical channels is studied. In such systems, weak quantum key distribution (QKD) signals travel alongside intense classical signals on the same fiber, where the former can be masked by the background noise induced by the latter. Here, we investigate how optimal wavelength assignment can mitigate this problem. We consider different DWDM structures and various sources of crosstalk and propose several near-optimal wavelength assignment methods that maximize the total secret key rate of the QKD channels. Our numerical results show that the optimum wavelength assignment pattern is commonly consisted of several interspersed quantum and classical bands. Using our proposed techniques, the total secret key rate of quantum channels can substantially be improved, as compared to conventional assignment methods, in the noise dominated regimes. Alternatively, we can maximize the number of QKD users supported under certain key rate constraints

    Resource Allocation in Optical Networks Secured by Quantum Key Distribution

    Get PDF
    Optical network security is attracting increasing research attention, as loss of confidentiality of data transferred through an optical network could impact a huge number of users and services. Data encryption is an effective way to enhance optical network security. In particular, QKD is being investigated as a secure mechanism to provide keys for data encryption at the endpoints of an optical network. In a QKD-enabled optical network, apart from TDChs, two additional channels, called QSChs and PIChs, are required to support secure key synchronization. How to allocate network resources to QSChs, PIChs, and TDChs is emerging as a novel problem for the design of a security-guaranteed optical network. This article addresses the resource allocation problem in optical networks secured by QKD. We first discuss a possible architecture for a QKD-enabled optical network, where an SDN controller is in charge of allocating the three types of channels (TDCh, QSCh, and PICh) over different wavelengths exploiting WDM. To save wavelength resources, we propose to adopt OTDM to allocate multiple QSChs and PIChs over the same wavelength. An RWTA algorithm is designed to allocate wavelength and time slot resources for the three types of channels. Different security levels are included in the RWTA algorithm by considering different key updating periods (i.e., the period after which the secure key between two endpoints has to be updated). Illustrative simulation results show the effects of different security-level configuration schemes on resource allocation
    corecore