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Abstract

We introduce a novel blind (noncoherent) communication scheme, called modulation on conjugate-

reciprocal zeros (MOCZ), to reliably transmit short binary packets over unknown finite impulse response

systems as used, for example, to model underspread wireless multipath channels. In MOCZ, the infor-

mation is modulated onto the zeros of the transmitted signals z−transform. In the absence of additive

noise, the zero structure of the signal is perfectly preserved at the receiver, no matter what the channel

impulse response (CIR) is. Furthermore, by a proper selection of the zeros, we show that MOCZ is not

only invariant to the CIR, but also robust against additive noise. Starting with the maximum-likelihood

estimator, we define a low complexity and reliable decoder and compare it to various state-of-the art

noncoherent schemes.

I. INTRODUCTION

The future generation of wireless networks faces a diversity of new challenges. Trends on the

horizon – such as the emergence of the Internet of Things (IoT) and the tactile Internet – have

radically changed our thinking about how to scale the wireless infrastructure. Among the main

challenges new emerging technologies have to cope with is the support of a massive number

(billions) of devices ranging from powerful smartphones and tablet computers to small and

low-cost sensor nodes. These devices come with diverse and even contradicting types of traffic
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including high speed cellular links, device-to-device connections, and wireless links carrying

short-packet sensor data. Short messages of sporadic nature [1] will dominate in the future

and the conventional cellular and centrally-managed wireless network infrastructure will not

be flexible enough to keep pace with these demands. Although intensively discussed in the

research community, the most fundamental question here on how we will communicate in the

near future under such diverse requirements remains largely unresolved. A key problem is how

to acquire, communicate, and process channel information. Conventional channel estimation pro-

cedures require a substantial amount of resources and overhead. This overhead can dominate the

intended information exchange when the message is short and the traffic sporadic. Noncoherent

and blind strategies, provide a potential way out of this dilemma. Classical approaches like

blind equalization have been already investigated in the engineering literature [2]–[4], but new

noncoherent modulation ideas which explicitly account for the short-message and sporadic type

of data are required [5].

In many wireless communication scenarios the transmitted signals are affected by multipath

propagation and the channel will therefore be frequency-selective. Additionally, in mobile and

time-varying scenarios one encounters also time-selective fast fading. In both cases channel

parameters typically have a random flavour and potentially cause various kinds of interference.

From a signal processing perspective it is therefore necessary to take care of possible signal

distortions, at the receiver and potentially also at the transmitter. A well know approach to deal

with such channels is to modulate data on multiple parallel waveforms which are well-suited for

the particular channel conditions. One of the most simple approaches for the frequency-selective

case is orthogonal frequency division multiplexing (OFDM). When the maximal channel delay

spread is known inter-symbol-interference (ISI) can be avoided by a suitable guard interval and

an orthogonality of the subcarriers ensures that there is no interference-carrier-interference. On

the other hand, from an information-theoretic perspective, random channel parameters are helpful

from a diversity view point. To exploit multipath diversity the data has to be spread over the

subcarriers. To coherently demodulate the data at the receiver and to also make use of diversity

the channel impulse response (CIR) has to be known at the receiver. To gain knowledge of

the CIR training symbols (pilots) are included in the transmitted signal, leading to a substantial

overhead when the signal length is on the order of the channel length. Furthermore, the pilot

density has to be adapted to the mobility and, in particular, OFDM is very sensitive to time-

varying distortions due to Doppler shift and oscillator instabilities. Dense CIR updates are then
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required, which results in complex transceiver designs.

There are only a few works on noncoherent OFDM schemes in the literature. Some are known

as self-heterodyne OFDM or self-coherent OFDM [6], [7]. Very recently a noncoherent method

for OFDM with Index Modulation (IM) was proposed in [8], which exploits a sparsity of L

subcarriers out of N . The modulation can be seen as a generalized N − ary frequency shift

keying (FSK), which uses L tones (frequencies) and results in a codebook of M =
(
N
L

)
non-

orthogonal constellations. In this work we follow a completely different strategy. We propose

to encode each bit of the data payload into one of a conjugate-reciprocal pairs of zeros (in

the complex plane) and thereby construct a polynomial whose degree is the number of payload

bits. The complex-valued coefficients of the polynomial are in fact the transmit baseband signal

samples. We introduced such a non-linear modulation on polynomial zeros first for Huffman

sequences in [9], [10] and demonstrated to perform efficient and reliable convex and non-convex

decoding algorithms. However, such optimization algorithms are meant for blind deconvolution,

i.e., reconstruct channel and signal simultaneously, and are therefore not necessarily well-suited

and efficient to retrieve the digital data from finite alphabets.

In this work we will therefore extend our previous ideas and develop and analyze polynomial-

factorization-based approaches more concretely from a communication-oriented perspective. We

will extend the modulation and encoding principle to general codebooks based on polynomial

zeros. We derive and analyse the maximum likelihood decoder, which depends only on the power

delay profile of the channel and the noise power. Then, we construct a low complexity decoder

for Huffman sequences having a complexity which scales only linearly in the number of bits to

transmit. We will demonstrate by numerical experiments that our scheme is able to outperform

noncoherent OFDM-IM and pilot based M−QAM schemes in terms of bit-error rate.

A. Notation

We will use small letters for complex numbers in C. Capital Latin letters denote natural

numbers and refer to fixed dimensions, where small letters are used as indices. Boldface small

letters denote vectors and capitalized letters refer to matrices. Upright capital letters denote

complex-valued polynomials in C[z]. For a complex number x = a + jb, given by its real

part Re(x) = a ∈ R and imaginary part Im(x) = b ∈ R with imaginary unit j =
√
−1, its

complex-conjugation is given by x = a− jb and its absolute value by |x| =
√
xx. For a vector

x ∈ CN we denote by x− its complex-conjugated time-reversal or conjugated-reciprocal, given
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as x−k = xN−k for k = 0, 1, . . . , N − 1. We use A∗ = A
T

for the complex-conjugated transpose

of the matrix A. For the identity and all zero matrix in N dimension we write IN respectively

ON . By Dx we refer to the diagonal matrix generated by the vector x ∈ CN . The N×N unitary

Fourier matrix F = FN is given entry-wise by fl,k = ej2πlk/N/
√
N for l, k = 0, 1, . . . , N − 1.

The all one respectively all zero vector in dimension N will be denoted by 1N resp. 0N . The

`p-norm of a vector x ∈ CN is given by ‖x‖p = (
∑N

k=1 |xk|p)1/p for p ≥ 1. If p =∞ we write

‖x‖∞ = maxk |xk|. The expectation of a random variable x is denoted by E[x]. We will refer

to x • y := diag(x)y as the Hadamard (point-wise) product of the vectors x,y ∈ CN .

II. CHANNEL MODEL

In this work we will consider communication over frequency-selective block-fading channels

used for indoor and outdoor scenarios, where the channel delay spread Td is in the order of

the signal duration Ts = NT , given by the symbol duration T and overall block length N . We

assume that the channel is time-invariant in each block, but changes arbitrary from block to block,

which models a time-varying channel [11]. Conventional coherent communication strategies,

e.g., most based on OFDM, are expected to be inefficient in this regime. We will therefore

propose (in the next section) a novel modulation scheme for noncoherent communication, which

keeps the relevant information in the transmitted signal invariant under multipath propagation and

therefore completely avoids channel estimation and signal equalization at the receiver. Assuming

that the CIR remains constant over the one-shot (block) communication period, the discrete-time

baseband model for this channel is given as a linear convolution:

yn =
L−1∑
l=0

hlxn−l + wn for n ∈ {0, 1, 2, . . . , N}, (1)

of the transmitted time symbols {xn}Kn=0 with the complex-valued channel coefficients (taps)

{hl}L−1l=0 ∈ C resulting in a block of N = L+K received symbols. Additionally, the convolution

is disturbed by additive noise wn. We denote the block (packet) of K + 1 transmitted time

symbols as the vector x = (x0, x1, . . . , xK)
T ∈ CK+1 and assume wlog a normalization ‖x‖22 =∑

k |xk|2 = 1. In this form, we obtain at the receiver the vector:

y = x ∗ h+w ∈ CN . (2)

Contrary to usual assumptions, we assume that only one packet x is transmitted, which is

called a “one-shot” communication. Here, the next transmission will be at an indefinite time

May 22, 2018 DRAFT



5

point such that it is not possible to predict the CIR. Such a sporadic transmission scheme can

therefore be seen as a prototype problem relevant for machine-to-machine communications, car-

to-car/infrastructure and wireless sensor networks where status updates and control messages

determine the typical traffic type.

A. Channel and Noise Statistics

The channel and noise taps are modeled as independent circularly symmetric Gaussian random

variables

h ∈ CL , hl ∼ CN (0, pl) (3)

w ∈ CN , wn ∼ CN (0, σ2) (4)

where we assume with p ≤ 1 an exponential decaying average power delay profile E[|hl|2] = pl

for the lth path, see for example [12]. The average noise power is denoted by σ2 = N0 > 0

and is constant for each tap. Due to the independence of the channel taps we can derive for the

average received signal-to-noise ratio:

rSNR = E[

(
‖x ∗ h‖22
‖w‖22

)
] =

E[‖x‖22]E[‖h‖
2
2]

E[‖w‖22]
=

E[‖h‖22]
N ·N0

. (5)

The average energy of the multipath Rayleigh fading channel h is then given by

E[‖h‖22] =
L−1∑
l=0

pl =
1− pL

1− p
. (6)

Hence we obtain

rSNR =
1

N ·N0

1− pL

1− p
. (7)

III. TRANSMISSION SCHEME VIA MODULATION ON ZEROS

The convolution in (2) can be also represented by a polynomial multiplication. Let x ∈ CK+1,

then its z-transform is the polynomial

X(z) =
K∑
k=0

xkz
k , z ∈ C, (8)

which has order K if and only if xK 6= 0. The received signal (2) is in the z−domain given by

a polynomial of order K + L− 1

Y(z) = X(z)H(z) +W(z), (9)
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where X(z),H(z) and W(z) are the polynomials of order K, L− 1 and K+L− 1 generated by

x,h respectively w. Any polynomial X(z) of order K, can also be represented by its K zeros

αk and its leading coefficient xK as

X(z) = xK

K∏
k=1

(z − αk). (10)

If we assume that x is normalized, then xK is fully determined by its K zeros, which leaves us

with K degrees of freedom for our signals, given by K zero-symbols αk. Let us note, that the

notation X(z) is commonly used for the z−transform. However, since each polynomial of order

K, with non-vanishing zeros, corresponds to a unilateral (one-sided) z−transform with the same

zeros and an additional pole at z = 0, both “zero” representations above are equivalent. In this

work we will exclusively use the polynomial notation, since it will be more convenient for our

purpose.

The multiplication by the channel polynomial H(z) adds at most L− 1 zeros βl, which may

be arbitrary distributed over the complex plane depending by the actual channel coefficients.

However, for typical random channel models, it holds with probability one that the channel and

signal polynomials, generated by a finite codebook set C ⊂ CK+1, do not share a common zero.

The no common zero property is a necessary condition for blind deconvolution, see [13]–[15].

We will later investigate in more detail the distribution of the zeros and their dependence on the

coefficients to derive robustness results against additive noise.

Contrary to time or frequency modulations, where each time-symbol, resp. frequency-symbol,

uses the whole complex plane as its constellation domain, the K zero-symbols have to share their

constellation domains. Hence, we need to partition the complex plane in MK disjoint (connected)

sets {D(m)
k }

K,M−1
k=1,m=0 and cluster them to K sectors (constellation domains) Sk :=

⋃M−1
m=0 D

(m)
k

for k = 1, 2, . . . , K of size M each. For each set D
(m)
k we associate exactly one zero α

(m)
k .

This will define K zero constellation sets Zk = {α(0)
k , . . . , α

(M−1)
k } for k = 1, 2, . . . , K of M

zeros each. If we select from each Zk exactly one zero-symbol αk, then we can construct MK

different zero vectors

α =


α1

...

αK

 ∈ Z = Z1 × · · · ×ZK ⊂ CK . (11)

The zero-codebook Z has cardinality MK and allows therefore to encode K logM bits. Hence,

the message stream of an M -ary alphabet is partitioned in words m = (m1, . . . ,mK)
T of length
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m̂K

Distance
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Modulation

Figure 1: MOZ scheme

K and each letter mk is assigned to the kth zero-symbol αk ∈ Zk, see Figure 1. Note, that the

zero constellation sets Zk have to be ordered in the zero-codebook, otherwise a unique letter

assignment would not be possible. The zero vector α generates then by the Vitae formula V ,

see for example [16], the coefficients of the corresponding polynomial1

x = V (α) = xK


(−1)K

∏
k αk

...

−
∑

k αk

1

 , (12)

where xK = xK(α) is chosen, such that x has unit `2−norm. These signal constellations therefore

define an (K + 1)−block codebook C of signals (sequences) in the time–domain. To avoid a

signal overlap between blocks we use a guard interval of L−1 resulting in a received block length

of N = K + L. We will call this channel encoding scheme a Modulation On Zeros (MOZ),

see Figure 1 and Figure 2a for M = 2. Let us note, that the digital data, modulated on the

zero-symbols, results in perfect interleaved time and frequency symbols. Hence, the transmitter

exploits the full multipath diversity in time and frequency. This is in contrast to most modulation

schemes, which either interleave the data in time (OFDM) or frequency domain (PPM, PAM).

1The Vitae formula can also be seen as an explicit formula for the inverse z−transform z−Kx0
∏
(z − αk).
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A. Modulation On Conjugate-reciprocal Zeros

One such partition structure is given for even M by MK/2 conjugate-reciprocal zero pairs

with distinct phases. By ordering the pairs by their phases in increasing order, we can generate

K sectors with M/2 possible conjugate-reciprocal zero pairs

Zk =
{
{(α(0)

k , α
(1)
k )}, {(α(2)

k , α
(3)
k )}, . . . , {(α(M−2)

k , α
(M−1)
k )}

}
, (13)

where for all m = 0, 2, 4, . . . ,M − 2 we have α(m+1)
k = 1/α

(m)
k . We will additionally order α(m)

k

by increasing phase or radius respectively. This allows to encode logM bits per transmitted

zero and we call this scheme an M−ary Modulation On Conjugate-reciprocal Zeros (MOCZ),

pronounced as “Moxie“.

If we set M = 2 we can encode exactly K bits in the signal x. The 2K zeros
⋃

Zk of the

K pairs define an autocorrelation a ∈ C2K+1 where we set the leading coefficient a2K such that

aK = 1. Then each normalized signal x is generated by (12) from the zero codeword

α =


α1

...

αK

 ∈ Z := {α(0)
1 , α

(1)
1 } × · · · × {α

(0)
K , α

(1)
K } ⊂ CK , (14)

and will have the same autocorrelation a = x ∗ x−, see Figure 2a. Hence, the codebook C can

be seen as an autocorrelation codebook, where the K bits of information are encoded in the 2K

non-trivial ambiguities2 of the autocorrelation. Let us set α(0)
k = R−1k ejφk and α(1)

k = Rke
jφk for

φ1 < φ2 < · · · < φK and Rk > 1 for every k ∈ [K]. We can then encode a block m ∈ {0, 1}K

of K bits mk in x ∈ CK+1 by assigning the zeros to

αk :=

α
(1)
k = Rke

jφk ,mk = 1

α
(0)
k = R−1k ejφk ,mk = 0

, k ∈ [K], (15)

see Figure 2a. We call this scheme a Binary Modulation On Conjugate-reciprocal Zeros (BMOCZ).

The blue circles denote the conjugate-reciprocal zero pairs, which define the zero-codebook Z .

The solid blue circles are the actual transmitted zeros and the red square zeros are the received

zeros, given by the disturbed channel and data zeros.

2The trivial scaling ambiguity, is not seen by the zeros and is in the MOZ scheme not used for information. Hence we

loose one degree of freedom of the signal dimension K + 1. However, this scheme is therefore independent to global phase of

the signals. However, the absolute scaling effects the transmitted and received power which governors the SNR and hence the

robustness against noise.
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D
(0)
2

D
(1)
1Bit 0

Bit 1
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(a) Arbitrary BMOCZ scheme.

Bit 0

Bit 1

D
(0)
2

D
(1)
1

D
(1)
2

D
(0)
1

(b) Huffman BMOCZ scheme.

Figure 2: The zero-codebook Z and their decoding sets (Voronoi cells). Red squares denote

received zeros.

B. Demodulation and Decoding via Root finding and Minimum Distance

Let us first explain how one could in principle demodulate the data. The following exposition

is meant mainly for illustration and analysis. More efficient implementations will be discussed

later on. Thus, at the receiver we will observe by (2) a disturbed version of the transmitted

polynomial

Y(z) = X(z) · H(z) +W(z) = xKhL−1

K∏
k=1

(z − αk)
L−1∏
l=1

(z − βl) + wN−1

N−1∏
n=1

(z − γn) (16)

where first new channel zeros βl are added to the transmitted zeros αk of X, which then both

will be perturbed by a noise polynomial. We will discuss the stability of such an approach later

in Section VII.

From the received signal coefficients, the zeros ζn of the received polynomial Y(z) can be

computed using some root finding algorithm. After assigning the received zeros ζn in the K

sectors Sk, one can separate the data zero from its channel zeros by a minimum distance decision

m̂k =

1, minζn∈Sk d(ζn, α
(1)
k ) < minζn∈Sk d(ζn, α

(0)
k )

0, else
, k = 1, 2, . . . , K, (17)
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where d(·, ·) defines a certain metric on C. We will call this a Root-Finding Minimal Distance

(RFMD) demodulator, see Figure 2a, where we used d(i)k,n = d(ζn, α
(i)
k ) for i = 0, 1. For simplicity,

we will in this work only consider the (unweighted) Euclidean distance d(x, y) = |x − y|, but

other distances might be more suitable, a point we will discuss in Section VII. The de/encoding

or quantization sets D
(i)
k are the Voronoi cells of the zeros α(i)

k , leading to the best performance

of the MD decoder (17). If the channel is scalar, no channel zeros are added, and the receiver has

only to determine in which cells the received zeros fall to decode the data. If one cell contains

multiple received zeros, the decoder will chose the smaller distance in (17), see Figure 2a where

for k = 2 the zero ζn is closer to α(0)
2 as ζn+1 is to α(1)

2 .

Adaption for M-MOZ scheme: For the M-MOZ scheme the transmitter will transmit one zero

αk ∈ Zk for each sector Sk. If no channel zeros are present, such as scalar channels, and only

one received zero ζn is in the set D(m)
k , then the decoder will assume that α(m)

k was transmitted.

If multiple zeros are in one decoding set (channel zeros might be present), we will decide by

minimum distance. The general decoding rule for the kth message mk is therefore

m̂k = argmin
m∈{1,...,M}

min
ζn∈D(m)

k

|α(m)
k − ζn|. (18)

If the kth sector Sk contains no zero at all, then mk can not be reliable decoded and will be in

error. Here, multiple scenarios are possible, either one can chose the closest zero from the next

neighbor sectors, as in (17), or one can request a retransmission for this message. See Figure 1

for the general modulation and demodulation scheme.

Remark. Let us note, that the RFMD decoder can also detect potential bit errors, for example if

in one cell multiple zeros occur, but no zeros in the next-neighbor sector. The encoding/decoding

scheme is fundamentally different to classical coding schemes, since at the receiver we observe

more zeros as we transmit, due to the channel. This can be seen as ISI in the zero-domain.

IV. HUFFMAN BMOCZ

The proposed BMOCZ scheme can be applied to any autocorrelation sequence a = x ∗ x− ∈

C2K+1 generating a polynomial with simple zeros, i.e., all zeros are distinct. Among all these
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autocorrelations, Huffman autocorrelations [17] are the most impulsive ones given for a peak-

to-side-lobe (PSL) η ∈ (0, 1/2) as

ak =


−η, k = 0, 2K

1, k = K

0, else

. (19)

Hence, the autocorrelation generates the polynomial

A(z) = −η + zK − ηz2K and A(ei2πω) = 2η cos(2πKω)− 1. (20)

Since A(z) = 0 is a quadratic equation in zK , solving for all zeros αk = Rke
jφk , yields for the

magnitude and phases

Rk = R±1 =

(
1±

√
1− 4η2

2η

)1/K

, φk = 2π
k − 1

K
for k = 1, 2, . . . , K. (21)

This results in K conjugate-reciprocal zero pairs uniformly placed on two circles with radii

R > 1 and R−1

αk ∈ Zk = {Re2πj
k−1
K , R−1e2πj

k−1
K } for k = 1, 2 . . . , K. (22)

Since, the zeros are the vertices of two regular polygons, centered at the origin, they have the

best pairwise distance from all autocorrelations, see Figure 2b. Expressing the autocorrelation

(20) in the z−domain by its zeros, gives

A(z) = −η
K∏
k=1

(z − αk)(z − α−1k ) = xK

K∏
k=1

(z − αk)︸ ︷︷ ︸
X(z)

·x0
K∏
k=1

(z − α−1k )︸ ︷︷ ︸
X∗(z)

, (23)

where X∗(z) =
∑

k xK−kz
k is the conjugate-reciprocal polynomial generated by x−. Each X(z)

respectively X∗(z) is then called a Huffman polynomial and their coefficients a Huffman sequence.

Since the autocorrelation is constant for each selection α ∈ CK , the first and last coefficient of

x depend on the chosen zeros, i.e., on the bit vector m = (m1, . . . ,mK):

x0 · xK
(23)
= −η and xK · (−1)K

∏
k

αk = x0 ⇒ |xK |2 =
η

(−1)K−1
∏

k αk
(24)

⇔ xK = ejφ0
√
ηRK/2−‖m‖1 , x0 = ejφ0

√
ηR‖m‖1−K/2 , φ0 ∈ [0, 2π) (25)

since we have
K∏
k=1

αk =
K∏
k=1

R2mk−1ej2π
(k−1)
K = R2‖m‖1−Kej2π

∑K−1
k=1

k

K = R2‖m‖1−Kej2π
(K−1)K

2K = R2‖m‖1−K(−1)K−1.
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By rewriting η in terms of the radius we get

η =
1

RK +R−K
. (26)

If φ0 = 0, the first and last coefficients of x are given by

xK =

√
RK−2‖m‖1

RK +R−K
=

√
R−2‖m‖1

1 +R−2K
and x0 = −

√
R2‖m‖1

1 +R2K
. (27)

This suggest, that the first and last coefficients of Huffman sequences are dominant, which might

help for a synchronisation and detection at the receiver. Furthermore, the free choice of the phase

reflects the degree of freedom, we will lose in our modulation scheme. Note, we have 2K + 2

real parameters representing K complex zeros and 1 complex constant (trivial polynomial). The

magnitude of this constant is determined by the PSL η, the bit vector m, and the signal power.

But its phase, acting as a global phase of the Huffman sequence, can not be resolved at the

receiver at all, due to the last coefficient of the channel and the additive noise (16) and therefore

has to be fixed for the scheme. Hence, the MOCZ scheme uses 2K + 1 of the 2K + 2 degrees

of freedom.

Remark. Impulsive-equivalent autocorrelations are usually used to estimate the distance of ob-

jects, as used in radar, or to estimate the channel state, see for example [18, Cha.12]. By the

best knowledge of the authors, the properties of Huffman sequences have never been used for a

digital data communication.

V. MAXIMUM LIKELIHOOD RECEIVER FOR BMOCZ

We shall derive now a much simpler and efficient demodulation technique for the BMOCZ

scheme by using the fixed autocorrelation property of the codebook C , represented by the

autocorrelation matrix A ∈ CK+1×K+1, which is Hermitian Toeplitz and generated by a ∈ C2K+1.

If L = K+1 then the autocorrelation matrix of x is given by the N ×L banded Toeplitz matrix
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X generated by x as

A = X∗X =


aK . . . a0
... �

...

a2K . . . aK

 , X =



x0 0 . . . 0 0

x1 x0 . . . 0 0
...

... �
...

xK xK−1 0

0 xK . . . �
... � x0
... �

...

0 0 . . . 0 xK



∈ CN×L. (28)

Note, that we can write the convolution in (2) with X in the vector-matrix notation as x∗h = Xh.

If L < K + 1 then we cut out a L×L principal submatrix of A and for L ≥ K + 1 we extend

A by adding zeros to the generating vector a, i.e.

AL=


aK . . . aK−L
... �

...

aK+L . . . aK

 for L<K + 1, AL=



aK . . . a0 0
... �

... �

a2K . . . aK . . . a0

�
... �

...

0 a2K . . . aK


for L≥K + 1

(29)

In any case, the matrix AL will be constant for any fixed Codebook C . For multipath channels

the maximum likelihood (sequence) detector is known to be optimal and is given by maximizing

the conditional probability for each possible signal (codeword, sequence) x in the codebook

x̂ = argmax
x∈C

p(y|x). (30)

By assumption (3) and (4) the channel and noise parameters are independent zero-mean Gaussian

random variables, hence the received signal y is also a Gaussian random vector with mean zero

and covariance matrix Ry, see [19, (3.17)]. The conditional probability is therefore given by

p(y|x) = e−y
∗R−1

y y

πN det(Ry)
, (31)
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see [20, Lem.3.B.1]. The covariance matrix of y is given by

Ry = E[yy∗] = E[(Xh+w)(h∗X∗ +w∗)] (32)

= E[Xhh∗X∗] + E[Xhw∗]︸ ︷︷ ︸
=0

+E[wh∗X∗]︸ ︷︷ ︸
=0

+E[ww∗] = XE[hh∗]X∗ + σ2IN , (33)

since w and h are independent zero-mean random variables. The discrete power delay profile

p = (p0, p1, . . . , pL−1) (34)

generates the channel covariance matrix E[hh∗] = Dp, which is a L × L diagonal matrix with

diagonal p. This gives for the covariance matrix

Ry = σ2IN +XDpX
∗. (35)

We will set Xp := XD
1/2
p ∈ CN×L such that (30) separates with (31) to

argmax
x

p(y|x) = argmin
x
− log p(y|x) (36)

= argmin
x

(
y∗(σ2IN +XpX

∗
p)
−1y︸ ︷︷ ︸

≥0

+ log(πN det(σ2IN +XpX
∗
p))
)

(37)

where the log-function is monotone increasing and negative, since p(y|x) < 1. By using

Sylvester’s determinant identity, we get for the second summand in (37) by using that the

autocorrelation, power delay profile p and noise power σ is constant:

det(σ2IN +XpX
∗
p) = det(σ2IL +X∗pXp) = det(σ2IL +D1/2

p ALD
1/2
p ) = const. (38)

Hence, we can omit this term in (37). By applying the Woodbury matrix identity3, see for example

[21, (0.7.4.1)], we get

y∗(σ2IN +XpILX
∗
p)
−1y = y∗(σ−2IN − σ−2Xp(IL + σ−2X∗pXp)

−1X∗pσ
−2)y (39)

= σ−2 ‖y‖22︸ ︷︷ ︸
=const.

−σ−2y∗Xp(σ
2IL +X∗pXp)

−1X∗py. (40)

Hence, the ML estimator simplifies to

x̂ = argmax
x

y∗Xp(σ
2IL +X∗pXp)

−1X∗py. (41)

3Note, that IL and IN are non-singular, but not Xp.
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Inserting the diagonal power delay profile matrix we get

x̂ = argmax
x

y∗XD1/2
p (σ2IL +D1/2

p X∗XD1/2
p )−1D1/2

p X∗y (42)

= argmax
x

y∗X(σ2D−1p +AL︸ ︷︷ ︸
=B�0

)−1X∗y, (43)

where AL ∈ CL×L is given by (28). Since the matrix B ∈ CL×L is constant and reflects the

codebook, power delay profile, and noise power it acts as a weighting for the projections of y

to the shifted codewords. We will call this decoder the Maximum Likelihood (ML) decoder:

x̂ = argmax
x

∥∥B−1/2X∗y∥∥2
2
. (44)

Note, the ML reduces for L = 1 to the correlation receiver

argmax
x
|x∗y|2 (45)

see for example [22, Sec.4.2-2]. Since the codebook has cardinality 2K and x ∈ CK+1 the scheme

is non-orthogonal for K ≥ 2. If L < K + 1 and the codebook are the Huffman sequences, then

AL = IL and B = Db becomes a diagonal matrix with b = σ2p−1+1L. Hence, we end up with a

Rake receiver, where the weights for the lth fingers (correlators) are given by b−1l = (pl+σ2)/σ2,

which reflects the sum power of channel gain and signal to noise ratio of the lth path.

A. Direct Zero Testing Decoder for Huffman BMOCZ

Huffman sequences not only allow a simple encoding by its zeros, but also a simple decoding,

since the autocorrelation are by design the most impulsive-like autocorrelations of any sequence

x. We set η = (0, . . . , 0︸ ︷︷ ︸
K

, η, η, . . . , η)T ∈ CL for L ≥ K + 1 and get by (20) the autocorrelation

matrix

AL = X∗X =

IL, L < K + 1

IL − ηe∗1 − e1η
∗, L ≥ K + 1

(46)

Let us consider the case L < K + 1, then the matrix B becomes

B = Db = DbX
∗X. (47)

If and only if Db = bIL for some b 6= 0 we can identify in (43) the orthogonal projector on X

P = b−1X(X∗X)−1X∗ (48)
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and obtain with the left null space V of X the identity

P = IN −V(V∗V)−1V∗. (49)

Let us define the K×N generalized Vandermonde matrix generated by the complex-conjugated

zeros α1, . . . , αK of X(z)

V∗α =


1 α1 α2

1 . . . αN−11

1 α2 α2
2 . . . αN−12

...
...

1 αK α2
K . . . αN−1K

 . (50)

Since each zero is distinct, the Vandermonde matrix has full rank K. Then, each complex-

conjugated column is in the left null space of the matrix X. More precisely we get

V∗αX =


X(α1) α1X(α1) . . . αL−11 X(α1)

X(α2) α2X(α2) . . . αL−12 X(α2)
...

...

X(αK) αKX(αK) . . . αL−1K X(αK)

 = O ⇔ X∗Vα = O (51)

In fact, the dimension of the left null space of X (null space of X∗) is exactly K for each X

generated by x ∈ C , since it holds N = L +K = rank(X∗) + nullity(X∗), where rank(X) =

rank(X∗) = L and the shifts of x are all linear independent for any x 6= 0. Hence, we get

y∗X(X∗X)−1X∗y = y∗(IN −Vα(V
∗
αVα)

−1V∗α)y = ‖y‖2︸︷︷︸
=const>0

−
∥∥(V∗αVα)

−1/2V∗αy
∥∥2 (52)

which yields with the mixing matrix Mα = (V∗αVα)
−1/2 ∈ CK×K to

argmax
α

p(y|x(α)) = argmin
α

∥∥(V∗αVα)
−1/2V∗αy

∥∥2 = argmin
α

∥∥M−1/2
α V∗αy

∥∥2 . (53)

For Huffman zeros we have αk = Rke
i2π(k−1)/K with Rk ∈ {R,R−1} and we get

V∗αVα =


1 α1 . . . αN−11

...

1 αK . . . αN−1K




1 . . . 1

α1 . . . αK
...

...

αN−11 . . . αN−1K

 =


c1,1 c1,2 . . . c1,K

c2,1 c2,2 . . . c2,K
...

. . .
...

cK,1 cK,2 . . . cK,K

 . (54)
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With the geometric series we get

ck,m =
N−1∑
n=0

(αkαm)
n =

N−1∑
n=0

(RkRm)
nej2πn

(k−m)
K (55)

ck,k = ck =
N−1∑
n=0

|αk|2n =
1−R2N

k

1−R2
k

. (56)

In expectation, for uniform bit sequences, we get E[RkRm] ' 1 for k 6= m and hence for N = lK

the off diagonals are roughly vanishing, since
∑K−1

n=0 e
j2πn(k−m)/K = 0. Hence, we approximate

(54) as a diagonal matrix, which leads to

M−1/2
α ' diag

(√
1− |α1|2
1− |α1|2N

, . . . ,

√
1− |αK |2
1− |αK |2N

)
. (57)

By observing

V∗αy =
(
Y(α1) . . . Y(αK)

)T
, (58)

the exhaustive search of the ML simplifies to independent decisions for each zero symbol

α̂k := argmin

αk∈{R,R−1}ej2π
k−1
K

∣∣∣√ 1− |αk|2
1− |αk|2(N−1)

Y(αk)
∣∣∣. (59)

This gives the Direct Zero Testing (DiZeT) decoding rule for k ∈ {1, . . . , K}

bk =

1, |Y(Rej2π k−1
K )| < RN−2|Y(R−1ej2π k−1

K )|

0, else
(60)

since it holds for the geometrical weights (GW)√
1−R2(N−1)

1−R−2(N−1)
1−R−2
1−R2

=
√

(−R2N−2) · (−R−2) = RN−2. (61)

If L ≥ K + 1 we will approximate AL ' IL. Then the same approximation yield to the same

DiZeT decoder.

B. FFT-Implementation of Huffman BMOCZ-decoding

In fact, the DiZeT decoder for Huffman sequences allows also a simple hardware implemen-

tation at the receiver. If we scale the received samples yn with the positive radius Rn and resp.

R−n, i.e.,

DRy :=


1 0 . . . 0

0 R . . . 0
...

. . .
...

0 0 . . . RN−1

y (62)
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and apply the N−point DFT matrix if L = (t − 1)K for t ∈ N, yielding to N = tK, we get

the samples of the z−transform

F∗DRy =


∑N−1

n=0 ynR
nei2π0·n/N

...∑
n ynR

nei2π(N−1)·k/N

 =: Y(α
(1)
t ) , F∗DR−1y = Y(α

(0)
t ). (63)

Then the decoding rule (60) becomes

bk =

1 , |(FDRy)tk| < RN−2|(F∗DR−1y)tk|

0 , else
. (64)

Hence, the decoder can be fully implemented by a simple N−point DFT from the delayed

amplified received signal, by using for example FPGA or even analog front-ends.

VI. SDP DECODER FOR BMOCZ VIA CHANNEL AUTOCORRELATION

As already mention above, noncoherent communication of information bearing signals having

very short length, in the order of the maximum delay spread of the multipath propagation, is

indeed related to the blind deconvolution problem. This bilinear inverse problem itself suffers

from a rich set of nontrivial ambiguities and impossible to solve without further constraints.

Therefore, one of the challenges in communications and the motivation for our approach, is to

develop simple, fast, and efficient methods by restricting the class of data signals, in this case

to finite codebooks. In this section we give a brief overview on a convex method for solving

this problem for impulsive data signals, as in the case of Huffman sequences. In [23] one of the

authors introduced a semi-definite program to deconvolve up to global phase almost all signals

y = x∗h ∈ CN from the knowledge of the autocorrelations ax and ah. This program is successful

if the polynomials corresponding to the input signals x and h do not share a common zero. Later,

in [15], a stable deconvolution via the SDP over the reals has been proven. In a nutshell, using

the idea of lifting one can express the bilinear problem as a linear estimation problem, i.e., to

recover a positive semi-definite matrix 0 � Z ∈ CÑ×Ñ where Ñ = L+K +1 (details see [15]).

In the case of circular convolutions and with signals in random and incoherent subspaces this

has been investigated first in [24]. Let A : CÑ×Ñ → C4Ñ−4 the linear map representing here

the (non-circular) convolution. As discussed in [15] a stable deconvolution can be performed by

minimizing the least-square error:

Ẑ = argmin
Z�0
‖b−A(Z)‖22 where b = (ax, ah,y,y−)

T (65)
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Performing a rank-one projection of the minimizer Ẑ using the singular value decomposition

yields then the rank-one matrix ẑẑ∗ which reveals the vector ẑ = ejφ[x̂, ĥ] ∈ CÑ up to a global

phase φ. Thus, this method can be indeed used for blind deconvolution in a communication

context when the ax and ah are known. In the following we discuss how this is possible and

why impulsive-like data signals, such as Huffman sequences, are helpful.

A. Estimation of the Channel Autocorrelation, Noiseless case

Let us start, for ease of exposition, with the noiseless case, i.e., y = x ∗ h where x ∈ CK+1

and h ∈ CL. From the Wiener-Khintchine relation we get

ay = y ∗ y− = (x ∗ h) ∗ (x− ∗ h−) = ax ∗ ah. (66)

Assume that ax is already known and the receiver computes ay = y ∗ y− from the received

signal y. If the relation above can be solved for ah, given ax and ay, we can indeed use the

methodology and the convex program (65) for estimating (x,h). To this end, we consider this in

the Fourier-domain by zero-padding the sequences ax and ah to dimension M = 2N − 1 giving

the vectors ãx and ãh. Thus, if Fãx has no zeros, we get:

Fay • (
√
MFãx)

−1 =
√
MFM ãh • FM ãx • (

√
MFM ãx)

−1 = Fãh, (67)

and the autocorrelation of the channel can be obtained by:

ãh = F∗(Fãy • (
√
MFãx)

−1) (68)

as long as (Fãx)k 6= 0, which holds by design of the Huffman sequences. Removing from ãh

the last M − (2L− 1) zeros reveals finally the channel autocorrelation ah.

B. Estimation of the Channel Autocorrelation Estimation, Noisy case

When computing ay in the presence of noise, y = x ∗ h+w, we encounter additional cross-

correlations and the estimate is affected by coloured noise:

wc = w ∗ x− ∗ h− +w− ∗ x ∗ h+ aw. (69)
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where aw = w∗w−. Obviously, this stage can be improved by, e.g., LMMSE estimation (Wiener

filter). Nevertheless, let us compute a scaling estimate for the method above. Repeating the steps

above gives:

˜̂ah = F∗(Fay/(
√
MFãx)) = F∗

([√
MFãx • Fãh + Fwc

]
/(
√
MFãx)

)
(70)

= ãh + F∗(Fwc/(
√
MFax))︸ ︷︷ ︸

=w′

= ãh +w′. (71)

A straightforward bound for the estimation error for Huffman sequences is:

‖w′‖22 =
∥∥∥Fwc/(

√
MFãx)

∥∥∥2
2
≤ 1

M

∥∥|Fwc|2
∥∥
1

∥∥∥|ˆ̃ax|−2∥∥∥
∞

(72)

= ‖wc‖22 ·
1

M mink |(Fãx)k|2
(20)
= ‖wc‖22 ·

1

mink |2η cos(2πKk/M)− 1|2
≤ ‖wc‖22

(1− 2η)2
.

If η < 1/3, see optimal radius (103), we get ‖w′‖22 ≤ 9 ‖wc‖22. The expectation of the colored

noise power in (69) can be upper bounded by

E[‖wc‖22] ≤ 2N ·N0 · L+N ·N2
0 . (73)

By using ‖x‖22 = E[|hl|2] = 1 and E[‖w‖22] = N ·N0 this leaves us with an upper MSE of

‖ah − âh‖22 ≤ 18N ·N0(N0 + L). (74)

Hence, for large noise powers this leads to a bad estimate âh and might therefore result in a

poor performance of the SDP.

VII. CONTINUITY AND ROBUSTNESS OF ZEROS AGAINST SMALL PERTURBATIONS

Although, the SDP gives insight in the robustness of Huffman sequences, it relies on the

knowledge of the channel autocorrelation. Moreover, as we found in Section V-A, the perfor-

mance of the DiZeT decoder depends on the distribution of the zero-symbols. Hence, a robustness

analysis for a zero-based modulation, boils down to a robustness analysis of polynomial zeros.

Wilkinson investigated at first in [25] the stability of polynomial roots under perturbation of

the polynomial coefficients. One extreme case of instability is known today as the Wilkinson

polynomial

X(z) = (z − 1)(z − 2)(z − 3) · · · (z − 20) (75)
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given by 20 real-valued zeros equidistant placed on the positive real line. If only the leading

coefficient is disturbed by machine precession

y20 = x20 + 10−23, (76)

then the three largest zeros of the perturbed polynomial Y(z) =
∑

n ynz
n are completely off,

showing that the zeros are not stable against distortion on its coefficients.

This can be generalized to arbitrary polynomials and the question is, if we consider the

Eulcidean norm, how much the zeros will be disturbed if we perturb the coefficients with some

w ∈ CN having ‖w‖22 ≤ ε. The answer was given in [26] in terms of root neighborhoods or

pseudozero sets

Z(ε,X) =

{
z ∈ C

∣∣∣ |∑n xnz
n|2∑

n |z|2n
≤ ε

}
(77)

where each disturbed polynomial Y(z) =
∑

n(xn + wn)
n for some ‖w‖2 ≤ ε has all its zeros

ζ in Z(ε,X). However, this characterization of the root neighborhoods, does not explain at

which noise level ε the single root neighborhoods Zn(ε,X) of the roots ζn will start to overlap.

The intuition suggest, that with increasing noise power, the single root neighborhoods should

monotone grow and eventually start to overlap, at which a unique zero separation becomes

impossible, see Figure 3. We plotted here a fixed Huffman polynomial with K = 6 zeros

(black squares) and 3 channel zeros (red squares) generated by Gaussian random vectors (Kac

polynomial). The additional channel zeros have only little impact of the root neighborhoods of

the Huffman zeros. However, they will have an heavy impact on the zero separation (decoding),

if they get close to the zero-codebook. Since the distribution of the Chanel zeros is random, we

will only consider the perturbation analysis of a given polynomial X(z).

To derive such a quantized result we will exploit Rouché’s Theorem to bound the single root

neighborhoods by discs, see e.g. [27, Thm (1,3)].

Theorem 1 (Rouché). Let X(z) and W(z) be analytic functions in the interior to a simple closed

Jordan curve C and continuous on C. If

|W(z)| ≤ |X(z)|, z ∈ C, (78)

then Y(z) = X(z) +W(z) has the same number of zeros interior to C as does X(z).

The Theorem allows to prove that the zeros of polynomials are continuous functions of the

coefficients, see [27, Thm (1,4)]. However, to obtain an explicit robustness result for the zeros,
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Figure 3: Root Neighborhoods for 7 noise powers between −22dB and −5dB for K = 6 Huffman

zeros and L− 1 = 3 channel zeros.

we need a quantized version of the continuity, i.e., a Lipschitz bound of the root functions with

respect to the `∞/`2 norm. As simple closed Jordan curves we will consider the Euclidean circle

and the disc as its interior, which will contain the single root neighborhoods. Let us define for

αn ∈ C the closed Euclidean ball (disc) of radius δ > 0 and its boundary as

Bn(δ) = B(δ, αn) = {z ∈ C | |z − αn| ≤ δ} , Cn(δ) = {z ∈ C | |z − αn| = δ} . (79)

Let us consider an arbitrary polynomial (analytic function in C) of order N ≥ 1:

X(z) =
N∑
n=0

xnz
n. (80)

Then, its roots are functions of the polynomial coefficients x ∈ CN+1 given by

αn = αn(x) , n = 1, . . . , N. (81)

If the coefficients are disturbed by a vector w ∈ CN+1, the maximal perturbation of the zeros

should be bounded by

max
n
|αn(x+w)− αn(x)| ≤ δ · ‖x+w − x‖2 = δ · ‖w‖2 , (82)
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where the bound δ = δ(ε,x) > 0 is a local Lipschitz constant for w ∈ B(ε,x), which we want

to derive. If the noise coefficient wN = −xN , i.e., the leading coefficient is vanishing, then we

will set αN(x +w) = 0, since the order of the perturbed polynomial would reduce to N − 1.

We are now ready to prove the following local Lipschitz bound. We use here the assumption

that one zero is outside the unit circle, which is always the case for polynomials generated by

autocorrelations.

Theorem 2. Let X(z) ∈ C[z] be a polynomial of order N > 1 with simple zeros α1, . . . , αN ⊂ C

inside a circle of radius R > 1 with minimal pairwise distance dmin > 0, i.e.

dmin := min
n6=k
|αn − αk| , R = argmax

n
|αn|. (83)

Let w ∈ CN with ‖w‖2 ≤ ε be an additive perturbation on the polynomial coefficients x and

δ ∈ [0, dmin/2). Then the nth zero ζn of the disturbed polynomial Y(z) = X(z) + W(z) lies in

Bn(δ) if

ε = ε(x, δ) ≤ |xN |δ(dmin − δ)N−1√
1 +N(R + δ)N

. (84)

Remark. The minimal pairwise distance of the zeros is also called zero separation, see for

example [28, Sec.11.4].

Proof. The proof is a quantized version of the proof in [27, Thm (1,4)]. Let us define the error

polynomial

W(z) =
N∑
n=0

wnz
n. (85)

By defining z = (z0, z1, . . . , zN)T , we can upper bound the magnitude of W with the Cauchy-

Schwarz inequality

|W(z)| = |wTz| ≤ ‖w‖2 · ‖z‖2 = ε ·
(∑

n

|zn|2
)1/2

= ε ·
(∑

n

|z|2n
)1/2

= ε · f(|z|). (86)

Since f(r) is monotone increasing4 in r > 0, the largest upper bound in Cm(δ) is attained at

z = |αm|+ δ and hence

f(|αm|+ δ)2 ≤

1 +N · (|αm|+ δ)2N , |αm|+ δ > 1

1 +N · (|αm|+ δ)2 , |αm|+ δ ≤ 1
(87)

4Note, (r + ε)k > rk + εk + · · · > rk for r, ε > 0 and k ≥ 1.
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By assumption it holds R = |αmax| > 1 which gives us the universal upper bound5

|W(z)| ≤ ε ·
√
1 +N(R + δ)N , z ∈

⋃
Cm(δ). (88)

On the other hand, the magnitude of the original polynomial

|X(z)| = |xN |
N∏
n=1

|z − αn| , z ∈ Cm(δ) (89)

= |xN |
∏
n

|αm + δeiθ − αn| , θ ∈ [0, 2π) (90)

can be lower bounded by using the reverse triangle inequality 6

≥ |xN |
∏
n

||αm − αn| − δ| ≥ |xN |δ
∏
n6=m

(dmin − δ). (91)

Hence we get for all z ∈
⋃
Cn(δ):

|X(z)| ≥ |xN |δ(dmin − δ)N−1. (92)

To apply Rouché’s Theorem, we have to show |W(z)| < |X(z)| for all z ∈
⋃
Cn(δ), which

gives us the universal bound

ε = ε(x, δ) ≤ |xN |δ(dmin − δ)N−1√
1 +N(R + δ)N

. (93)

Since δ < dmin/2, all Bn(δ) are disjoint and Y(z) has exactly one zero in each nth ball Bn(δ)

by Theorem 1. Note, that xN = xN(α) depends on the selected zeros and the normalization

‖x‖ = 1.

Remark. Let us note, that the bound (93) does not increases with δ for fixed x, R and dmin, see

Figure 4. This behaviour is due to the continuity of the zeros very unlikely and hence caused by

the worst bound in (91). In Section X we will investiage in more detail the geometric structure

of the zero placements, to obtain sharper stability bounds.

Furthermore, if |αmax| = const and |xN | = const, then a maximal separation of the zeros

yields to robustness against additive noise on the coefficients. Hence, if we place the zeros with

5This is actually Bernstein’s Lemma.
6Note, that |αl − αn| > dmin > δ for l 6= n.
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Figure 4: Noise bound (93) for fixed Radius R = 1.1 and dmin = 0.5 over δ.

maximal pairwise distance for fixed R, this suggests a good BER performance for the RFMD

decoder. Moreover, by setting δ = dmin/2 the bound (84) gives

ε ≤ |xN |√
1 +N

dmin
N

2N(|αmax|+ dmin/2)N)
, (94)

which is a upper threshold of the noise power under which no errors can occur. It can be seen

that the noise bound increases if dmin increases, which again validates a larger zero separation.

For Huffman sequences with radius R we obtain dmin = 2R sin(π/N) and hence (94) gives

ε ≤ 1√
1 +N

1√
(R−2N + 1)(1/ sin(π/N) + 1)N

. (95)

Note, the bound becomes independent of R if one zero is outside the unit circle and hence equal

to R. A plot for different N is given in Figure 5 for uniform radius Runi in (102). Moreover, if

|αmax| = tdmin/2 for some t ≥ 1 then we get

ε ≤ |xN |√
1 +N(t+ 1)N

. (96)

However, an increase of t means an increase of the largest root, which is coupled by the leading

coefficient, due to a result of Cauchy

|αmax| ≤ 1 + max
k<N

∣∣∣ xk
xN

∣∣∣ (97)

see for example [27, Thm.(27,2)]. If the energy of x is normalized this gives

|αmax| ≤ 1 +
1

|xN |
⇔ |xN | ≤

1

|αmax| − 1
(98)

since |αmax| > 1. Hence, if |αmax| increases, the leading coefficient has to decrease and ε decreases

rapidly, independently of dmin.
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Figure 5: SNR bound (95) with δ = δmax for Huffman sequences over various dimensions N

and uniform radius Runi(N, 1) in (102) allowing a perfect reconstruction.

a) Zeros of Random Channels: It is known, that a polynomial with i.i.d. Gaussian dis-

tributed coefficients has zeros concentrated around the unit circle. If the order N goes to infinity,

all zeros will be uniformly distributed on the unit circle with probability one, see for example

[29] In fact, this even holds for other random polynomials with non Gaussian distributions, see

[30]. This is an important observation, since it implies for fixed K and hence R, that an increase

of L will concentrate the channel zeros on the unit circle, such that the channel zeros will not

interfere with the codebook zeros, as long as R is sufficiently large.

Remark. The analysis of the stability radius for a certain zero-codebook and noise power, allows

in principle an error detection for the RFMD decoder. Here, an error for the lth zero can only

occur if the noise power is larger than the RHS of (84). However, in the presence of the channel

h, we can adopt the dimension N and xN → xKhL−1, if we assume the absolute values of

the zeros of H(z) are not larger than R. The minimal distance might be fulfilled with a certain

probability. A precise analysis of the expectation might lead to upper bounds of the bit error

probabilities of the RFMD decoder, which will be a future research topic. Note also, that is

not clear, what the distribution of the disturbed zeros ζn are. If they would be Gaussian known

results of polar quantization might apply, see for example [31]. Huffman sequences for R = 1
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Figure 6: Zero Constellations, which allows largest non-overlapping uniform root-neighborhood

discs for the Huffman BMOCZ scheme with largest radius δmax = dmin/2.

are uniformly concentrated on a unit circle and show the best noise robustness Figure 7a.

A. Radius for Huffman BMOCZ Allowing Largest Uniform Root Neighborhood Discs

To ensure robustness of a zero-based decoding against additive noise we need to place the zero-

constellations carefully, as will be pointed out in more detail in Section VII. Theorem 2 below

suggest for Huffman polynomials to place the zero-set Z with maximal pairwise distance under

the constraint of being uniformly spaced conjugate-reciprocal pairs. Here the distance between

conjugated pairs is given by

dcp = R−R−1 (99)

and the distance between next-neighbor pairs for the smaller radius R−1 by

dnn = 2R−1 sin(π/K). (100)

Setting both distances equal, yields a zero-set Z with maximal minimal pairwise distance dmin,

see Figure 6.

However, simulations of perturbed Huffman polynomials, see Figure 7, show a strong depen-

dence of the root neighborhood radius. In fact, an increasing of R yields to an increasing of

the root neighborhood radius δ, which obtains its minimum if R = 1. However, if R gets to
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(a) Radius R = 1 with λ =∞. (b) Radius R = 1.2247 with λ = 2. (c) Radius R = 1.4142 with λ = 1.

Figure 7: Simulation of 7 different SNR values from 22dB to 5dB for a fixed Huffman sequence

with N = 6 over different radii.

small, the root neighborhood of the reciprocal-pairs will overlap. To address this problem we

will introduce λ ≥ 1 as a scaling parameter which yields to

λdcp = dnn ⇔ λ(R2 − 1) = Rdnn = 2 sin(π/K) (101)

⇒ Runi(K,λ) =

√
1 +

2

λ
sin(π/K) '

√
1 +

2π

K
, (102)

which is bounded between

1 +
π

λK
≤ Runi(K) ≤ eπ/2λK . (103)

Therefore, we will in Section VII investigate the radius dependence in more detail. Finding

the optimal radius for Huffman sequences yielding to the optimal Voronoi cells Dk is in fact a

quantization problem, see for example [32]. Note, that the zeros for Huffman BMOCZ are not

the centroids of the Voronoi cells, which suggest a much more complex metric for an optimal

quantization, see Figure 7. From the simulation of the BER performance we observed λ ' 2,

which might be also L dependent.

B. PAPR for Huffman Sequences with Uniform Radius

From (27) we get for the magnitudes

|xK |2, |x0|2 ∈
[ 1

1 +R2K
,

1

1 +R−2K

]
, (104)
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where the maximum is attained if b = 0 or b = 1, the all zero or all one bit vector. By noting

that the first and last coefficient magnitude (27) exploit a symmetry for 2 ‖b‖1 and K − 2 ‖b‖1,

we only have to average for uniform bit distribution over ‖b‖1 ∈ {0, . . . , K/2} (assuming K

even), which gets :

E[‖x‖2∞] =
1

2K/2
1

R2K + 1

2K/2∑
n=1

R−2
∑K/2
k=1 b

(n)
k =

1

2K/2
1

R2K + 1

K/2∑
m=0

(
K/2

m

)
R−2m (105)

=

(
1 +R−2

2

)K
2 1

R2K + 1
(106)

Since the Huffman sequences have all unit energy, the peak-to-average-power ratio is for the

optimal radius R = Runi(K, 1) in (102) for large K

PAPR = (K + 1)
E[‖x‖2∞]
E[‖x‖22]

=
(K + 1)((1 +R−1)/2)K/2

R2K + 1
' K + 1

(1 + 2π/K)K + 1
(107)

≤K + 1

2 + 2π
' K + 1

8.28
' K/9, (108)

which is typically for a multi-carrier system, such as OFDM [33].

VIII. NUMERICAL SIMULATIONS

We simulated with MatLab 2017a the bit-error-rate (BER) over the rSNR (5) for L Rayleigh

fading multipaths with power delay profile exponent p < 1.

In the simulation, we scaled the transmit signals x by
√
N and the channel by

√
1/E[‖h‖22],

such that the received average power will be normalized and equal to the transmitted average

power, independent of N,L and p. Hence we obtain rSNR = SNR = 1/N0. The energy per bit

is then

Eb =
N

L
= R−1b , (109)

which is equal to the inverse of the bit rate Rb per symbol time. Hence, the SNR per bit is

Eb
N0

=
1

Rb ·N0

=
SNR
Rb

(110)

see for example [22, pp.97].

As an ultimate benchmark in all simulations, we will compare to the coherent case, where the

frequency selective channel is modulated by OFDM with a binary phase shift keying (BPSK).

Transforming the linear convolution for i.i.d. Gaussian CIR in time domain to the frequency

domain, yields to N parallel flat fading channels. Assuming a sequential block transmission, the
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(a) Bit error results over SNR for p = 0.88
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(b) Bit error results over Eb/N0 for p = 0.88
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(c) Bit error results over SNR for p = 1.
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(d) Bit error results over Eb/N0 for p = 1.

Figure 8: Huffman BMOCZ with RFMD, GW-DiZeT and ML (with known N0 and p) decoder

for K = 8 and channel length L = 4, 8 and 16 under different power delay profiles p.

cyclic prefix, allows to communicate N bits per channel use and results therefore in coherent

BPSK flat fading. The BER for BPSK over a flat fading channel h0 = |h0|eiφ, with known phase

φ and E[|h0|2] = 1 is equivalent to the bit error probability (one bit per symbol duration) given
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by

Pe =
1

2

(
1−

√
EbE[|h0|2]/N0

1 + EbE[|h0|2]/N0

)
=

1

2

(
1−

√
rSNR

1 + rSNR

)
(111)

since σ2
h = 1 we have in Figure 10 Eb/N0 = EbE[|h0|2]/N0 = rSNR, pictured as a thick doted

red curve. The BPSK coherent flat fading can be seen as the best binary signaling scheme

performance if no multi-path diversity is exploit (no outer codes). Note, that our scheme prevent

is therefore robust against inter-symbol-interference (ISI), given by superposition of overlapping

symbols due to the multipath delays. It is still unclear how to exploit fully the multipath diversity

gain in one-shot at the receiver without knowledge of the CIR. However, the DiZeT decoder

performs very close to the ML decoder and coherent uncoded OFDM with BPSK, see Figure 8.

Note, all simulated BER curves are for uncoded bits. In Figure 9 the BER for the SDP denoising

(65) with the estimate channel autocorrelation via (71) are simulated for K = 8 and L = 4 with

flat power delay profile. The denoised signal x̂ from the SDP is then either decoded by the GW-

DiZeT decoder or the RFMD decoder. The results show a 2dB lose compared to GW-DiZeT

without denoising. The reason for the performance lose is first in the bad estimation of the

channel autocorrelation and secondly due to the simultaneously denoising of the channel and

signal. Since the SDP does not emphasize the signal reconstruction quality, the quality in signal

recovery is in sum worse as for the direct decoding approaches. However, the knowledge of the

channel might help for other purposes.

IX. COMPARISON TO TRAINING SCHEMES

We will compare our noncoherent BMOCZ scheme to noncoherent QPSK with pilot signaling.

Considering one-shot scenarios, there are not many noncoherent comparisons possible in this

scenario. We refer the reader to [6],[8] and [7] based on self-coherent OFDM schemes. However,

our proposed Huffman BMOCZ schemes outperforms their BER performance. We assume in

the simulations the following scenario

• Channel is time-invariant for N time-instants

• Receive duration is N = K + L

• Block length of transmitted signal is K + 1

• We have independent Rayleigh distributed channel gains hl ∈ CN (0, pl) with p ≤ 1.

• After each block transmission the CIR can change arbitrary, e.g., caused by a fast-varying

channel or due to a sporadic one-shot communication, where the next block message might
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Figure 9: GW-DiZeT decoder versus SDP denoising with GW-DiZeT and RFMD decoding.

occur much later, such that the channel state and user position can change drastically,

resulting in fully uncorrelated CIRs.

Note, the maximum-likelihood (ML) detection is equal to the maximum a posteriori detection

(MAP), if the channel is known. If we do joint ML over x,h then the ML and LS would also

be the same, but this requires blind deconvolution, see [34, (12-16)]. We will compare to the

following scenarios

1) BPSK and full channel knowledge (coherent) by using . Zero-forcing (ZF) and hard thresh-

olding bit wise

mk =

1,Re(x̂k) > 0

0,Re(x̂k) < 0
, k = 1, 2, . . . , K (112)

2) QPSK with L pilots. Here we assume that K = 2L. We decode by separating Real and

Imaginary part

mk =

1,Re(x̂k) > 0

0,Re(x̂k) < 0
, mk+L =

1, Im(x̂k) > 0

0, Im(x̂k) < 0
, k = 1, 2, . . . , K (113)

This follows form the minimum distance decoder, see [35, (7.25)].

Interesting scenarios for the BMOCZ scheme are distributed wireless sensor networks which

require
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Figure 10: Pilot based QPSK in time domain versus Huffman BMOCZ with p = 1 for K = 16

and L = 1, 4, 9, 12, 17, 25, 33.

• Low-Power (transmitter and receiver)

• Low-Latency

• No feedback and no channel information at transmitter

• Short block-length, K ' L

• One-shot communication, channel is used only once, sporadic in time

If K < L there is no way to learn the channel with pilots in one shot. Moreover, the low-power

assumption is not suitable to use energy detector if we need to transmit more than 1 bit. Higher

order MOZ modulation might be also considered. This constraints, rule out

• CDMA: usually requires K � L, [36, p.92]

• Clasical ODFM: needs channel for decoding. Hence, we could assume again x = u + d

And in d̂ using QAM. for example QPSK.

The BMOCZ scheme does not need channel length knowledge at the transmitter! On the other

hand, any pilot data needs assumption on the channel length. If the pilots are to short, it is

impossible to estimate exactly the channel, even in the noiseless case. We will investigate a
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scenario, where we blind transmit with P = bL/2c pilots and D = P data and receive only

L + L taps, regardless of the true channel length L. Hence, either we take to much sample

or to less at the receiver. This will affect the performance of pilot-based schemes, which we

simulated for QPSK and OFDM, see Figure 10. Here, the BER performance suffers dramatically

if the channel length at the transmitter is underestimated, rendering a reliable communication

impossible. However, the BMOCZ decoder depends heavily of the maximal channel length L.

It can be seen in the simulation, that an overestimating of L (fast decreasing power profile) is

not affecting the BER performance much, see Figure 8a and Figure 8b.

The GW-DiZeT decoder demands no complexity at all and allows with the DFT an easy and

probably analog realization (using delayed amplified circuits). The complexity at the transmitter

consist of a fixed codebook of size 2K in CK+1 dimensions.

X. SHARPER ROBUSTNESS ANALYSIS FOR BMOCZ CODEBOOKS BY EXPLOITING THE

GEOMETRIC ZERO STRUCTURE

We will in this section investigate the geometric structure of the zeros to improve the robustness

of normalized polynomials against additive noise on its coefficients, sometimes also referred to

the conditioning of a polynomial. This is not to mistaken with the notion of stable polynomials

or Hurwitz stability, which refers to the property that all zeros are located in the positive half-

plane, see for example [37, Cha.21]. As we saw in the analysis of Theorem 2, a large pairwise

distance as well as a large leading coefficient guarantee a robustness against additive noise. For

polynomials generated by autocorrelations, we will have zeros in conjugate-reciprocal pairs and

if we upper bound the largest zero, we force the zeros in a ring or annulus around the unit

circle, which will exclude the extreme cases in the zero displacement, see Figure 11. It turns

out that the Euclidean metric, as used in the RFMD decoder might be reasonable for zeros near

the unit circle. Indeed, for Huffman Polynomials with uniform radius, the root neighborhoods

can be bounded by disjoint uniform discs, see Figure 7. However, the first zero on the real line,

seem to disturb non uniform. This might be due to discontinuity of the real valued zero on the

positive half plane (winding number). A more careful analysis of the exact root neighborhood

grow behaviour will be investigated in a follow up paper. Since we want to keep the root

neighborhoods disjoint, the root neighborhoods should not exceed a radius δ which is larger

then half the minimal pairwise distance. This in fact, leads to a circle packing problem in the
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Figure 11: Homogeneous Circle Packing in an annulus.

plane, which is know to be most dense if the circle centroids are placed on a hexagonal lattice,

see Figure 11a.

The idea is to place N zeros in a Ring R = R(R) of area |R| with minimal pairwise distance

dmin. The bound in (91) is actually a lower bound of the geometric mean of all zeros distances.

Hence, the robustness bound depends not only on the minimal pairwise distance but also on

their geometric structure. In fact, the densest packing of the N zeros will yield to the smallest

geometric mean of the distances and therefore result in the worst stability bound, see Figure 11.

Furthermore, the maximal amount of zeros in the ring is bounded by the spherical circle packing

problem. The exact amount is unsolved for arbitrary dmin even if the set is the unit disk. The

problem is usually known as the density packing problem, where the density of placing N equal

circles of radius dmin in the ring R is given by

D = Ndmin
2π4|R| (114)

One bound on the maximal number N of circles is given by Fejer Toth as

N ≤ π(R2 −R−2)
dmin

2
√
12

(115)

see for example [38].
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A. Revised Proof of Theorem 2

The main idea of the proof relies on the use of Rouches Theorem 1, by controlling for each

m = 1, 2, . . . , N the modulus of the noise polynomial on the single root neighborhood circle

bounds

|W(z)| ≤ |X(z)| , z ∈ Cm(δ). (116)

By choosing the radius δ small enough, such that no overlap of the single root neighborhoods

occur, a separation by the RFMD decoder will be always successful (no channel zeros), guaran-

teeing an error free decoding. Since we want to hold this for every noise polynomial generated

by ‖w‖2 ≤ ε we have to satisfy

max
‖w‖≤ε

max
z∈Cm(δ)

|W(z)|2

|X(z)|2
≤ 1. (117)

Note, that X(z) has no zeros on
⋃
Cm(δ), hence we can divide. Let us define z = (z0, z1, . . . , zN)T ,

where we set 00 = 1. We will upper bound the magnitude of W by using Cauchy-Schwarz

|W(z)|2 = |wTz|2 ≤ ‖w‖22 · ‖z‖
2
2 = ε2 ·

N∑
n=0

|z|2n. (118)

Since the noise w is in the ball with radius ε, all directions can be chosen and we achieve always

equality in (118). Hence, (117) is equivalent to

ε2 ≤ 1

maxz∈Cm(δ)

∑
n |z|2n
|X(z)|2

= min
z∈Cm(δ)

|X(z)|2∑
n |z|2n

= min
z
fm(z) (119)

By using z = αm + δeiθ for some θ ∈ [0, 2π) we need to find a tight lower bound of

fm(θ) :=
|X(αm + δeiθ)|2∑
n |αm + δeiθ|2n

= |xN |2
∏

n |αm + δeiθ − αn|2∑
n |αm + δeiθ|2n

. (120)

Since we are searching for a uniform radius δ which keeps all root neighborhoods disjoint, we

search for the worst αm. The only information of the zeros we have is the minimal pairwise

distance dmin and the smallest and largest moduli R−1 resp. R, we define therefore

A :=

{
α = {α1, . . . , αN} | ∀ n : R ≥ |αn| ≥ R−1, dmin ≤ min

m 6=n
|αm − αn|

}
. (121)

Note, A is a compact set. The leading coefficient xN depends on all zeros and the height of the

polynomial, given by

‖X‖2 := ‖x‖2 =

√√√√ N∑
n=0

|xn|2. (122)
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We chose here the Euclidean norm as the height, since we are interested in SNR performance.

Hence, we define the set of all allowable normalized polynomials with zeros in A as

P = P(A) :=

{
X(z) =

N∑
n=0

xnz
n = xN

∏
n

(z − αm)

∣∣∣∣∣ ‖x‖2 = 1, α ∈ A

}
.

This brings us to the following optimization problem

f(P) = min
X∈P
|xN |2min

m
min
θ

∏
n |αm + δeiθ − αn|2∑

n |αm + δeiθ|2n
. (123)

The modulus of the leading coefficient can be lower bounded for normalized polynomials by

2−N ≤ 2−N ‖x‖1 ≤ |xN |
N∏
n=1

max{1, |αn|}, (124)

see for example [39] or [28, Prop.86]. Note, this bound is not very tight for simple zeros with

large minimal pairwise distance. If all zeros are inside the unit circle, this results in the largest

lower bound and if all zeros are on the outside radius this results in the lowest bound, i.e.,

2−N ≤ |xN | , (2R)−N ≤ |xN |. (125)

Using the worst case bound allows to eliminate the height constraint

f(P) ≥ (2R)−N min
α∈A

min
m

min
θ

∏
n |αm + δeiθ − αn|√∑

n |αm + δeiθ|2n
(126)

which is necessary to leverage the problem to a pure geometric problem. Let us assume αm̂ = ρeiφ

is the zero selection for which there exists a θ which obtains the minimum. Then, we can rotate

all zeros by e−iφ, since it will not change their modulus nor their pairwise distances and hence

be lying in A (rotation invariant). Since the numerating of αn is arbitary, we can just chose

αm̂ = α1 = ρ. Hence, we can omit the minimization over m since we minimize over all N − 1

zeros and α1 ∈ [R−1, R]. This brings us to the non-convex geometric problem

min
α∈A

f(α) = min
α,α1∈[R−1,R]

min
θ

∏
n |α1 + δeiθ − αn|√∑

n |α1 + δeiθ|2n
. (127)

The nominator is independent of the other N − 1 zeros, and obtains its maximum for |R + δ|.

It can be seen that the numerator, will not yield the global minimal constellation if we place

the N − 1 zeros around α1 = R, for N ≥ 2, due to the restriction of the ring. However, it

is geometrical not obvious which α1 will yield the global minimum of f . Therefore, we lower

bound the nominator in f(α), independently of the numerator, by the geometric formula for the

worst case

f(α) ≥

√
(R + δ)2 − 1

(R + δ)2N − 1
g(α) with g(α) = min

θ
g(α, θ) =

N∏
n=1

|α1 + δejθ − αn|. (128)
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Now, the minimization over the zeros reduces to the densest packing of α2, . . . , αN around α1,

since the geometric mean g(α)1/n of the distances decreases if each distance decreases. If N = 7,

the densest packing is the hexagon inscribed in a radius dmin with one zero at its centroid, see

Figure 11b. For arbitrary N this is the well known circle packing problem, also known as the

“penny packing“ problem. However, it is not obvious if the optimal z lies on the circle around

the centroid or on the circle around the vertices. If α1 is the centroid, then we can show by

Theorem 4 that extremal z’s will lie at crossing of the circle with the line between origin and

one vertex. Since we want to maximize the nominator, the z which lies on the real axis, right

from the centroid, will therefore obtain the minimal value of f . If α1 is one of the vertices, then

we need to show that z does not achieve a smaller product distance. Unfortunately, we can not

prove this analytically and formulated this as Conjecture 1 in Appendix A.

If the conjecture holds, then the idea is to consider nested polygons (honeycombs) as the

worst case zero configuration, to derive a lower bound for (128). Each nth honeycomb consist

then of 6n points, placed on n hexagons rotated accordingly, see Figure 11b. By Theorem 4, the

optimal point z = α1 + δejθ for the inner hexagon is achieved for θ = 0. This gives us a lower

bound for the minimal product distance for the 1st hexagon inscribed in a circle with radius

r1 = dmin as
6∏

k=1

|δ − α
n
(1)
k
|2 ≥ |r61 − δ6|2 = r2·61 · |1− (

δ

dmin
)6|︸ ︷︷ ︸

=c6(δ,dmin)

2

≥ r121 · c12 (129)

where we assume δ/dmin ≤ 1/2, since δ < dmin/2 = r1/2. The radius for the nth hexagon is

ndmin, where on the nth honeycomb the 6n zeros, are the vertices of n rotated hexagons. The

smallest radius rn is given hereby with the law of cosine as

rn =

√
dmin

2(1 + n2 − 2n cos(π/3)) = dmin

√
1 + n2 − n ≥ dmin(n− 1) (130)

for n ≥ 2, see Figure 11b. If n = 1 we set r1 = dmin. Then we get for the product of distance

of the nth honeycomb for n ≥ 2

p(n) =
6n∏
k=1

|δ − αnk |2 =
n∏

m=1

6∏
k=1

|δ − α
n
(m)
k
|2 ≥

∏
m

(cdmin(n− 1))12 = (d̃min(n− 1))12n (131)

with ˜dmin = cdmin. If we have nmax nested honeycombs we have up to

N = 1 +
nmax∑
n=1

6n = 1 + 3nmax(nmax + 1) (132)
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zeros packed, which gives the lower bound

nmax = d
√

4N − 1

12
− 1

2
e (133)

of nested honeycombs, yielding to

g(α) ≥ δ2

(
d̃min

nmax∏
n=2

(d̃min(n− 1))n

)12

= δ2

(
d̃min

nmax−1∏
n=1

d̃nminn
n+1

)12

(134)

= δ2

(
d̃mind̃

nmax(nmax−1)
2

min

nmax−1∏
n=1

nn+1

)12

≥ δ2d̃
6(n2

max−nmax+2)
min · [(nmax − 1)!H(nmax − 1)]12, (135)

where the last factor is the hyperfactorial H(nmax − 1) =
∏nmax−1

n=1 nn. Note, that we had to add

the distance square |α1 + δeiθ − α1|2 = δ2 of the centroid zero α1. Combining (126) ,(127) and

(128) would yield the final noise bound.

B. Noise Bounds for Huffman Polynomials

Note, the noise energy bound (119) is deterministic and not in mean. First of all, for fixed

R and dmin the number N of zeros we can place in the ring R is bounded by (115). We

plotted in Figure 12 the noise power bound for fixed N over various R. Here, we set dmin =√
π(R2 −R−2)/N

√
12 and assume that all zeros are place in a circle of area π(R2−R−2) with

center at R. This is the worst packing for N zeros. However, it can be seen that the bound is

not very sharp if N increases. We assume that Huffman sequences, placed on vertices of two

N−gons are the best case. However, the optimal radius in the sense of maximal noise robustness

for a fixed N is still unknown. Nevertheless, the simulation and analysis suggest that a radius

close to the optimal might be given if the uniform circle neighborhoods touching each other, see

Figure 6 and Figure 13b for a simulation of N = 6. In fact, the root-neighborhoods are directed,

depending on the particular choice of the other zeros. Hence, in average, the root-neighborhoods

will more likely be bounded by an ellipse. Also the outside root-neighborhoods have larger radii

than the insides, which suggest also a heterogeneous neighborhoods.

Theorem 3 (Noise Bound for Huffman BMOCZ). Let N = 4M for some M ≥ 3 and C (N,R)

be the set of normalized Huffman sequences in CN+1 with radius R > 1. Then the minimal

pairwise distance is given by

dmin = 2R−1 sin(π/N) (136)
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Figure 12: Worst case noise bounds for various N and densest packing in circles of radius R.

and the maximal noise power which guarantees root neighborhoods in circles of radius δ ∈

[0, dmin/2) is given by

N0 ≤
1

R8M + 1

(R + δ)2 − 1

(R + δ)8M − 1
·R2−4Mδ4(2R−1 sin(π/N)− δ)4

M∏
m=3

m4· (137)

(
sin(2π/N)− sin(4π/N)− 2 sin(π/N)

2(1− sin(2π/N))

)4M−12

(138)

The worst case Huffman sequence is given by all zero inside the unit circle except one.

Remark. If Conjecture 1 holds then we would get the noise power bound

N0 ≤
R−3N

R−2N + 1
· (R +R−1 sin(π/N))2 − 1

(R +R−1 sin(π/N))2N − 1
· (1− (1− sin(π/N))N)2 (139)

which yields to the bounds over N in Figure 13b for δ = δmax = R−1 sin(π/N). The red line

shows the bound for a radius where all root neighborhoods remain disjoint.
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ture 1 over various N for different radii R.

Figure 13: Noise power bounds depending on radius R and order N .

Proof. Since the zeros are lying on two regular N−gons, and the nominator only needs one

outer zero to be maximize, we can assume that the worst case scenario is given by Figure 15b.

From (123) we obtain for the Huffman Zero Codebook

f 2(Z ) = min
α∈Z
|xN(α)|2 min

m∈[N ]\n
min
θ

∏
n |αm + δeiθ − αm|2∑

n |αm + δeiθ|2n
(140)

= min
α∈Z
|xN(α)|2min

θ

∏
n |α1 + δeiθ − αm|2∑

n |α1 + δeiθ|2n
. (141)

Note, that |xN(α)| is minimized by (27) if all zeros lie outside the unit circle, i.e.,

min |xN(φ)|2 ≥
R−2K

1 +R−2K
=

1

R2K + 1
. (142)

Hence, by choosing θ = π and all zeros inside the unit disc except one, we get with (163) from

Lemma 2

f 2(Z ) ≥ 1

R8M + 1

(R + δ)2 − 1

(R + δ)8M − 1
· r4M−2δ4(2a− δ)4

M∏
m=3

m4· (143)

(
sin(2π/N)− sin(4π/N)− 2 sin(π/N)

2(1− sin(2π/N))

)4M−12

(144)
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Figure 14: Analytic Noise power bounds (144) in dB for Huffman sequences with R = 1.02

and various N .

In Figure 13a we plotted the exact bound (123) for Huffman Codebooks with optimal radius

(102) for N = 4, 8, 16 starting with the maximal radius δmax = dmin/2. It can be seen that for

increasing N the δmax shifts to higher SNR, which indicates less noise robustness.

XI. CONCLUSION

We introduced a novel modulation scheme based on the zeros of the discrete-time signals to

transmit reliable over unknown FIR channels. For the demodulation we presented three different

approaches. The first based on a zero observation of the received zeros and deciding by a

minimum distance decoder for each single bit (zero) independently. Secondly, a maximum

likelihood decoder, which obtains the best performance. If the CIR length is larger than the

block length, the ML decoder for Huffman BMOCZ outperforms all comparable known non-

coherent signaling schemes. However, this decoder relies on the knowledge of the channels power

delay profile and the SNR. Finally, we introduced a low-complexity decoder which decodes the

zeros independently by only evaluating the received signal on the zero-codebook, which leads to

linear complexity in the number of bits, instead of exponential complexity for the ML decoder.

The derivation of bit error probabilities is mathematically hard to carry out, not only due to the

overlap of the signals caused by multipath delays, but also in terms of the non-linear encoding in

the zero domain. For the RFMD decoder we obtained a local stability analysis in the presence of

additive noise, which suggest a proper zero separation of the codebook and channel. The analysis
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of reliable bit data rates and error probability bounds, based on a careful root neighborhood

analysis, might be addressed in a future research.
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(b) Worst case constellation for Huffman polynomials.

Figure 15: Upper bounds for noise power which guarantee zero separation for N = 6.

APPENDIX A

PRODUCT DISTANCES FROM A CIRCLE POINT TO THE VERTICES OF A REGULAR POLYGON

We will adapt a result in [40, Sec.5] to derive for any regular N−gon the extremal products

of distances from a point on a circle centered at the centroid to all its vertices, see Figure 15a.

Theorem 4. Let N ≥ 2. Consider the regular N−gon inscribed in a circle of radius r > 0

centered at the origin. The product of the distances to any fixed point z = δejθ on a circle of

radius 0 < δ centered at the origin to the vertices is bounded by

|rN + δN | ≥ gcN(z) :=
N∏
n=1

dn(z) ≥ |rN − δN |. (145)

The bounds are sharp and the extremal points are zmin = δejnπ/N resp. zmax = δejn2π/N , which

lie on a line between one vertex and the origin respectively on a line between the middle point

of two neighbor vertices and the origin. If the origin is added as an N + 1 point the minimal

and maximal product distance is achieved for the same zmin and zmax and given by

|rN + δN |δ ≥ δgcN(z) :=
N+1∏
n=1

dn(z) ≥ δ|rN − δN |. (146)

May 22, 2018 DRAFT



46

Proof. Let us identify the vertices by complex numbers rωm, where ω = ej2π/N is the N th root

of unity. Then the product of the distances from the vertices to any point z is given by

gcN(z) =
N∏
m=1

dm(z) = |z − r| · |z − rω1| . . . |z − rωN−1| = |zN − rN | (147)

Taking the product and inserting z = δeiθ we get

g(θ) := |δNeNjθ − rN |2 = δ2N − 2δNrN cos(Nθ) + r2N (148)

We immediately find that g is periodic in [0, 2π/N) and symmetric around θc = π/N . Then, the

critical points in the interval are given by the solutions of

0 = g′(θ) = 2NδNrN sin(Nθ) ⇒ θ1 = 0, θ2 = π/N. (149)

Due to the symmetry of g around θ1 and θ2, one of them must be a maximum and the other a

minimum. Inserting both in (148) yields

g(0) = δ2N − 2δNrN + r2N = (rN − δN)2 , g(
π

N
) = (rN + δN)2 (150)

such that g(0) is the minimum and g(π/N) the maximum. Due to symmetry of the hexagon we

can assume that the extremal point is in the gray area of Figure 15a. Hence, the minimal point

lies on the real axis between the right vertex and the origin and the maximal point lies on the

line crossing the midpoint of two vertices and the origin.

If we add the origin 0 as the N + 1 point, then dN+1 = |0− z| = δ for each θ and hence we

only need to scale the upper and lower bounds by δ.

We will now ask for the case, where z is placed on a circle with radius δ around one vertex,

see the dashed circle in Figure 15a.

Conjecture 1. Let N ≥ 2 be an integer and ω = ej2π/N be the N th root of unity. Then the

points rωn are the vertices of a regular N−gon inscribed in the circle of radius r > 0 centered

at the origin. Let 0 < δ ≤ r sin(π/N) and consider any z on a circle Ck(δ) of radius δ with

center at one vertex rωk, then the minimal product of all distances from z to the vertices is

given by

min
z∈Ck(δ)

∏
n

|z − rωn| = rN − (r − δ)N . (151)

May 22, 2018 DRAFT



47

Remark. If we add the origin of the N−gon as the N + 1 point and demand δ < r sin(π/N),

then we get for the minimum of its product distances, by taking k = 0

N+1∏
n=1

dn ≥ min dN+1 ·min
6∏

n=1

dn ≥ (r − δ)(rN − (1− δ)N) (152)

since at any point z = r + δeiθ the distance to the centroid is

dN+1 = |z − 0| = |r + δeiθ| ≥ |r − δ| = r − δ (153)

where equality only holds for θ = π, see Figure 15a. Note, 1−sin(π/N) = versine(π/2−π/N) =

versine((N − 2)π/(2N)) = 2 sin2((N − 2)π/(4N)) is monotone decreasing with increasing N .

Hence 1− (1− sin(π/N))N will monotone increase with N . Moreover, for N ≥ 10 we get

1− (1− sin(π/N))N ' 1 (154)

For N = 2 the conjecture holds, since for z = 1 + δeiθ we have

|1 + δeiθ − 1| · |1 + δeiθ + 1| = δ · |2 + δiθ| ≥ δ(2− δ) = 1− (1− 2δ + δ2) = 1− (1− δ)2,

where equality holds if and only if θ = π.

A. Back to the Hexagon Lattice

If the Conjecture 1 would hold, we can similar argument as in (152), that if the origin is

included as an N + 1 point the minimum would be
N+1∏
n=1

dn(θ) ≥ (r − δ)rN(1− (1− δ)N) (155)

and be achieved for θ = π. Furthermore, if we chose the circle around the centroid we get with

Theorem 4

|δ|
N∏
n=1

|δejθ − αn| ≥ δ(rN − δN) (156)

Indeed, we can then show, that the later product distance is the smallest possible.

Lemma 1. Let r > 0 and N ≥ 2. Then it holds for any δ ∈ (0, r/2)

δ(rN − δN) < (rN − (r − δ)N) · (r − δ). (157)
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Proof. To show this, we only need to verify for r = 1 and δ ∈ (0, 1/2), i.e.,

δ(1− δN) < (1− (1− δ)N)(1− δ) (158)

⇔ aN = δ − δN+1 < (1− δ)− (1− δ)N+1 = bN (159)

For δ = 1/2 and δ = 0 this becomes equality. We will prove the strict inequality by induction.

For N ≥ 2 we get

b2 = 1− δ − (1− 3δ + 3δ2 − δ3) = 2δ − 3δ2 + δ3 = b2 + δ + 2δ3 − 3δ2 (160)

But for the last three terms it holds

δ + 2δ3 − 3δ2 > 0 ⇔ 1 + 2δ2 > 3δ ⇔ δ−1 + 2δ > 2 + 1 = 3. (161)

Note, for N = 1 the strict inequality (159) does not hold, since δ(1− δ) = (1− 1 + δ)(1− δ).

We will now show that (159) holds for N + 1. From (159) we get

aN+1 = δ − δN+2 = δ(δ − δN+1)− δ2 + δ = δaN + (1− δ)− (1− δ)2

bN+1 = (1− δ)− (1− δ)N+2 = (1− δ)bN + (1− δ)− (1− δ)2 > δbN + (1− δ)− (1− δ)2

where we used 1− δ > δ for each 0 ≤ δ < 1/2. Hence it holds bN+1 > aN+1 if bN > aN holds.

By induction and (160) this holds for all N ≥ 2.

The lower bound (157) is monotone increasing for δ ∈ [0, r/2] and achieves its maximum at

the boundary δ = r/2 given by

0 ≤ δ(rN − δN) ≤ rN+1

2

(2N − 1)

2N
<
rN+1

2
(162)

see Figure 17b for the hexagon, N = 6 and r = 1.

We will now lower bound the product distances in Conjecture 1 for N−gons with circle points

around one vertex, by using the geometric relaxation given in Figure 16.

Lemma 2. Consider a regular N−gon with N = 4M for any 3 ≤ M ∈ N inscribed in a

circle of radius r > 0. Consider a point z on a circle with radius δ < r sin(π/N) and center

z = r + δeiθ. Then the minimal product distances for all θ is bounded by

gv,N(θ) ≥
∏
n

dn ≥ δ(2r − δ)
M∏
m=1

(1 + sin
π

2M
− 2δ̃(δ̃ + 1 + sin

π

2M
)) · r4 sin2 π

4M
(
∏
m

2m− 1)2

(163)
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α1

δ
b2
2

b3
α2

αM+1

α3M+1

α2M+1

√
2δ

b4

h
c

γ

a

r

π/4
δmax = a

2

αM+2

r

a

Figure 16: Lower bound conjecture for regular N−gon with circle point around one vertex.

Proof. Lets define ω = ej2π/N . We will use two reference points, at r − 2δ and at r, to lower

bound the distances to the vertices. The special distance

d2M+1 = |α2M+1 − z| ≥ 2r − δ , d1 = δ (164)

For all vertices in the left half plane we will use the radius of the smallest circle given by

bM+2 =

√
(r + c−

√
2δ)2 + (r − h)2 (165)

where

c = r sin(γ) = r sin(π/2M) , h = r(1− cos(γ)), , a = 2r sin(π/4M). (166)

which gives

bM+2 =

√
r2(1 + sin(π/2M)− 2δ̃)2 + r2(1− (1− cos(π/2M)))2 (167)

= r
√
2

√
(1 + sin(π/2M) + δ̃2 −

√
2δ̃(1 + sin(π/2M)) (168)

The distances in the first quadrant we will lower bound by multiples of b2
2

given as

b2
2

= a · cos(π/4)/2 = 2r sin(π/4M)

√
2

4
= r sin(π/4M)

1√
2

(169)
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(a) Bounds for r = 1 without centroid.
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(b) Bounds with centroid.

Figure 17: Lower Bound for Hexagon Conjecture (green line). Yellow line for bound the gc at

centroid circle.

Then we get for the product of all distances the bound

gv,4M =
∏
n

dn ≥ b2M−2M+2 · d1 · d2M+1 ·
M∏
m=1

((2m− 1)
b2
2
)2 (170)

= δ(2r − δ)
M∏
m=1

2r2(1 + sin(π/2M)− 2δ̃(δ̃ + 1 + sin(π/2M))) · (2m− 1)2
r2 sin2(π/4M)

2

= δ(2r − δ)
M∏
m=1

(1 + sin
π

2M
− 2δ̃(δ̃ + 1 + sin

π

2M
)) · r4 sin2 π

4M
(
∏
m

2m− 1)2 (171)
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