1,356 research outputs found

    Normal edge-colorings of cubic graphs

    Get PDF
    A normal kk-edge-coloring of a cubic graph is an edge-coloring with kk colors having the additional property that when looking at the set of colors assigned to any edge ee and the four edges adjacent it, we have either exactly five distinct colors or exactly three distinct colors. We denote by χN(G)\chi'_{N}(G) the smallest kk, for which GG admits a normal kk-edge-coloring. Normal kk-edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. More precisely, it is known that proving χN(G)5\chi'_{N}(G)\leq 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture and then, among others, Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Considering the larger class of all simple cubic graphs (not necessarily bridgeless), some interesting questions naturally arise. For instance, there exist simple cubic graphs, not bridgeless, with χN(G)=7\chi'_{N}(G)=7. On the other hand, the known best general upper bound for χN(G)\chi'_{N}(G) was 99. Here, we improve it by proving that χN(G)7\chi'_{N}(G)\leq7 for any simple cubic graph GG, which is best possible. We obtain this result by proving the existence of specific no-where zero Z22\mathbb{Z}_2^2-flows in 44-edge-connected graphs.Comment: 17 pages, 6 figure

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs

    Precoloring co-Meyniel graphs

    Full text link
    The pre-coloring extension problem consists, given a graph GG and a subset of nodes to which some colors are already assigned, in finding a coloring of GG with the minimum number of colors which respects the pre-coloring assignment. This can be reduced to the usual coloring problem on a certain contracted graph. We prove that pre-coloring extension is polynomial for complements of Meyniel graphs. We answer a question of Hujter and Tuza by showing that ``PrExt perfect'' graphs are exactly the co-Meyniel graphs, which also generalizes results of Hujter and Tuza and of Hertz. Moreover we show that, given a co-Meyniel graph, the corresponding contracted graph belongs to a restricted class of perfect graphs (``co-Artemis'' graphs, which are ``co-perfectly contractile'' graphs), whose perfectness is easier to establish than the strong perfect graph theorem. However, the polynomiality of our algorithm still depends on the ellipsoid method for coloring perfect graphs
    corecore