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The conventional moving source localization methods are based on centralized sensors. This paper presents a moving source
localization method for distributed passive sensors using TDOA and FDOA measurements. The novel method firstly uses the
steepest descent algorithm to obtain a proper initial value of source position and velocity. Then, the coarse location estimation
is obtained by maximum likelihood estimation (MLE). Finally, more accurate location estimation is achieved by subtracting
theoretical bias, which is approximated by the actual bias using the estimated source location and noisy data measurement. Both
theoretical analysis and simulations show that the theoretical bias always meets the actual bias when the noise level is small, and the
proposedmethod can reduce the bias effectively while keeping the same root mean square error (RMSE) with the originalMLE and
Taylor-series method. Meanwhile, it is less sensitive to the initial guess and attains the CRLB under Gaussian TDOA and FDOA
noise at a moderate noise level before the thresholding effect occurs.

1. Introduction

Passive source location has been the focus of considerable
research efforts for many years. It is widely used in many
areas including radar, sonar [1, 2], microphone arrays [3, 4],
sensor network [5], and wireless communication [6]. For
a stationary emitter, the time-difference-of-arrival (TDOA)
of a received signal [7] at a number of separated receivers
can be used to obtain the source location estimate. Each
TDOA defines a hyperbola in which the emitter must lie.
The intersection of the hyperbolae gives the source location
estimate [8, 9]. If there is a relative motion between the
emitter and the receivers, frequency-difference-of-arrival
(FDOA) measurements should be combined with TDOAs to
estimate the source position and velocity accurately. In this
paper, we enforce locating the moving source using TDOA
and FDOAmeasurements.

Localization of a moving source using TDOA and FDOA
is not a trivial task due to the nonlinear nature of the
estimation problem [9–12]. Foy put forward a Taylor-series
linearization method which requires a proper initial guess
close to the true solution in 1976 [10]. However, a good initial
guess is not easy to obtain in practice. In order to avoid it,

Ho et al. proposed a novel two-step weighted least-squares
(TSWLS) [9, 12] approach to obtain the source position
and velocity. Sun et al. applied the total least-squares (TLS)
technique [13] to solve this problem.

Considering that the noise components of coefficients are
linearly dependent, Yu et al. used the constrained total least-
squares (CTLS) [14, 15] in moving source localization.

Up to now, most passive localization methods using
TDOA and FDOA are based on centralized structure, which
is shown in Figure 1(a). For the centralized structure, one
sensor is chosen as the reference sensor and the others can
transmit their original signals to the reference sensor [16].
On the one hand, in Electronic Warfare (EW), the receivers,
which intercept signals from the emitter and measure their
physical parameters, play a central role in the passive location
system [17]. Because the emitter is noncooperating, we can
only obtain theTDOAandFDOA. ForTDOA-basedmethod,
common practice requires precise time-synchronization
between sensors. Likewise, for FDOA-based method, precise
frequency-locking is required. Obviously, for joint TDOA-
and FDOA-basedmethods, both types of synchronization are
typically required [18]. If a TDOA- and FDOA-based system
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Figure 1: Sensor pairing.

[18] fails to achieve precise synchronization between devices
for separation distance operation, it is impossible to obtain
correct measurements from signals sent by receivers, and
such a failure to obtain the accurate values directly affects
location estimation error [19]. For example, in order to get
more accuracy of source position and velocity, the TSWLS,
TLS, and CTLS also require precise time-synchronization
and frequency-locking among all receivers. The price to pay
is accuracy required for TDOA and FDOA measurements,
strongly depending on synchronization [17]. Thus, all the
receivers would be precisely synchronized in time which is
difficult to realize and increase the system complexity.

On the other hand, it is well known that the centralized
method is power consuming since raw measurement data is
involved in the transmissions and there is high computational
cost at a single sensor for centralized localization [20].
In addition, this kind of method requires a high band-
width which is generally limited in wireless sensor networks
(WSNs) and alsomay cause a large processing delay [21].This
would have significant impacts on the size, weight, and power
(SWaP) requirement of that sensor [22].

Therefore, in practice, to reduce the requirements for net-
work bandwidth, synchronization, and power consumption
[23], the distributed localization is highly desirable. As seen
in Figure 1(b), several sensor pairs are formed without a
common reference sensor. The whole sensors do not need to
transmit their original signals to the single reference sensor
but only to their reference sensor of each group. Furthermore,
as the speed of the target is far less than the signal propagation
speed and the change of target position in synchronization
error is slightly small that we can ignore it, we only need
to achieve precise synchronization between two sensors in a
group rather than all sensors and have rough synchronization
between each group. Therefore, the distributed localization
not only reduces the difficulty of the synchronization between
all sensors but also decreases the load of data computation
and transmission. So, it is necessary to do some deep

research into distributed localization problem and improve
the estimation accuracy. Nowadays, the distributed structure
is a novel problem in passive localization, and there are still
some problems for distributed passive localization, such as
the optimal sensor pairing strategy, localization algorithm,
and optimal baseline between sensors. In this paper, we
aim at the location algorithm problem. For conventional
centralized structure source location methods, thanks to
the only reference sensor in the conventional centralized
structure source location methods, they can be transformed
from a nonlinear problem to a pseudolinear problem [24].
For instance, Ho and Xu used the position and velocity of
reference sensor to transform the TDOAand FDOAequation
to a set of linear equations and then applied linear weighted
least-squares (LS) to obtain the source position [9]. As there
are many different reference sensors in distributed structure,
it is difficult to use the conventional centralized structure
source location methods for estimation. Therefore, it is
essential to put forward a distributed localization algorithm.

Meyer et al. put forward the distributed sensor self-
localization and target tracking method in 2012 [25]. Dis-
tributed source localization is also a nontrivial problem
because the TDOA and FDOA measurements are nonlin-
early related to the source location parameters. Due to this
problem, the mean square error (MSE) is composed of two
parts: the variance and the bias square. When the noise
level is low and the observation period is short, the bias
is not significant compared with the variance of the target
position estimation [26, 27]. Thus, the Cramér-Rao lower
bound (CRLB), which is developed for an unbiased estimator,
is often used as a reference for evaluating the performance of a
location estimator. However, with the increase of observation
period, the location variancewill decrease and the bias cannot
be ignored. It had a serious influence on estimation perfor-
mance. In particular, with the development of ultrawideband
(UWB) technology, the measurements of the target can be
measured repeatedly in a short time, and then the precision
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of the target location can be improved by using the method
of data fusion [28], but this method can only effectively
reduce the variance of the estimation of the target, and the
deviation does not decrease as the number of measurements
increases [26, 29]. In application of target tracking, the
location deviation has a great influence on performance of
target tracking [27]. Therefore, how to remove the deviation
from the estimation of target position and velocity is a
focus of research. Rui and Ho proposed a bias compensation
algorithm [26] based on time of arrival (TOA), TDOA, or
angle of arrival (AOA) and verified that the position bias has
great influence on location accuracy. In order to reduce this
influence, Hao et al. put forward a bias reduction method for
passive source localization using TDOA and gain ratios of
arrival (GROA) [30]. However, the methods proposed by the
above research can only be applied to the stationary target.
For moving emitters, a new bias reduction algorithm using
both TDOA and FDOA is proposed by Ho [29]. It can reduce
the estimation error by adding new constraints to the original
position equation.The performance of estimation is the same
as maximum likelihood estimation (MLE). However, these
methods still have deviation and all need a proper initial
guess.

Motivated by the above shortcomings of algorithms based
on distributed structure, a new bias compensation method
based on MLE for distributed source localization using
TDOA and FDOA is proposed in this paper. We study
the bias of the MLE [31] for source localization, because
the MLE is asymptotically efficient and often serves as a
benchmark for performance evaluation. The bias of the MLE
of a general estimation problem has been investigated in the
mathematical and statistical literature [32–34]. The proposed
method firstly uses the classic steepest descent (SD) method
[35, 36] which has the features of being more rapid to
convergence and less sensitive to the initial values to get
an appropriate initial guess and coarse location estimation
is obtained by MLE [26, 27]. Then, more accurate location
estimation is achieved by subtracting theoretical bias, which
is approximated by the actual bias using the estimated source
location and noisy data measurement. The proposed method
attains the CRLB at a moderate noise level when the TDOA
and FDOA noise are Gaussian.

The remainder of the paper is organized as follows. The
novel method is introduced in Section 2. Section 3 analyses
the CRLB of distributed passive sensors localization under
Gaussian measurement noise. Section 4 presents simulation
to support the theoretical development of the proposed
method. Finally, a brief conclusion is given in Section 5.

2. The Proposed Algorithm

2.1. Distributed LocalizationModel. Themodel of distributed
localization is different from centralized model. We consider
a three-dimensional (3D) scenario where an array of 𝑀

moving sensors is used to determine the position u =

[𝑥, 𝑦, 𝑧]
𝑇 and velocity u̇ = [�̇�, �̇�, �̇�]

𝑇 of a moving source using
TDOAs and FDOAs.The sensor position s

𝑖
= [𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
]
𝑇 and

velocity ̇s
𝑖

= [�̇�
𝑖
, �̇�
𝑖
, �̇�
𝑖
]
𝑇, 𝑖 = 1, 2, . . . , 𝑀, are assumed to be

known and 𝑀 must be even. The location problem requires
at least three pairs of receivers (i.e., 𝑀 = 6) to produce
three TDOAs and three FDOAs. This paper focuses on the
overdetermined scenario where the number of receivers is
larger than 6.We will use the notation (∗)

𝑜 to denote the true
value of the noisy quantity (∗).

The Euclidean norm between the source and receiver 𝑖 is

𝑟
𝑜

𝑖
=

u
𝑜

− s𝑜
𝑖

 = √(u𝑜 − s𝑜
𝑖
)
𝑇

(u𝑜 − s𝑜
𝑖
). (1)

For 𝑀 sensors, there are a total number of 𝑀/2 sensor pairs
and TDOA/FDOAmeasurements. Let

Σ = {{2𝑖, 2𝑖 − 1} | 1 ≤ 𝑖 ≤
𝑀

2
} (2)

which denotes the set of all sensor pairs. For simplicity and
also without loss of generality, the first sensor of each group
is chosen as the reference sensor. If the true TDOA of a signal
received by the receiver pair (2𝑖, 2𝑖−1) is 𝜏

𝑜

2𝑖,2𝑖−1
and the signal

propagation speed is 𝑐, the set of equations that relates the
TDOAs and the source position is

𝑟
𝑜

2𝑖,2𝑖−1
= 𝑐𝜏
𝑜

2𝑖,2𝑖−1
= 𝑟
𝑜

2𝑖
− 𝑟
𝑜

2𝑖−1
, (3)

where 𝑟
𝑜

2𝑖,2𝑖−1
is range difference and 𝑖 = 1, 2, . . . , 𝑀/2.

Note that (3) is nonlinear with respect to u and the 𝑀/2

curves in (3) give the source position estimate. The TDOA
equations only allow the estimation of the source position
but not velocity. In addition, the TDOA equations alone may
not be sufficient to provide enough accuracy to the position
estimate.

Due to the moving source, the FDOAmeasurements can
be used to improve the accuracy of position estimate and,
at the same time, identify the source velocity. The FDOAs
have been converted to the range rate difference through
multiplying by signal propagation speed and dividing by the
center frequency. Let ̇𝑟

𝑜

𝑖
be the true range rate between the

source and receiver 𝑖. By taking the time derivative of (1), it is
equal to

̇𝑟
𝑜

𝑖
=

(u𝑜 − s𝑜
𝑖
)
𝑇

(u̇𝑜 − ̇s𝑜
𝑖
)

𝑟
𝑜

𝑖

. (4)

The FDOA between receiver pair 2𝑖 and 2𝑖 − 1 is the time
derivative of (3):

̇𝑟
𝑜

2𝑖,2𝑖−1
= ̇𝑟
𝑜

2𝑖
− ̇𝑟
𝑜

2𝑖−1
(5)

for 𝑖 = 1, 2, . . . , 𝑀/2, where ̇𝑟
𝑜

2𝑖,2𝑖−1
is range rate difference

derived from the FDOAs [9]. Equations (3) and (5) are a set of
nonlinear equations with the source position u and velocity
u̇, and solving them from TDOA and FDOA is not an easy
task.

In practice, we cannot obtain the true values of TDOA
and FDOA. So, we let r = [𝑟

2,1
, 𝑟
4,3

, . . . , 𝑟
𝑀,𝑀−1

]
𝑇 and ṙ =

[ ̇𝑟
2,1

, ̇𝑟
4,3

, . . . , ̇𝑟
𝑀,𝑀−1

]
𝑇 represent the noisy range differences

and range rate difference.We will assume that the TDOA and
FDOA measurements can be described by the additive noise
model as

r = r𝑜 + Δr,

ṙ = ṙ𝑜 + Δṙ,
(6)
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where

Δr = [Δ𝑟
2,1

, Δ𝑟
4,3

, . . . , Δ𝑟
𝑀,𝑀−1

]
𝑇

,

Δṙ = [Δ ̇𝑟
2,1

, Δ ̇𝑟
4,3

, . . . , Δ ̇𝑟
𝑀,𝑀−1

]
𝑇

.

(7)

Equation (6) can be written as the function

m = F (𝜃
𝑜
) + n, (8)

where m = [r𝑇, ṙ𝑇]𝑇 is the 𝑀 × 1 measurement vector with
𝑀/2 for range measurement and 𝑀/2 for range difference
measurement, F(𝜃

𝑜
) = [r𝑜𝑇, ṙ𝑜𝑇]𝑇 represents the function

relationship of the noiseless measurement vector in terms of
the unknown position u𝑜 and velocity u̇𝑜, 𝜃𝑜 = [u𝑜𝑇, u̇𝑜𝑇]𝑇 is
the location and velocity of the source, and n = [Δr𝑇, Δṙ𝑇]𝑇
is the vectors of TDOA and FDOA noise.They are zero mean
Gaussian noise and have covariancematrixQ.We assume the
observation interval is long enough so that the measurement
noise vectors at different time instants are uncorrelated.

2.2. Initial Solution Using the Steepest Descent Method. Esti-
mating the position and the velocity of amoving emitter using
the TDOA/FDOAmeasurements has been a challenging task
because of the high nonlinearity in the TDOA/FDOA signal
models. Under some circumstances where the source and
receiver geometry is not good, some localization algorithms
[10, 26] may fail to attain a more accurate estimation without
a proper initial guess. In this paper, the appropriate initial
value is obtained by SD method [35, 36], which features fast
convergence speed, low computational complexity, and low
requirement of initial value. Although the SD method also
requires initial guess, the convergence rate increases as the
difference between initial value and true value grows. It is
efficient to fill the gap of not having prior knowledge of the
target. Therefore, the SD method is chosen as the preferable
alternative executing refinement due to its simplicity and
validity.

Equation (6) can be expressed as

𝜑 = r𝑜 − r + Δr,

𝛽 = ṙ𝑜 − ṙ + Δṙ,
(9)

where 𝜑 = [𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑀/2
]
𝑇 and 𝛽 = [𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑀/2
]
𝑇.

Equation (9) can be written as the function

Φ = F (𝜃
𝑜
) − m + n, (10)

where Φ = [𝜑
𝑇
,𝛽
𝑇
]
𝑇. From (10), an objective function is

defined as

𝜌 (𝜃) = ‖Φ‖
2

=

𝑀/2

∑

𝑖=1

(𝜑
𝑖 (𝜃))
2

+

𝑀/2

∑

𝑖=1

(𝛽
𝑖 (𝜃))
2

. (11)

‖ ⋅ ‖ represents the Euclidean norm, and the solution of (6) is
a set of unknown variables which is formulated as

𝜃 = argmin
𝜃

𝜌 (𝜃) . (12)

In general, the gradient direction G at a certain point is the
fastest way to increase the function 𝜌(𝜃); on the contrary, the
direction of negative gradient −G is the fastest way to reduce
the function value. So, we can use this principle to find 𝜃 that
makes (11) minimal. Then, we set an arbitrary initial value
denoted by 𝜃

0
= [u𝑇
0
, u̇𝑇
0
]
𝑇 and the gradient direction of 𝜌(𝜃)

at the initial values is defined as

G
0

= [G𝑇
01

G𝑇
02

]
𝑇

=
𝜕𝜌

𝜕𝜃

𝜃0

= [
𝜕𝜌

𝜕u𝑇
0

𝜕𝜌

𝜕u̇𝑇
0

]

𝑇

. (13)

We choose the appropriate step size 𝜆, 𝜇 to find the new
estimation that makes (11) minimal along the direction of the
negative gradient −G. So, the new estimation is obtained by

𝜃
1

= [u𝑇
1
, u̇𝑇
1
]
𝑇

= [u𝑇
0

− 𝜆G𝑇
01

, u̇𝑇
0

− 𝜇G𝑇
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]
𝑇

, (14)

where

G
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= 2 ⋅

𝑀/2

∑

𝑖=1

𝜑
𝑖
⋅

𝜕𝜑
𝑖

𝜕u
+ 2 ⋅

𝑀/2

∑
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𝛽
𝑖
⋅

𝜕𝛽
𝑖

𝜕u
,

G
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= 2 ⋅

𝑀/2

∑

𝑖=1

𝛽
𝑖
⋅

𝜕𝛽
𝑖

𝜕u̇
,

𝜕𝜑
𝑖

𝜕u
=

𝜕𝑟
2𝑖,2𝑖−1

𝜕u
= x𝑇
2𝑖

− x𝑇
2𝑖−1

,

𝜕𝛽
𝑖

𝜕u
=

𝜕 ̇𝑟
2𝑖,2𝑖−1

𝜕u
= k𝑇
2𝑖

− k𝑇
2𝑖−1

,

𝜕𝛽
𝑖

𝜕u̇
=

𝜕𝜑
𝑖

𝜕u
,

(𝑖 = 1, 2, . . . ,
𝑀

2
) .

(15)

Appendix A gives details about the evaluation of the deriva-
tives for x

𝑖
and k
𝑖

(𝑖 = 1, 2, . . . , 𝑀).
In order to make (11) minimal within the shortest steps in

new estimation 𝜃
1
which is defined as

𝜌 (𝜃
1
) = 𝜌 (u𝑇

1
, u̇𝑇
1
)

≈ min {𝜌 (u𝑇
0

− 𝜆G𝑇
01

, u̇𝑇
0

− 𝜇G𝑇
02

)} ,

(16)
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we should find an optimal step size 𝜆 and 𝜇. Therefore, the
Taylor-series expansion of 𝜌(𝜃

1
) at 𝜃
0
up to second order is

𝜌 (𝜃
1
) =

𝑀/2

∑

𝑖=1

(𝜑
𝑖
(𝜃
1
))
2

+

𝑀/2

∑

𝑖=1

(𝛽
𝑖
(𝜃
1
))
2

≈

𝑀/2

∑
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(𝜑
𝑖
)
2

+

𝑀/2

∑

𝑖=1

(𝛽
𝑖
)
2

− 2𝜇

𝑀/2

∑

𝑖=1

𝛽
𝑖
(G𝑇
02

𝜕𝛽
𝑖

𝜕u̇
)

− 2𝜆

𝑀/2

∑

𝑖=1

𝜑
𝑖
(G𝑇
01

𝜕𝜑
𝑖

𝜕u
) − 2𝜆

𝑀/2

∑

𝑖=1

𝛽
𝑖
(G𝑇
01

𝜕𝛽
𝑖

𝜕u
)

+ 𝜆
2

𝑀/2

∑

𝑖=1

(G𝑇
01

𝜕𝜑
𝑖

𝜕u
)

2

+ 𝜆
2

𝑀/2

∑

𝑖=1

(G𝑇
01

𝜕𝛽
𝑖

𝜕u
)

2

+ 𝜇
2

𝑀/2

∑

𝑖=1

(G𝑇
02

𝜕𝛽
𝑖

𝜕u̇
)

2𝜃0

.

(17)

Representing the gradient of 𝜌(𝜃
1
) with respect to 𝜆 and 𝜇

satisfies the equation

𝜕𝜌 (𝜃
1
)

𝜕𝜆
= 0,

𝜕𝜌 (𝜃
1
)

𝜕𝜇
= 0.

(18)

Thus, the optimal step size is

𝜆

=

∑
𝑀/2

𝑖=1
𝜑
𝑖
(G𝑇
01

(𝜕𝜑
𝑖
/𝜕u)) + ∑

𝑀/2

𝑖=1
𝛽
𝑖
(G𝑇
01

(𝜕𝛽
𝑖
/𝜕u))

∑
𝑀/2

𝑖=1
(G𝑇
01

(𝜕𝜑
𝑖
/𝜕u))
2

+ ∑
𝑀/2

𝑖=1
(G𝑇
01

(𝜕𝛽
𝑖
/𝜕u))
2

𝜃𝑜

,

𝜇 =

∑
𝑀/2

𝑖=1
𝛽
𝑖
(G𝑇
02

(𝜕𝛽
𝑖
/𝜕u̇))

∑
𝑀/2

𝑖=1
(G𝑇
02

(𝜕𝛽
𝑖
/𝜕u̇))
2

𝜃𝑜

.

(19)

We have obtained the optimal step size which makes the
convergence rate along the direction of negative gradient of
objective function the fastest. Furthermore, a proper initial
position and velocity are attained by (14) using (19) until (11)
is sufficiently small.

2.3. Bias Compensation Using MLE. According to (8), the
logarithm probability density function of the noise data n is

ln𝑓 (m, 𝜃) = 𝑘 −
1

2
[m − F (𝜃)]

𝑇Q−1 [m − F (𝜃)] , (20)

where 𝑘 = −1/2 ln((2𝜋)
𝑀

|Q|) is constant and the MLE
solution �̂� is

�̂� = argmax (𝐼) , (21)

where 𝐼 is the maximum likelihood cost function equal to

𝐼 ≜ −
1

2
[m − F (𝜃)]

𝑇Q−1 [m − F (𝜃)] . (22)

Due to the nonlinear form of F(𝜃), iterative or exhaustive
search method is required to find the ML solution �̂� using
the initial value of (14). Representing the gradient of 𝐼 with
respect to 𝜃 as P(�̂�), �̂� satisfies the equation

P (�̂�) =
𝜕𝐼

𝜕𝜃

�̂�

= 0. (23)

The expectation of the difference between �̂� and 𝜃𝑜 gives the
bias𝐸[�̂�−𝜃

𝑜
].We use (23) to obtain the bias without explicitly

solving �̂�. It assumes that the noise standard deviation relative
to the true values of the TDOA and FDOA measurements is
small. Thus, the noise terms higher than second order can be
ignored, and the Taylor-series expansion of P(�̂�) at 𝜃𝑜 up to
second order is

P (�̂�) =
𝜕𝐼

𝜕𝜃

�̂�

≈ H + H (�̂� − 𝜃
𝑜
) + g (𝜃

𝑜
) = 0, (24)

where

H = 𝜕𝐼

𝜕𝜃

𝜃=𝜃𝑜
,

H = 𝜕
2
𝐼

𝜕𝜃𝜕𝜃
𝑇

𝜃=𝜃𝑜
,

H
𝑙

=
𝜕

𝜕𝜃
𝑙

(
𝜕
2
𝐼

𝜕𝜃𝜕𝜃
𝑇

)

𝜃=𝜃𝑜
𝑙 = 1, 2, . . . , 6,

g (𝜃
𝑜
) =

1

2

[
[
[
[
[
[
[
[
[

[

tr (H
1

× [�̂� − 𝜃
𝑜
] [�̂� − 𝜃

𝑜
]
𝑇

)

tr (H
2

× [�̂� − 𝜃
𝑜
] [�̂� − 𝜃

𝑜
]
𝑇

)

.

.

.

tr (H
6

× [�̂� − 𝜃
𝑜
] [�̂� − 𝜃

𝑜
]
𝑇

)

]
]
]
]
]
]
]
]
]

]

.

(25)

We can obtain the theoretical bias from (24):

𝐸 [�̂� − 𝜃
𝑜
] = 𝐸 [− (H)

−1

H]

+ 𝐸 [− (H)
−1

g (𝜃
𝑜
)] .

(26)

Equation (25) is specifically expressed as

H = 𝜕𝐼

𝜕𝜃

𝜃=𝜃𝑜
=

𝜕
𝑇F (𝜃)

𝜕𝜃
Q−1n

𝜃=𝜃𝑜
= C,

H = 𝜕
2
𝐼

𝜕𝜃𝜕𝜃
𝑇

𝜃=𝜃𝑜
= − (A − B) ,

A =
𝜕
𝑇F (𝜃)

𝜕𝜃
Q−1 𝜕F (𝜃)

𝜕𝜃
𝑇

𝜃=𝜃𝑜
,

B =

𝑀

∑

𝑗=1

𝑀

∑

𝑖=1

𝑞
𝑖𝑗
𝑛
𝑖

𝜕
2
𝐹
𝑗 (𝜃)

𝜕𝜃𝜕𝜃
𝑇

𝜃=𝜃𝑜

,

(27)

where 𝑞
𝑖𝑗
is the element ofQ−1.
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Next, we give a detailed derivation and obtain an algebraic
solution of (26). According to (27), the first term of (26) can
be approximated as

𝐸 [− (H)
−1

H] = 𝐸 [(A − B)
−1 C]

≈ 𝐸 [A−1C] + 𝐸 [A−1BA−1C] .

(28)

Because A does not contain noise, 𝐸[A−1C] = 0 and (27) can
be simplified as

𝐸 [− (H)
−1

H] ≈ 𝐸 [A−1BA−1C] . (29)

Substituting the definition of A,B,C from (27) and 𝐸[𝑛
𝑖
n] =

Qe
𝑖
, the first component of bias is

𝐸 [− (H)
−1

H]

≈ A−1
𝑀

∑

𝑖=1

P
𝑖
A−1 (𝜕

𝑇F (𝜃)

𝜕𝜃
)Q−1 ⋅ 𝐸 [𝑛

𝑖
n]

≈ A−1
𝑀

∑

𝑖=1

P
𝑖
A−1 (𝜕

𝑇F (𝜃)

𝜕𝜃
) e
𝑖

𝜃=𝜃𝑜

,

(30)

where e
𝑖
is 𝑀 × 1 zero vector except that its 𝑖th element is

unity. P
𝑖
is

P
𝑖
=

𝑀

∑

𝑗=1

𝑞
𝑖𝑗

𝜕
2F
𝑗 (𝜃)

𝜕𝜃𝜕𝜃
𝑇

𝜃=𝜃𝑜

. (31)

The second bias component 𝐸[−(H)−1g(𝜃
𝑜
)] is quite tedious

to evaluate and we will approximate it [26]. When the noise
level is small, from (27), we haveH ≈ −A. Thus, the second
bias component is

𝐸 [− (H)
−1

g (𝜃
𝑜
)] ≈ Α

−1z, (32)

where

z ≜ 𝐸 [g (𝜃
𝑜
)] ≈

1

2

[
[
[
[
[
[
[

[

tr (𝐸 [H
1

] × CRLB (𝜃
𝑜
))

tr (𝐸 [H
2

] × CRLB (𝜃
𝑜
))

.

.

.

tr (𝐸 [H
6

] × CRLB (𝜃
𝑜
))

]
]
]
]
]
]
]

]

. (33)

tr(∗) represents the trace operation and CRLB(𝜃
𝑜
) is the

CRLB of 𝜃𝑜 when its bias is neglected. The approximation is
valid for small measurement noise and the fact that MLE is
asymptotically efficient. In addition,

𝐸 [H
𝑙

] =

𝑀

∑

𝑖=1

[h𝑇
𝑖
e
𝑙
P
𝑖
+ P
𝑖
e
𝑙
h𝑇
𝑖

+ h
𝑖
e𝑇
𝑙
P𝑇
𝑖
] , (34)

where

h
𝑖
=

𝑀

∑

𝑗=1

𝑞
𝑖𝑗

𝜕F
𝑗 (𝜃)

𝜕𝜃

𝜃=𝜃𝑜
. (35)

Utilizing CRLB(𝜃
𝑜
) for a given positioning measurement

type, z can be evaluated and the expectation of the bias is
equal to

b = 𝐸 [�̂� − 𝜃
𝑜
]

= A−1(
𝑀

∑

𝑖=1

P
𝑖
A−1 (𝜕

𝑇F (𝜃)

𝜕𝜃
) e
𝑖
+ z)

𝜃=𝜃𝑜

.

(36)

Equation (36) is the generic form of the bias and the
complexity of computing bias is 𝑂(𝑀

2
). When F(𝜃) takes on

different measurement types, the first and second derivatives
will be different, yielding different amount of bias in the
MLE solution. Appendices A and B give details about the
evaluation of the derivatives for F(𝜃).

Equation (36) can accurately predict the bias of the MLE;
hence, the current source position and velocity after bias
compensation are given by

�̃� = �̂� − b, (37)

where �̃� can approximately be treated as an unbiased estima-
tor of 𝜃𝑜 with covariance matrix CRLB(𝜃

𝑜
). The evolution of

the bias in (36) requires the true value of target position and
velocity which is not known in practice. We will replace the
true value with the ML estimate.

In Section 4, we will present the computer simulation to
corroborate our theoretical development and to compare the
relative localization accuracy for different methods.

3. The CRLB of Distributed Passive Sensors
Localization under Gaussian Distribution

The CRLB is the lowest possible variance that an unbiased
linear estimator can achieve. The measurement vector 𝜃 is
Gaussian distributed. Hence, according to (20), the CRLB is
equal to the inverse of the Fisher matrix [31] defined as

J = 𝐸 [(
𝜕 ln𝑓 (m, 𝜃)

𝜕𝜃
)

𝑇

(
𝜕 ln𝑓 (m, 𝜃)

𝜕𝜃
)]

𝜃=𝜃𝑜
, (38)

where m = [𝑟
2,1

, . . . , 𝑟
𝑀,𝑀−1

, ̇𝑟
2,1

, . . . , ̇𝑟
𝑀,𝑀−1

]
𝑇 is the vector

of range and range rate difference from TDOA and FDOA
measurements and𝑓(m, 𝜃) is the probability density function
of m that is parameterized by the vector 𝜃. The partial
derivative of ln𝑓(m, 𝜃) with respect to 𝜃 is

𝜕 ln𝑓 (m, 𝜃)

𝜕𝜃
=

𝜕
𝑇F (𝜃)

𝜕𝜃
Q−1n

𝜃=𝜃𝑜
= C. (39)

Thus, the CRLB for the underlying problem reduces to

CRLB (𝜃
𝑜
) = J−1 = [(

𝜕
𝑇F (𝜃)

𝜕𝜃
Q−1 𝜕F (𝜃)

𝜕𝜃
𝑇

)

𝜃=𝜃𝑜
]

−1

= [A|𝜃=𝜃𝑜]
−1

.

(40)
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The details about the evaluation of the CRLB from (40) are
shown in Appendix A.

The solution derivation is obtained by evaluating the
bias and variance of the location estimate. Let �̂� be the
coarse location estimation that is obtained by MLE and let
�̃� be a vector that contains the source position and velocity
estimation after bias compensation.Thus, the two estimation
results can be expressed as

�̂� = 𝜃
𝑜

+ Δ�̂�,

�̃� = �̂� − b,

(41)

where Δ�̂� is the source location bias of �̂�. We can get the final
source location bias:

Δ�̃� = Δ�̂� − b. (42)

The expectation of (42) gives the bias

𝐸 [Δ�̃�] = 𝐸 [Δ�̂� − b] = 𝐸 [(�̂� − 𝜃
𝑜
) − 𝐸 (�̂� − 𝜃

𝑜
)]

= 0,

(43)

where �̃� can approximately be treated as an unbiased estima-
tor. Under the assumption explained before (24), the high-
order noise terms in (24) tend to zero asymptotically as
the measurement noise decreases so that n is zero mean
asymptotically at the true value of �̂�.Therefore, from theMLE
theory [31], �̂� is asymptotically unbiased under the zeromean
Gaussian noise but not unbiased estimator. Multiplying (42)
by its transpose and taking expectation yields, the covariance
of �̃� is

cov (�̃�) = 𝐸 [(�̃� − 𝐸 [�̃�]) (�̃� − 𝐸 [�̃�])
𝑇

]

= 𝐸 [Δ�̃�Δ�̃�
𝑇

] = 𝐸 [(Δ�̂� − b) (Δ�̂� − b)
𝑇

]

= 𝐸 [Δ�̂�Δ�̂�
𝑇

] − bb𝑇,

(44)

where 𝐸[Δ�̃�Δ�̃�
𝑇

] and 𝐸[Δ�̂�Δ�̂�
𝑇

] are the MSEM of �̃� and �̂�.
Due to (43) and (44), theMSEMof �̃� is equal to the covariance
of �̃� and, because of (bb𝑇)

𝑖𝑖
≥ 0 (𝑖 = 1, 2, . . . , 6),

cov (�̃�)
𝑖𝑖

≤ (𝐸 [Δ�̂�Δ�̂�
𝑇

])
𝑖𝑖

. (45)

From (45), we can obtain that the covariance of the proposed
method is smaller than that of MLE. Therefore, the bias
compensation method is effective to reduce the bias of MLE
and the performance of estimation after bias compensation is
better than that of the original MLE.

4. Simulation Results

This section uses numerical simulations to demonstrate the
proposed method and to compare its performance with
other location estimators. The simulation scenario contains

Table 1: Nominal position (in meters) and velocities (in meters/
second) of receivers.

Groups Receiver
number 𝑖

𝑥
𝑖

𝑦
𝑖

𝑧
𝑖

�̇�
𝑖

�̇�
𝑖

�̇�
𝑖

Set 1 1 −150 −600 200 10 20 −30
2 50 −750 200 20 30 0

Set 2 3 500 −200 500 −10 0 10
4 600 100 600 10 20 15

Set 3 5 100 600 800 −10 20 20
6 −100 400 700 30 0 20

Set 4 7 −600 50 400 15 10 −15
8 −750 −100 500 −20 −15 10

Far-field source
Near-field source
Receivers

z
(m

)

y (m)
x (m)

0

500

1000

1500

2000

2500

3000

1000

0

−1000

−2000

−3000

2000

1000

0

−1000

Figure 2: Localization geometry for simulation.

8 receivers (4 groups), and the position and velocity of
receivers are given in Table 1, as shown in Figure 2. TDOA
and FDOA estimates were generated by adding to the true
values zero mean Gaussian noise. The covariance matrices of
TDOA and FDOA were 𝜎

2

𝑟
R and 0.1𝜎

2

𝑟
R, where R was set

to 1 in the diagonal elements and 0.5 otherwise. 𝜎
2

𝑟
is the

TDOA noise power multiplied by the square of the signal
propagation speed 3 × 10

8m/s and the TDOA and FDOA
noises were uncorrelated. The number of ensemble runs was
𝐾 = 10000.The estimation bias and accuracy are investigated
for source as TDOAand FDOA estimates errors increase.The
estimation accuracy in terms of the root mean square error
(RMSE) is defined as

RMSE (u) =
√

∑
𝐾

𝑘=1

u𝑘 − u𝑜
2

𝐾
,

RMSE (u̇) =
√

∑
𝐾

𝑘=1

u̇𝑘 − u̇𝑜
2

𝐾
.

(46)
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Figure 3: Comparison between theoretical and actual bias of
estimation of source position and velocity by MLE for near-field
source.

The estimation bias in terms of norm of estimation bias is
defined as

bias (u) =
1

𝐾



𝐾

∑

𝑘=1

(u
𝑘

− u𝑜)


,

bias (u̇) =
1

𝐾



𝐾

∑

𝑘=1

(u̇
𝑘

− u̇𝑜)


,

(47)

where u𝑜 and u̇𝑜 express the true position and velocity of the
source and u

𝑘
and u̇

𝑘
denote the estimated source position

and velocity at ensemble 𝑘 and 𝐾 = 10000 is the number
of ensemble runs. In particular, all the true values in the
bias formula are replaced by the estimated and noisy meas-
urement values.

4.1. For Near-Field Source. This section concerns near-field
source localization. The true position and velocity of the
source are u𝑜 = [500, −500, 600]

𝑇 and u̇𝑜 = [−30, −15, 20]
𝑇.

Figure 3 shows the comparison between theoretical bias and
actual bias of estimation of target position and velocity by
MLE. As shown in the figure, the theoretical bias (solid line)
matches very well the simulation when the SNR is smaller
than 10 dB. With the increase of noise level, the theoretical
bias value gradually deviates from the actual bias, especially
the target velocity bias. This phenomenon in the proposed
method is a consequence of ignoring the high-order terms
of (24) in deriving the solution, which is not valid when the
noise is large. Therefore, in order to obtain a more accurate
estimation of target position, we should do the Taylor-series
expansion of (24) at 𝜃𝑜 up to high order.

Figure 4 shows the accuracy of position and velocity
estimate of the proposed method in terms of RMSE as the
noise level increases and compares it with the distributed
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Figure 4: Comparison of root mean square error (RMSE) of the
proposedmethod with the original MLE, Taylor-series method, and
the CRLB for near-field source. The accuracy is shown in log scale
as the noise power increase.

TDOA/FDOA localization algorithmMLE [26], Taylor-series
method [10], and CRLB. The initial guess is obtained by SD
method. The estimation precision of the proposed method is
always higher than that of the other localization algorithms
and all the algorithms can attain the CRLB at low tomoderate
noise level.TheTaylor-seriesmethod deviates from the CRLB
and gives an inaccurate solution at a noise power that is
about 10 dB lower than the proposed technique. Furthermore,
the new method achieves about 3.5 dB reduction in source
position RMSE and 2.3 dB reduction in source velocity
RMSE with respect to the one that does not account for
the bias compensation when 𝜎

2

𝑟
≥ 1m2. In the drawing

of partial enlargement, the position and velocity estimation
biases of the proposed estimators are all relatively small,
which indicates that the proposed method exhibits the best
performance. In addition, due to the nonlinear nature of this
localization problem, the estimation accuracy of the three
methods grows as the noise level increases.

In Figure 5, the estimation results clearly demonstrate that
the bias of the proposed method is nonetheless smaller than
the MLE for low noise level. The position and velocity biases
of the proposed method are at least 40 dB and 35 dB lower
than the MLE at low noise level. It is efficient to reduce the
impact of the MLE bias on estimation. With the increase of
the noise power, the original maximum likelihood estimation
(MLE) is affected by the threshold effect, which leads to the
decrease of the algorithm performance.

4.2. For Far-Field Source. This section concerns far-field
source localization. The true position and velocity of the
source are u𝑜 = [2000, −2500, 3000]

𝑇 and u̇𝑜 = [−30, −15,

20]
𝑇. Figure 6 shows the comparison between theoretical and

actual bias of estimation of target position and velocity by



International Journal of Antennas and Propagation 9

The proposed method
MLE

−100

−50

0

50

Po
sit

io
n 

bi
as

 (d
B)

−100

−50

0

50

Ve
lo

ci
ty

 b
ia

s (
dB

)

−40 −30 −20 −10−50 10 200

−40 −30 −20 −10−50 10 200

10 log(c2𝜎2r ) (dB)

10 log(c2𝜎2r ) (dB)

Figure 5: Comparison of the estimation bias of the proposed
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FDOA noise for near-field source. The result is shown in log scale
as the noise power increase.
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Figure 6: Comparison between theoretical and actual bias of
estimation of source position and velocity by MLE for far-field
source.

MLE. The trend of the result is the same as Figure 3 and the
estimation results clearly indicate that theoretical bias of the
far field is significantly close to the actual bias especially at
low noise level.

Figure 7 shows the result for a far-field source about the
accuracy of position and velocity estimate of the proposed
method and other comparison algorithms in terms of RMSE
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Figure 7: Comparison of root mean square error (RMSE) of the
proposedmethod with the original MLE, Taylor-series method, and
the CRLB for far-field source. The accuracy is shown in log scale as
the noise power increase.

as the noise level increases. For far-field source, the following
two conditions are satisfied:

𝑟
𝑜

1
≈ 𝑟
𝑜

2
≈ ⋅ ⋅ ⋅ ≈ 𝑟

𝑜

𝑀
,

̇𝑟
𝑜

1

𝑟
𝑜

1

≈ ⋅ ⋅ ⋅ ≈
̇𝑟
𝑜

𝑀

𝑟
𝑜

𝑀

≈ 0.

(48)

The first condition simply indicates that the ranges of the
source to different receivers are approximately the same since
the source is very far from the receivers. Due to the large
range, the range rate relative to the range is close to zero.
Thus, the thresholding effect of the far-field source occurs
earlier than that of near-field source and the location accuracy
is generally worse for a far-field source than a near-field
source. As expected from the theory, the proposed solution
meets theCRLBbefore the thresholding effect occurs at about
−10 dB. Comparing with the MLE, the improvement of the
proposed method is about 2.3 dB in the position and 1.3 dB
in the velocity RMSEs and the estimation precision of the
proposed method is always higher than that of the other
comparison algorithms.Whatever the far-field and near-field
sources, with the noise level decrease, the improvement of
bias compensation is gradually reduced.This influence in the
proposed method is caused by ignoring the high-order terms
of (24) in deriving the solution.

Figure 8 shows the result for a far-field source about the
bias analysis of the proposed method and the trend of the
result is the same as Figure 5. Although the position and
velocity bias of far-field source is about 5 dB smaller than that
of the near-field source because of the two conditions shown
in (48), the proposed method is still effective to reduce the
bias of the MLE.
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5. Conclusion

Due to the disadvantages of centralized localization, we
proposed a bias compensation algorithm based on MLE
for distributed passive localization using TDOA and FDOA
measurements which not only reduces the difficulty of the
synchronization between the sensors, but also decreases the
load of data computation and transmission. The proposed
method tends to reduce the position and velocity bias of a
moving source by using the steepest descent method and bias
compensation of MLE. Computer simulation results show
that the proposed method was able to achieve higher perfor-
mance than the existingmethods.Theproposed solution does
not require initial guess and attains the CRLB for Gaussian
noise before the thresholding effect occurs. Meanwhile, small
computation overhead and small memory demands make
SD method and bias compensation method suitable for
distributed localization schemes of wireless sensor networks.
In addition, the position of each sensor should not be
perfectly known (equip every sensor with a GPS receiver that
is both energy and cost prohibitive). According to [37], we
will take into account the position uncertainty of sensors for
further study.

Appendix

A. The First Derivatives of the F(𝜃) for Source
Position and Velocity

The first derivatives of F(𝜃) for source position and velocity
are shown in this part. Let

r (𝜃) = [𝑟
2,1 (𝜃) , 𝑟

4,3 (𝜃) , . . . , 𝑟
𝑀,𝑀−1 (𝜃)]

𝑇
,

ṙ (𝜃) = [ ̇𝑟
2,1 (𝜃) , ̇𝑟

4,3 (𝜃) , . . . , ̇𝑟
𝑀,𝑀−1 (𝜃)]

𝑇
,

F (𝜃) = [r𝑇 (𝜃) , ṙ𝑇 (𝜃)]
𝑇

.

(A.1)

So 𝜕F(𝜃)/𝜕𝜃
𝑇 in (27) can be expressed as

𝜕F (𝜃)
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𝜕ṙ (𝜃)

𝜕u̇𝑇

]
]
]
]

]

. (A.2)

According to (3) and (5), we let

x
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(A.3)

Thus, the partial derivatives of r(𝜃) and ṙ(𝜃) with respect to u
and u̇ yield (A.4), shown as
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(A.4)

B. The Second Derivatives of the F(𝜃) for
Source Position and Velocity

The second derivatives of F(𝜃) for source position and
velocity are shown in this part.

When 1 ≤ 𝑗 ≤ 𝑀/2, 𝜕
2F
𝑗
(𝜃)/𝜕𝜃𝜕𝜃
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According to (3) and (5), we let

X
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= (I − x𝑇
𝑗
x
𝑗
) 𝑟
𝑗 (𝜃)
−1

, (B.2)

where I is the identity matrix. Therefore, the second-order
partial derivatives of r(𝜃) with respect to u and u̇ yield (B.3),
shown as
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When 𝑀/2 + 1 ≤ 𝑗 ≤ 𝑀, 𝜕
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2ṙ
2𝑗−𝑀,2𝑗−1−𝑀 (𝜃)

𝜕u̇𝜕u̇𝑇

]
]
]
]
]

]6×6

.

(B.4)

Let

Y
𝑗

= ̇𝑟
𝑗 (𝜃) 𝑟

𝑗 (𝜃)
−2

(3x𝑇
𝑗
x
𝑗

− I) ,

w
𝑗

= 𝑟
𝑗 (𝜃)
−1

(u̇ − ̇s
𝑗
)
𝑇

,

W
𝑗

= 𝑟
𝑗 (𝜃)
−1 x𝑇
𝑗
w
𝑗
,

Ψ
𝑗

= Y
𝑗

− W
𝑗

− W𝑇
𝑗
.

(B.5)

The second-order partial derivatives of ṙ(𝜃) with respect to u
and u̇ yield (B.6), shown as
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2ṙ
2𝑗−𝑀,2𝑗−1−𝑀 (𝜃)

𝜕u̇𝜕u̇𝑇
= 0
3×3

.

(B.6)

Competing Interests

The authors declare that they have no competing interests.

References

[1] G. C. Carter, “Time delay estimation for passive sonar signal
processing,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 29, no. 3, pp. 463–470, 1981.

[2] E. Weinstein, “Optimal source localization and tracking from
passive array measurements,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 30, no. 1, pp. 69–76, 1982.

[3] T. Gustafsson, B. D. Rao, and M. Trivedi, “Source localization
in reverberant environments: modeling and statistical analysis,”
IEEE Transactions on Speech and Audio Processing, vol. 11, no. 6,
pp. 791–803, 2003.

[4] B. Mungamuru and P. Aarabi, “Enhanced sound localization,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 34, no. 3, pp. 1526–1540, 2004.

[5] J. C. Chen, K. Yao, and R. E. Hudson, “Source localization and
beamforming,” IEEE Signal Processing Magazine, vol. 19, no. 2,
pp. 30–39, 2002.

[6] T. S. Rappaport, J. H. Reed, and B. D. Woerner, “Position loca-
tion using wireless communications on highways of the future,”
IEEE Communications Magazine, vol. 34, no. 10, pp. 33–41,
1996.

[7] A. Yeredor and E. Angel, “Joint TDOA and FDOA estimation: a
conditional bound and its use for optimally weighted localiza-
tion,” IEEE Transactions on Signal Processing, vol. 59, no. 4, pp.
1612–1623, 2011.

[8] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for
hyperbolic location,” IEEE Transactions on Signal Processing,
vol. 42, no. 8, pp. 1905–1915, 1994.

[9] K. C. Ho andW. Xu, “An accurate algebraic solution for moving
source location using TDOA and FDOA measurements,” IEEE
Transactions on Signal Processing, vol. 52, no. 9, pp. 2453–2463,
2004.

[10] W. H. Foy, “Position-location solutions by taylor-series estima-
tion,” IEEE Transactions on Aerospace and Electronic Systems,
vol. AES-12, no. 2, pp. 187–194, 1976.

[11] R. O. Schmidt, “An algorithm for two-receiver TDOA/FDOA
emitter location,” TechnicalMemoTM-1229, ESL Incorporated,
Sunnyvale, Calif, USA, 1980.

[12] K. C. Ho, X. Lu, and L. Kovavisaruch, “Source localization using
TDOA and FDOA measurements in the presence of receiver
location errors: analysis and solution,” IEEE Transactions on
Signal Processing, vol. 55, no. 2, pp. 684–696, 2007.

[13] X. Y. Sun, J. D. Li, P. Y.Huang, and J. Y. Pang, “Total least-squares
solution of active target localization using TDOA and FDOA
measurements in WSN,” in Proceedings of the IEEE 22nd
International Conference on Advanced Information Networking
and Applications (AINAW ’08), pp. 995–999, Okinawa, Japan,
March 2008.

[14] K. Yang, J. P. An, X. Y. Bu, and G. C. Sun, “Constrained total
least-squares location algorithm using time-difference-of-
arrival measurements,” IEEE Transactions on Vehicular Technol-
ogy, vol. 59, no. 3, pp. 1558–1562, 2010.

[15] H. Yu, G. Huang, and J. Gao, “Constrained total least-squares
localisation algorithm using time difference of arrival and fre-
quency difference of arrival measurements with sensor location
uncertainties,” IET Radar, Sonar and Navigation, vol. 6, no. 9,
pp. 891–899, 2012.

[16] W. Meng, W. Xiao, and L. Xie, “Optimal sensor pairing for
TDOA based source localization in sensor networks,” in Pro-
ceedings of the 8th International Conference on Information,
Communications and Signal Processing (ICICS ’11), pp. 1–5, IEEE,
Singapore, December 2011.

[17] H. Seute, J. Grandin, C. Enderli, A. Khenchaf, and J. Cexus,
“Why synchronization is a key issue in modern electronic sup-
port measures,” in Proceedings of the 16th International Radar
Symposium (IRS ’15), pp. 794–799, IEEE, Dresden, Germany,
June 2015.

[18] A. Yeredor, “On passive TDOA and FDOA localization using
two sensors with no time or frequency synchronization,” in
Proceedings f the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’13), pp. 4066–4070, IEEE,
Vancouver, Canada, May 2013.

[19] J.-Y. Yoon, J.-W. Kim,W.-Y. Lee, andD.-S. Eom, “A TDoA-based
localization using precise time-synchronization,” in Proceedings
of the 14th International Conference on Advanced Communi-
cation Technology (ICACT ’12), pp. 1266–1271, PyeongChang,
Republic of Korea, February 2012.



12 International Journal of Antennas and Propagation

[20] T. Li, A. Ekpenyong, and Y.-F. Huang, “Source localization and
tracking using distributed asynchronous sensors,” IEEE Trans-
actions on Signal Processing, vol. 54, no. 10, pp. 3991–4003, 2006.

[21] W. Meng, L. Xie, and W. Xiao, “TDOA sensor pairing in multi-
hop sensor networks,” in Proceedings of the 11th ACM/IEEE
Conference on Information Processing in Sensing Networks (IPSN
’12), pp. 91–92, ACM, Beijing, China, April 2012.

[22] M. Pourhomayoun and M. L. Fowler, “Distributed computa-
tion for direct position determination emitter location,” IEEE
Transactions on Aerospace & Electronic Systems, vol. 50, no. 4,
pp. 2878–2889, 2014.

[23] W. Meng, L. Xie, and W. Xiao, “Decentralized TDOA sensor
pairing in multihop wireless sensor networks,” IEEE Signal
Processing Letters, vol. 20, no. 2, pp. 181–184, 2013.

[24] H.-W. Wei, R. Peng, Q. Wan, Z.-X. Chen, and S.-F. Ye,
“Multidimensional scaling analysis for passive moving target
localizationwithTDOAandFDOAmeasurements,” IEEETrans
actions on Signal Processing, vol. 58, no. 3, part 2, pp. 1677–1688,
2010.

[25] F.Meyer, E. Riegler, O. Hlinka, and F. Hlawatsch, “Simultaneous
distributed sensor self-localization and target tracking using
belief propagation and likelihood consensus,” in Proceedings of
the 46th Asilomar Conference on Signals, Systems andComputers
(ASILOMAR ’12), pp. 1212–1216, IEEE, Pacific Grove, Calif,
USA, November 2012.

[26] L. Rui and K. C. Ho, “Bias analysis of source localization using
the maximum likelihood estimator,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP ’12), pp. 2605–2608, Kyoto, Japan, March 2012.

[27] L. Rui and K. C. Ho, “Bias compensation for target tracking
from range based Maximum Likelihood position estimates,”
in Proceedings of the IEEE 7th Sensor Array and Multichannel
Signal Processing Workshop (SAM ’12), pp. 193–196, IEEE,
Hoboken, NJ, USA, June 2012.

[28] R. J. Barton andD. Rao, “Performance capabilities of long-range
UWB-IR TDOA localization systems,” Eurasip Journal on
Advances in Signal Processing, vol. 2008, Article ID 236791, 1
page, 2008.

[29] K. C.Ho, “Bias reduction for an explicit solution of source local-
ization using TDOA,” IEEE Transactions on Signal Processing,
vol. 60, no. 5, pp. 2101–2114, 2012.

[30] B. Hao, Z. Li, P. Qi, and L. Guan, “Effective bias reductionmeth-
ods for passive source localization using TDOA and GROA,”
Science China Information Sciences, vol. 56, no. 7, pp. 1–12, 2013.

[31] S. M. Kay, Fundamentals of Statistical Signal Processing, Estima-
tion Theory, Prentice-Hall, Englewood Cliffs, NJ, USA, 1993.

[32] M. S. Bartlett, “Approximate confidence intervals. II. More than
one unknown parameter,” Biometrika, vol. 40, pp. 306–317, 1953.

[33] J. B. S. Haldane, “The estimation of two parameters from a
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