2,194 research outputs found

    Value of Information in Feedback Control

    Full text link
    In this article, we investigate the impact of information on networked control systems, and illustrate how to quantify a fundamental property of stochastic processes that can enrich our understanding about such systems. To that end, we develop a theoretical framework for the joint design of an event trigger and a controller in optimal event-triggered control. We cover two distinct information patterns: perfect information and imperfect information. In both cases, observations are available at the event trigger instantly, but are transmitted to the controller sporadically with one-step delay. For each information pattern, we characterize the optimal triggering policy and optimal control policy such that the corresponding policy profile represents a Nash equilibrium. Accordingly, we quantify the value of information VoIk\operatorname{VoI}_k as the variation in the cost-to-go of the system given an observation at time kk. Finally, we provide an algorithm for approximation of the value of information, and synthesize a closed-form suboptimal triggering policy with a performance guarantee that can readily be implemented

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    corecore