773 research outputs found

    Information-Preserving Markov Aggregation

    Full text link
    We present a sufficient condition for a non-injective function of a Markov chain to be a second-order Markov chain with the same entropy rate as the original chain. This permits an information-preserving state space reduction by merging states or, equivalently, lossless compression of a Markov source on a sample-by-sample basis. The cardinality of the reduced state space is bounded from below by the node degrees of the transition graph associated with the original Markov chain. We also present an algorithm listing all possible information-preserving state space reductions, for a given transition graph. We illustrate our results by applying the algorithm to a bi-gram letter model of an English text.Comment: 7 pages, 3 figures, 2 table

    A robust spectral method for finding lumpings and meta stable states of non-reversible Markov chains

    Full text link
    A spectral method for identifying lumping in large Markov chains is presented. Identification of meta stable states is treated as a special case. The method is based on spectral analysis of a self-adjoint matrix that is a function of the original transition matrix. It is demonstrated that the technique is more robust than existing methods when applied to noisy non-reversible Markov chains.Comment: 10 pages, 7 figure

    Bounding inferences for large-scale continuous-time Markov chains : a new approach based on lumping and imprecise Markov chains

    Get PDF
    If the state space of a homogeneous continuous-time Markov chain is too large, making inferences becomes computationally infeasible. Fortunately, the state space of such a chain is usually too detailed for the inferences we are interested in, in the sense that a less detailed—smaller—state space suffices to unambiguously formalise the inference. However, in general this so-called lumped state space inhibits computing exact inferences because the corresponding dynamics are unknown and/or intractable to obtain. We address this issue by considering an imprecise continuous-time Markov chain. In this way, we are able to provide guaranteed lower and upper bounds for the inferences of interest, without suffering from the curse of dimensionality

    Symblicit algorithms for optimal strategy synthesis in monotonic Markov decision processes

    Full text link
    When treating Markov decision processes (MDPs) with large state spaces, using explicit representations quickly becomes unfeasible. Lately, Wimmer et al. have proposed a so-called symblicit algorithm for the synthesis of optimal strategies in MDPs, in the quantitative setting of expected mean-payoff. This algorithm, based on the strategy iteration algorithm of Howard and Veinott, efficiently combines symbolic and explicit data structures, and uses binary decision diagrams as symbolic representation. The aim of this paper is to show that the new data structure of pseudo-antichains (an extension of antichains) provides another interesting alternative, especially for the class of monotonic MDPs. We design efficient pseudo-antichain based symblicit algorithms (with open source implementations) for two quantitative settings: the expected mean-payoff and the stochastic shortest path. For two practical applications coming from automated planning and LTL synthesis, we report promising experimental results w.r.t. both the run time and the memory consumption.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Process algebra for performance evaluation

    Get PDF
    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server architectures, networks – can accurately be described using such stochastic specification formalisms. The main emphasis of this paper is the treatment of operational semantics, notions of equivalence, and (sound and complete) axiomatisations of these equivalences for different types of Markovian process algebras, where delays are governed by exponential distributions. Starting from a simple actionless algebra for describing time-homogeneous continuous-time Markov chains, we consider the integration of actions and random delays both as a single entity (like in known Markovian process algebras like TIPP, PEPA and EMPA) and as separate entities (like in the timed process algebras timed CSP and TCCS). In total we consider four related calculi and investigate their relationship to existing Markovian process algebras. We also briefly indicate how one can profit from the separation of time and actions when incorporating more general, non-Markovian distributions
    • …
    corecore