57 research outputs found

    The Phoenix Drone: An Open-Source Dual-Rotor Tail-Sitter Platform for Research and Education

    Full text link
    In this paper, we introduce the Phoenix drone: the first completely open-source tail-sitter micro aerial vehicle (MAV) platform. The vehicle has a highly versatile, dual-rotor design and is engineered to be low-cost and easily extensible/modifiable. Our open-source release includes all of the design documents, software resources, and simulation tools needed to build and fly a high-performance tail-sitter for research and educational purposes. The drone has been developed for precision flight with a high degree of control authority. Our design methodology included extensive testing and characterization of the aerodynamic properties of the vehicle. The platform incorporates many off-the-shelf components and 3D-printed parts, in order to keep the cost down. Nonetheless, the paper includes results from flight trials which demonstrate that the vehicle is capable of very stable hovering and accurate trajectory tracking. Our hope is that the open-source Phoenix reference design will be useful to both researchers and educators. In particular, the details in this paper and the available open-source materials should enable learners to gain an understanding of aerodynamics, flight control, state estimation, software design, and simulation, while experimenting with a unique aerial robot.Comment: In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'19), Montreal, Canada, May 20-24, 201

    Trajectory Generation and Tracking Control for Aggressive Tail-Sitter Flights

    Full text link
    We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g

    Disturbance observer-based backstepping control of tail-sitter UAVs

    Get PDF
    The application scope of unmanned aerial vehicles (UAVs) is increasing along with commensurate advancements in performance. The hybrid quadrotor vertical takeoff and landing (VTOL) UAV has the benefits of both rotary-wing aircraft and fixed-wing aircraft. However, the vehicle requires a robust controller for takeoff, landing, transition, and hovering modes because the aerodynamic parameters differ in those modes. We consider a nonlinear observer-based backstepping controller in the control design and provide stability analysis for handling parameter variations and external disturbances. We carry out simulations in MATLAB Simulink which show that the nonlinear observer contributes more to robustness and overall closed-loop stability, considering external disturbances in takeoff, hovering and landing phases. The backstepping controller is capable of decent trajectory-tracking during the transition from hovering to level flight and vice versa with nominal altitude drop.Web of Science106art. no. 11

    Nonlinear robust control of tail-sitter aircrafts in flight mode transitions

    Get PDF
    © 2018 Elsevier Masson SAS In this paper, a nonlinear robust controller is proposed to deal with the flight mode transition control problem of tail-sitter aircrafts. During the mode transitions, the control problem is challenging due to the high nonlinearities and strong couplings. The tail-sitter aircraft model can be considered as a nominal part with uncertainties including nonlinear terms, parametric uncertainties, and external disturbances. The proposed controller consists of a nominal H∞controller and a nonlinear disturbance observer. The nominal H∞controller based on the nominal model is designed to achieve the desired trajectory tracking performance. The uncertainties are regarded as equivalent disturbances to restrain their influences by the nonlinear disturbance observer. Theoretical analysis and simulation results are given to show advantages of the proposed control method, compared with the standard H∞control approach
    • …
    corecore