4 research outputs found

    Optimizing Pilot Overhead for Ultra-Reliable Short-Packet Transmission

    Full text link
    In this paper we optimize the pilot overhead for ultra-reliable short-packet transmission and investigate the dependence of this overhead on packet size and error probability. In particular, we consider a point-to-point communication in which one sensor sends messages to a central node, or base-station, over AWGN with Rayleigh fading channel. We formalize the optimization in terms of approximate achievable rates at a given block length, pilot length, and error probability. This leads to more accurate pilot overhead optimization. Simulation results show that it is important to take into account the packet size and the error probability when optimizing the pilot overhead.Comment: To be published on IEEE ICC 2017 Communication Theory Symposiu

    Noncoherent Short-Packet Communication via Modulation on Conjugated Zeros

    Get PDF
    We introduce a novel blind (noncoherent) communication scheme, called modulation on conjugate-reciprocal zeros (MOCZ), to reliably transmit short binary packets over unknown finite impulse response systems as used, for example, to model underspread wireless multipath channels. In MOCZ, the information is modulated onto the zeros of the transmitted signals z−transform. In the absence of additive noise, the zero structure of the signal is perfectly preserved at the receiver, no matter what the channel impulse response (CIR) is. Furthermore, by a proper selection of the zeros, we show that MOCZ is not only invariant to the CIR, but also robust against additive noise. Starting with the maximum-likelihood estimator, we define a low complexity and reliable decoder and compare it to various state-of-the art noncoherent schemes

    Optimal Training for Frequency-Selective Fading Channels

    Get PDF
    Many communications systems employ training, i.e., the transmission of known signals, so that the channel parameters may be learned at the receiver. This has a dual effect: too little training and the channel is improperly learned, too much training and there is no time left for data transmission before the channel changes. In this paper we use an information-theoretic approach to find the optimal amount of training for frequency selective channels described by a block-fading model. When the training and data powers are allowed to vary, we show that the optimal number of training symbols is equal to the length of the channel impulse response. When the training and data powers are instead required to be equal, the optimal number of symbols may be larger. We further show that at high SNR training-based schemes are capable of capturing most of the channel capacity, whereas at low SNR they are highly suboptimal. 1
    corecore