126 research outputs found

    MmWave V2V Localization in MU-MIMO Hybrid Beamforming

    Get PDF
    Recent trends for vehicular localization in millimetre-wave (mmWave) channels include employing a combination of parameters such as angle of arrival (AOA), angle of departure (AOD), and time of arrival (TOA) of the transmitted/received signals. These parameters are challenging to estimate, which along with the scattering and random nature of mmWave channels, and vehicle mobility lead to errors in localization. To circumvent these challenges, this paper proposes mmWave vehicular localization employing difference of arrival for time and frequency, with multiuser (MU) multiple-input-multiple-output (MIMO) hybrid beamforming; rather than relying on AOD/AOA/TOA estimates. The vehicular localization can exploit the number of vehicles present, as an increase in a number of vehicles reduces the Cramr-Rao bound (CRB) of error estimation. At 10 dB signal-to-noise ratio (SNR) both spatial multiplexing and beamforming result in comparable localization errors. At lower SNR values, spatial multiplexing leads to larger errors compared to beamforming due to formation of spurious peaks in the cross ambiguity function. Accuracy of the estimated parameters is improved by employing an extended Kalman filter leading to a root mean square (RMS) localization error of approximately 6.3 meters

    Analysis of synchronous localization systems for UAVs urban applications

    Get PDF
    [EN] Unmanned-Aerial-Vehicles (UAVs) represent an active research topic over multiple fields for performing inspection, delivery and surveillance applications among other operations. However, achieving the utmost efficiency requires drones to perform these tasks without the need of human intervention, which demands a robust and accurate localization system for achieving a safe and efficient autonomous navigation. Nevertheless, currently used satellite-based localization systems like GPS are insufficient for high-precision applications, especially in harsh scenarios like indoor and deep urban environments. In these contexts, Local Positioning Systems (LPS) have been widely proposed for satisfying the localization requirements of these vehicles. However, the performance of LPS is highly dependent on the actual localization architecture and the spatial disposition of the deployed sensor distribution. Therefore, before the deployment of an extensive localization network, an analysis regarding localization architecture and sensor distribution should be taken into consideration for the task at hand. Nonetheless, no actual study is proposed either for comparing localization architectures or for attaining a solution for the Node Location Problem (NLP), a problem of NP-Hard complexity. Therefore, in this paper, we propose a comparison among synchronous LPS for determining the most suited system for localizing UAVs over urban scenarios. We employ the Cràmer–Rao-Bound (CRB) for evaluating the performance of each localization system, based on the provided error characterization of each synchronous architecture. Furthermore, in order to attain the optimal sensor distribution for each architecture, a Black-Widow-Optimization (BWO) algorithm is devised for the NLP and the application at hand. The results obtained denote the effectiveness of the devised technique and recommend the implementation of Time Difference Of Arrival (TDOA) over Time of Arrival (TOA) systems, attaining up to 47% less localization uncertainty due to the unnecessary synchronization of the target clock with the architecture sensors in the TDOA architecture.S

    mmWave V2V Localization in MU-MIMO Hybrid Beamforming

    Get PDF
    Recent trends for vehicular localization in millimetre-wave (mmWave) channels include employing a combination of parameters such as angle of arrival (AOA), angle of departure (AOD), and time of arrival (TOA) of the transmitted/received signals. These parameters are challenging to estimate, which along with the scattering and random nature of mmWave channels, and vehicle mobility lead to errors in localization. To circumvent these challenges, this paper proposes mmWave vehicular localization employing difference of arrival for time and frequency, with multiuser (MU) multiple-input-multiple-output (MIMO) hybrid beamforming; rather than relying on AOD/AOA/TOA estimates. The vehicular localization can exploit the number of vehicles present, as an increase in a number of vehicles reduces the Cramr-Rao bound (CRB) of error estimation. At 10 dB signal-to-noise ratio (SNR) both spatial multiplexing and beamforming result in comparable localization errors. At lower SNR values, spatial multiplexing leads to larger errors compared to beamforming due to formation of spurious peaks in the cross ambiguity function. Accuracy of the estimated parameters is improved by employing an extended Kalman filter leading to a root mean square (RMS) localization error of approximately 6.3 meters

    A Moving Source Localization Method for Distributed Passive Sensor Using TDOA and FDOA Measurements

    Get PDF
    The conventional moving source localization methods are based on centralized sensors. This paper presents a moving source localization method for distributed passive sensors using TDOA and FDOA measurements. The novel method firstly uses the steepest descent algorithm to obtain a proper initial value of source position and velocity. Then, the coarse location estimation is obtained by maximum likelihood estimation (MLE). Finally, more accurate location estimation is achieved by subtracting theoretical bias, which is approximated by the actual bias using the estimated source location and noisy data measurement. Both theoretical analysis and simulations show that the theoretical bias always meets the actual bias when the noise level is small, and the proposed method can reduce the bias effectively while keeping the same root mean square error (RMSE) with the original MLE and Taylor-series method. Meanwhile, it is less sensitive to the initial guess and attains the CRLB under Gaussian TDOA and FDOA noise at a moderate noise level before the thresholding effect occurs

    Energy-Efficient Self-Organization of Wireless Acoustic Sensor Networks for Ground Target Tracking

    Get PDF
    With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance

    Application of Neural Networks to Acoustic Localization

    Get PDF
    The intent of the work conducted was to build a neural network for the purposes of acoustic localization. The target of this localization is a sound source underwater. For our purposes, it is an acoustic pinger, as it produces consistent sound at a fixed rate making it ideal for testing. The network was intended to ingest raw data streams and output location information based on the arrangement of sensors employed. To achieve an accurate network, a simulation factoring in the environment was to be created to produce a data set large and diverse enough to describe the unique parameters of the signals, including: frequency, environmental reflections, and range. This problem will be approached in multiple steps. Initial models will consider simplified problem spaces, such as individual frequencies and less descriptive training sets. Through development, this will be refined and extended. Where required, simplifications will be kept managing the scope of the problem to allow for a demonstration of the technology to be made at all. Discussion of what is the root cause of the issue navigated will be presented when this occurs. Results will then be shown to demonstrate the performance of the network created as compared to the classical approach to this problem, time difference of arrival. This paper will demonstrate the performance of a neural network as applied to the problem of acoustic localization. The network developed can accurately localize an acoustic sound source to the same order of magnitude of accuracy and execution time as the current approaches to the problem. However, the network also showed a lacking in some areas of robustness due to training factors not considered, hampering the full potential

    Audio Fingerprinting for Multi-Device Self-Localization

    Get PDF
    This work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/K007491/1

    Locating and extracting acoustic and neural signals

    Get PDF
    This dissertation presents innovate methodologies for locating, extracting, and separating multiple incoherent sound sources in three-dimensional (3D) space; and applications of the time reversal (TR) algorithm to pinpoint the hyper active neural activities inside the brain auditory structure that are correlated to the tinnitus pathology. Specifically, an acoustic modeling based method is developed for locating arbitrary and incoherent sound sources in 3D space in real time by using a minimal number of microphones, and the Point Source Separation (PSS) method is developed for extracting target signals from directly measured mixed signals. Combining these two approaches leads to a novel technology known as Blind Sources Localization and Separation (BSLS) that enables one to locate multiple incoherent sound signals in 3D space and separate original individual sources simultaneously, based on the directly measured mixed signals. These technologies have been validated through numerical simulations and experiments conducted in various non-ideal environments where there are non-negligible, unspecified sound reflections and reverberation as well as interferences from random background noise. Another innovation presented in this dissertation is concerned with applications of the TR algorithm to pinpoint the exact locations of hyper-active neurons in the brain auditory structure that are directly correlated to the tinnitus perception. Benchmark tests conducted on normal rats have confirmed the localization results provided by the TR algorithm. Results demonstrate that the spatial resolution of this source localization can be as high as the micrometer level. This high precision localization may lead to a paradigm shift in tinnitus diagnosis, which may in turn produce a more cost-effective treatment for tinnitus than any of the existing ones
    • …
    corecore