2,551 research outputs found

    Modeling and stochastic optimization of complete coverage under uncertainties in multi-robot base placements

    Full text link
    © 2016 IEEE. Uncertainties in base placements of mobile, autonomous industrial robots can cause incomplete coverage in tasks such as grit-blasting and spray painting. Sensing and localization errors can cause such uncertainties in robot base placements. This paper addresses the problem of collaborative complete coverage under uncertainties through appropriate base placements of multiple mobile and autonomous industrial robots while aiming to optimize the performance of the robot team. A mathematical model for complete coverage under uncertainties is proposed and then solved using a stochastic multi-objective optimization algorithm. The approach aims to concurrently find an optimal number and sequence of base placements for each robot such that the robot team's objectives are optimized whilst uncertainties are accounted for. Several case studies based on a real-world application using a realworld object and a complex simulated object are provided to demonstrate the effectiveness of the approach for different conditions and scenarios, e.g. various levels of uncertainties, different numbers of robots, and robots with different capabilities

    Enabling methodologies for optimal coverage by multiple autonomous industrial robots

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Unlike traditional industrial robots which are purpose-built for a particular repetitive application, Autonomous Industrial Robots (AIRs) are adaptable to new operating conditions or environments. An AIR is an industrial robot, with or without a mobile platform, that has the intelligence needed to operate autonomously in a complex and unstructured environment. This intelligence includes aspects such as self-awareness, environmental awareness, and collision avoidance. In this thesis, research is focused on developing methodologies that enable multiple AIRs to perform complete coverage tasks on objects that can have complex geometric shapes while aiming to achieve optimal team objectives. For the AIRs to achieve optimal complete coverage for tasks such as grit-blasting and spray painting several problems need to be addressed. One problem is to partition and allocate the surface areas that multiple AIRs can reach. Another problem is to find a set of appropriate base placements for each AIR and to determine the visiting sequence of the base placements such that complete coverage is obtained. Uncertainties in base placements, due to sensing and localization errors, need to be accounted for if necessary. Coverage path planning, i.e. generating the AIRs’ end-effector path, is another problem that needs to be addressed. Coverage path planning needs to be adaptable with respect to dynamic obstacles and unexpected changes. In solving these problems, it is vital for the AIRs to optimize the team's objectives while accounting for relevant constraints. This research develops new methodologies to address the above problems, including (1) a Voronoi partitioning based approach for simultaneous area partitioning and allocation utilizing Voronoi partitioning and multi-objective optimization; (2) optimization-based methods for multi-AIR base placements with uncertainties; and (3) a prey-predator behaviour-based algorithm for adaptive and efficient real-time coverage path planning, which accounts for stationary or dynamic obstacles and unexpected changes in the coverage area. Real-world and simulated experiments have been carried out to verify the proposed methodologies. Various comparative studies are presented against existing methods. The results show that the proposed methodologies enable effective and efficient complete coverage by the AIRs

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    An Approach to Base Placement for Effective Collaboration of Multiple Autonomous Industrial Robots

    Full text link
    There are many benefits for the deployment of multiple autonomous industrial robots to carry out a task, particularly if the robots act in a highly collaborative manner. Collaboration can be possible when each robot is able to autonomously explore the environment, localize itself, create a map of the environment and communicate with other robots. This paper presents an approach to the modeling of the collaboration problem of multiple robots determining optimal base positions and orientations in an environment by considering the team objectives and the information shared amongst the robots. It is assumed that the robots can communicate so as to share information on the environment, their operation status and their capabilities. The approach has been applied to a team of robots that are required to perform complete surface coverage tasks such as grit-blasting and spray painting in unstructured environments. Case studies of such applications are presented to demonstrate the effectiveness of the approach

    Task-Space Clustering for Mobile Manipulator Task Sequencing

    Full text link
    Mobile manipulators have gained attention for the potential in performing large-scale tasks which are beyond the reach of fixed-base manipulators. The Robotic Task Sequencing Problem for mobile manipulators often requires optimizing the motion sequence of the robot to visit multiple targets while reducing the number of base placements. A two-step approach to this problem is clustering the task-space into clusters of targets before sequencing the robot motion. In this paper, we propose a task-space clustering method which formulates the clustering step as a Set Cover Problem using bipartite graph and reachability analysis, then solves it to obtain the minimum number of target clusters with corresponding base placements. We demonstrated the practical usage of our method in a mobile drilling experiment containing hundreds of targets. Multiple simulations were conducted to benchmark the algorithm and also showed that our proposed method found, in practical time, better solutions than the existing state-of-the-art methods
    • …
    corecore