5 research outputs found

    Vehicle-to-grid aggregator to support power grid and reduce electric vehicle charging cost

    Get PDF
    This paper presents an optimised bidirectional Vehicle-to-Grid (V2G) operation, based on a fleet of Electric Vehicles (EVs) connected to a distributed power system, through a network of charging stations. The system is able to perform day-ahead scheduling of EV charging/discharging to reduce EV ownership charging cost through participating in frequency and voltage regulation services. The proposed system is able to respond to real-time EV usage data and identify the required changes that must be made to the day-ahead energy prediction, further optimising the use of EVs to support both voltage and frequency regulation. An optimisation strategy is established for V2G scheduling, addressing the initial battery State Of Charge (SOC), EV plug-in time, regulation prices, desired EV departure time, battery degradation cost and vehicle charging requirements. The effectiveness of the proposed system is demonstrated using a standardized IEEE 33-node distribution network integrating five EV charging stations. Two case studies have been undertaken to verify the contribution of this advanced energy supervision approach. Comprehensive simulation results clearly show an opportunity to provide frequency and voltage support while concurrently reducing EV charging costs, through the integration of V2G technology, especially during on-peak periods when the need for active and reactive power is high

    Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost

    No full text
    A self-sustainable base station (BS) where renewable resources and energy storage system (ESS) are interoperably utilized as power sources is a promising approach to save energy and operational cost in communication networks. However, high battery price and low utilization of ESS intended for uninterruptible power supply (UPS) necessitates active utilization of ESS. This paper proposes a multi-functional framework of ESS using dynamic programming (DP) for realizing a sustainable BS. We develop an optimal charging and discharging scheduling algorithm considering a detailed battery wear-out model to minimize operational cost as well as to prolong battery lifetime. Our approach significantly reduces total cost compared to the conventional method that does not consider battery wear-out. Extensive experiments for several scenarios exhibit that total cost is reduced by up to 70.6% while battery wear-out is also reduced by 53.6%. The virtue of the proposed framework is its wide applicability beyond sustainable BS and thus can be also used for other types of load in principle

    Achieving High Renewable Energy Integration in Smart Grids with Machine Learning

    Get PDF
    The integration of high levels of renewable energy into smart grids is crucial for achieving a sustainable and efficient energy infrastructure. However, this integration presents significant technical and operational challenges due to the intermittent nature and inherent uncertainty of renewable energy sources (RES). Therefore, the energy storage system (ESS) has always been bound to renewable energy, and its charge and discharge control has become an important part of the integration. The addition of RES and ESS comes with their complex control, communication, and monitor capabilities, which also makes the grid more vulnerable to attacks, brings new challenges to the cybersecurity. A large number of works have been devoted to the optimization integration of the RES and ESS system to the traditional grid, along with combining the ESS scheduling control with the traditional Optimal Power Flow (OPF) control. Cybersecurity problem focusing on the RES integrated grid has also gradually aroused researchers’ interest. In recent years, machine learning techniques have emerged in different research field including optimizing renewable energy integration in smart grids. Reinforcement learning (RL), which trains agent to interact with the environment by making sequential decisions to maximize the expected future reward, is used as an optimization tool. This dissertation explores the application of RL algorithms and models to achieve high renewable energy integration in smart grids. The research questions focus on the effectiveness, benefits of renewable energy integration to individual consumers and electricity utilities, applying machine learning techniques in optimizing the behaviors of the ESS and the generators and other components in the grid. The objectives of this research are to investigate the current algorithms of renewable energy integration in smart grids, explore RL algorithms, develop novel RL-based models and algorithms for optimization control and cybersecurity, evaluate their performance through simulations on real-world data set, and provide practical recommendations for implementation. The research approach includes a comprehensive literature review to understand the challenges and opportunities associated with renewable energy integration. Various optimization algorithms, such as linear programming (LP), dynamic programming (DP) and various RL algorithms, such as Deep Q-Learning (DQN) and Deep Deterministic Policy Gradient (DDPG), are applied to solve problems during renewable energy integration in smart grids. Simulation studies on real-world data, including different types of loads, solar and wind energy profiles, are used to evaluate the performance and effectiveness of the proposed machine learning techniques. The results provide insights into the capabilities and limitations of machine learning in solving the optimization problems in the power system. Compared with traditional optimization tools, the RL approach has the advantage of real-time implementation, with the cost being the training time and unguaranteed model performance. Recommendations and guidelines for practical implementation of RL algorithms on power systems are provided in the appendix

    Achieving High Renewable Energy Integration in Smart Grids with Machine Learning

    Get PDF
    The integration of high levels of renewable energy into smart grids is crucial for achieving a sustainable and efficient energy infrastructure. However, this integration presents significant technical and operational challenges due to the intermittent nature and inherent uncertainty of renewable energy sources (RES). Therefore, the energy storage system (ESS) has always been bound to renewable energy, and its charge and discharge control has become an important part of the integration. The addition of RES and ESS comes with their complex control, communication, and monitor capabilities, which also makes the grid more vulnerable to attacks, brings new challenges to the cybersecurity. A large number of works have been devoted to the optimization integration of the RES and ESS system to the traditional grid, along with combining the ESS scheduling control with the traditional Optimal Power Flow (OPF) control. Cybersecurity problem focusing on the RES integrated grid has also gradually aroused researchers’ interest. In recent years, machine learning techniques have emerged in different research field including optimizing renewable energy integration in smart grids. Reinforcement learning (RL), which trains agent to interact with the environment by making sequential decisions to maximize the expected future reward, is used as an optimization tool. This dissertation explores the application of RL algorithms and models to achieve high renewable energy integration in smart grids. The research questions focus on the effectiveness, benefits of renewable energy integration to individual consumers and electricity utilities, applying machine learning techniques in optimizing the behaviors of the ESS and the generators and other components in the grid. The objectives of this research are to investigate the current algorithms of renewable energy integration in smart grids, explore RL algorithms, develop novel RL-based models and algorithms for optimization control and cybersecurity, evaluate their performance through simulations on real-world data set, and provide practical recommendations for implementation. The research approach includes a comprehensive literature review to understand the challenges and opportunities associated with renewable energy integration. Various optimization algorithms, such as linear programming (LP), dynamic programming (DP) and various RL algorithms, such as Deep Q-Learning (DQN) and Deep Deterministic Policy Gradient (DDPG), are applied to solve problems during renewable energy integration in smart grids. Simulation studies on real-world data, including different types of loads, solar and wind energy profiles, are used to evaluate the performance and effectiveness of the proposed machine learning techniques. The results provide insights into the capabilities and limitations of machine learning in solving the optimization problems in the power system. Compared with traditional optimization tools, the RL approach has the advantage of real-time implementation, with the cost being the training time and unguaranteed model performance. Recommendations and guidelines for practical implementation of RL algorithms on power systems are provided in the appendix

    Smart Energy Management for Smart Grids

    Get PDF
    This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book
    corecore