1,308 research outputs found

    Zero-Delay Rate Distortion via Filtering for Vector-Valued Gaussian Sources

    Full text link
    We deal with zero-delay source coding of a vector-valued Gauss-Markov source subject to a mean-squared error (MSE) fidelity criterion characterized by the operational zero-delay vector-valued Gaussian rate distortion function (RDF). We address this problem by considering the nonanticipative RDF (NRDF) which is a lower bound to the causal optimal performance theoretically attainable (OPTA) function and operational zero-delay RDF. We recall the realization that corresponds to the optimal "test-channel" of the Gaussian NRDF, when considering a vector Gauss-Markov source subject to a MSE distortion in the finite time horizon. Then, we introduce sufficient conditions to show existence of solution for this problem in the infinite time horizon. For the asymptotic regime, we use the asymptotic characterization of the Gaussian NRDF to provide a new equivalent realization scheme with feedback which is characterized by a resource allocation (reverse-waterfilling) problem across the dimension of the vector source. We leverage the new realization to derive a predictive coding scheme via lattice quantization with subtractive dither and joint memoryless entropy coding. This coding scheme offers an upper bound to the operational zero-delay vector-valued Gaussian RDF. When we use scalar quantization, then for "r" active dimensions of the vector Gauss-Markov source the gap between the obtained lower and theoretical upper bounds is less than or equal to 0.254r + 1 bits/vector. We further show that it is possible when we use vector quantization, and assume infinite dimensional Gauss-Markov sources to make the previous gap to be negligible, i.e., Gaussian NRDF approximates the operational zero-delay Gaussian RDF. We also extend our results to vector-valued Gaussian sources of any finite memory under mild conditions. Our theoretical framework is demonstrated with illustrative numerical experiments.Comment: 32 pages, 9 figures, published in IEEE Journal of Selected Topics in Signal Processin

    Optimal Estimation via Nonanticipative Rate Distortion Function and Applications to Time-Varying Gauss-Markov Processes

    Full text link
    In this paper, we develop {finite-time horizon} causal filters using the nonanticipative rate distortion theory. We apply the {developed} theory to {design optimal filters for} time-varying multidimensional Gauss-Markov processes, subject to a mean square error fidelity constraint. We show that such filters are equivalent to the design of an optimal \texttt{\{encoder, channel, decoder\}}, which ensures that the error satisfies {a} fidelity constraint. Moreover, we derive a universal lower bound on the mean square error of any estimator of time-varying multidimensional Gauss-Markov processes in terms of conditional mutual information. Unlike classical Kalman filters, the filter developed is characterized by a reverse-waterfilling algorithm, which ensures {that} the fidelity constraint is satisfied. The theoretical results are demonstrated via illustrative examples.Comment: 35 pages, 6 figures, submitted for publication in SIAM Journal on Control and Optimization (SICON

    Minimum Bitrate Neuromorphic Encoding for Continuous-Time Gauss-Markov Processes

    Full text link
    In this work, we study minimum data rate tracking of a dynamical system under a neuromorphic event-based sensing paradigm. We begin by bridging the gap between continuous-time (CT) system dynamics and information theory's causal rate distortion theory. We motivate the use of non-singular source codes to quantify bitrates in event-based sampling schemes. This permits an analysis of minimum bitrate event-based tracking using tools already established in the control and information theory literature. We derive novel, nontrivial lower bounds to event-based sensing, and compare the lower bound with the performance of well-known schemes in the established literature

    Active Classification for POMDPs: a Kalman-like State Estimator

    Full text link
    The problem of state tracking with active observation control is considered for a system modeled by a discrete-time, finite-state Markov chain observed through conditionally Gaussian measurement vectors. The measurement model statistics are shaped by the underlying state and an exogenous control input, which influence the observations' quality. Exploiting an innovations approach, an approximate minimum mean-squared error (MMSE) filter is derived to estimate the Markov chain system state. To optimize the control strategy, the associated mean-squared error is used as an optimization criterion in a partially observable Markov decision process formulation. A stochastic dynamic programming algorithm is proposed to solve for the optimal solution. To enhance the quality of system state estimates, approximate MMSE smoothing estimators are also derived. Finally, the performance of the proposed framework is illustrated on the problem of physical activity detection in wireless body sensing networks. The power of the proposed framework lies within its ability to accommodate a broad spectrum of active classification applications including sensor management for object classification and tracking, estimation of sparse signals and radar scheduling.Comment: 38 pages, 6 figure

    Source Coding When the Side Information May Be Delayed

    Full text link
    For memoryless sources, delayed side information at the decoder does not improve the rate-distortion function. However, this is not the case for more general sources with memory, as demonstrated by a number of works focusing on the special case of (delayed) feedforward. In this paper, a setting is studied in which the encoder is potentially uncertain about the delay with which measurements of the side information are acquired at the decoder. Assuming a hidden Markov model for the sources, at first, a single-letter characterization is given for the set-up where the side information delay is arbitrary and known at the encoder, and the reconstruction at the destination is required to be (near) lossless. Then, with delay equal to zero or one source symbol, a single-letter characterization is given of the rate-distortion region for the case where side information may be delayed or not, unbeknownst to the encoder. The characterization is further extended to allow for additional information to be sent when the side information is not delayed. Finally, examples for binary and Gaussian sources are provided.Comment: revised July 201

    Tracking an Auto-Regressive Process with Limited Communication per Unit Time

    Full text link
    Samples from a high-dimensional AR[1] process are observed by a sender which can communicate only finitely many bits per unit time to a receiver. The receiver seeks to form an estimate of the process value at every time instant in real-time. We consider a time-slotted communication model in a slow-sampling regime where multiple communication slots occur between two sampling instants. We propose a successive update scheme which uses communication between sampling instants to refine estimates of the latest sample and study the following question: Is it better to collect communication of multiple slots to send better refined estimates, making the receiver wait more for every refinement, or to be fast but loose and send new information in every communication opportunity? We show that the fast but loose successive update scheme with ideal spherical codes is universally optimal asymptotically for a large dimension. However, most practical quantization codes for fixed dimensions do not meet the ideal performance required for this optimality, and they typically will have a bias in the form of a fixed additive error. Interestingly, our analysis shows that the fast but loose scheme is not an optimal choice in the presence of such errors, and a judiciously chosen frequency of updates outperforms it

    Optimal Causal Rate-Constrained Sampling of the Wiener Process

    Get PDF
    We consider the following communication scenario. An encoder causally observes the Wiener process and decides when and what to transmit about it. A decoder makes real-time estimation of the process using causally received codewords. We determine the causal encoding and decoding policies that jointly minimize the mean-square estimation error, under the long-term communication rate constraint of R bits per second. We show that an optimal encoding policy can be implemented as a causal sampling policy followed by a causal compressing policy. We prove that the optimal encoding policy samples the Wiener process once the innovation passes either √(1/R) or βˆ’βˆš(1/R), and compresses the sign of the innovation (SOI) using a 1-bit codeword. The SOI coding scheme achieves the operational distortion-rate function, which is equal to D^(op)(R)=1/(6R). Surprisingly, this is significantly better than the distortion-rate tradeoff achieved in the limit of infinite delay by the best non-causal code. This is because the SOI coding scheme leverages the free timing information supplied by the zero-delay channel between the encoder and the decoder. The key to unlock that gain is the event-triggered nature of the SOI sampling policy. In contrast, the distortion-rate tradeoffs achieved with deterministic sampling policies are much worse: we prove that the causal informational distortion-rate function in that scenario is as high as D_(DET)(R)=5/(6R). It is achieved by the uniform sampling policy with the sampling interval 1/R. In either case, the optimal strategy is to sample the process as fast as possible and to transmit 1-bit codewords to the decoder without delay
    • …
    corecore