2,271 research outputs found

    An Optimal Application-Aware Resource Block Scheduling in LTE

    Full text link
    In this paper, we introduce an approach for application-aware resource block scheduling of elastic and inelastic adaptive real-time traffic in fourth generation Long Term Evolution (LTE) systems. The users are assigned to resource blocks. A transmission may use multiple resource blocks scheduled over frequency and time. In our model, we use logarithmic and sigmoidal-like utility functions to represent the users applications running on different user equipments (UE)s. We present an optimal problem with utility proportional fairness policy, where the fairness among users is in utility percentage (i.e user satisfaction with the service) of the corresponding applications. Our objective is to allocate the resources to the users with priority given to the adaptive real-time application users. In addition, a minimum resource allocation for users with elastic and inelastic traffic should be guaranteed. Every user subscribing for the mobile service should have a minimum quality-of-service (QoS) with a priority criterion. We prove that our scheduling policy exists and achieves the maximum. Therefore the optimal solution is tractable. We present a centralized scheduling algorithm to allocate evolved NodeB (eNodeB) resources optimally with a priority criterion. Finally, we present simulation results for the performance of our scheduling algorithm and compare our results with conventional proportional fairness approaches. The results show that the user satisfaction is higher with our proposed method.Comment: 5 page

    Performance analysis of carrier aggregation for various mobile network implementations scenario based on spectrum allocated

    Full text link
    Carrier Aggregation (CA) is one of the Long Term Evolution Advanced (LTE-A) features that allow mobile network operators (MNO) to combine multiple component carriers (CCs) across the available spectrum to create a wider bandwidth channel for increasing the network data throughput and overall capacity. CA has a potential to enhance data rates and network performance in the downlink, uplink, or both, and it can support aggregation of frequency division duplexing (FDD) as well as time division duplexing (TDD). The technique enables the MNO to exploit fragmented spectrum allocations and can be utilized to aggregate licensed and unlicensed carrier spectrum as well. This paper analyzes the performance gains and complexity level that arises from the aggregation of three inter-band component carriers (3CC) as compared to the aggregation of 2CC using a Vienna LTE System Level simulator. The results show a considerable growth in the average cell throughput when 3CC aggregations are implemented over the 2CC aggregation, at the expense of reduction in the fairness index. The reduction in the fairness index implies that, the scheduler has an increased task in resource allocations due to the added component carrier. Compensating for such decrease in the fairness index could result into scheduler design complexity. The proposed scheme can be adopted in combining various component carriers, to increase the bandwidth and hence the data rates.Comment: 13 page

    An Application-Aware Spectrum Sharing Approach for Commercial Use of 3.5 GHz Spectrum

    Full text link
    In this paper, we introduce an application-aware spectrum sharing approach for sharing the Federal under-utilized 3.5 GHz spectrum with commercial users. In our model, users are running elastic or inelastic traffic and each application running on the user equipment (UE) is assigned a utility function based on its type. Furthermore, each of the small cells users has a minimum required target utility for its application. In order for users located under the coverage area of the small cells' eNodeBs, with the 3.5 GHz band resources, to meet their minimum required quality of experience (QoE), the network operator makes a decision regarding the need for sharing the macro cell's resources to obtain additional resources. Our objective is to provide each user with a rate that satisfies its application's minimum required utility through spectrum sharing approach and improve the overall QoE in the network. We present an application-aware spectrum sharing algorithm that is based on resource allocation with carrier aggregation to allocate macro cell permanent resources and small cells' leased resources to UEs and allocate each user's application an aggregated rate that can at minimum achieves the application's minimum required utility. Finally, we present simulation results for the performance of the proposed algorithm.Comment: Submitted to IEE

    A Utility Proportional Fairness Resource Allocation in Spectrally Radar-Coexistent Cellular Networks

    Full text link
    Spectrum sharing is an elegant solution to addressing the scarcity of the bandwidth for wireless communications systems. This research studies the feasibility of sharing the spectrum between sectorized cellular systems and stationary radars interfering with certain sectors of the communications infrastructure. It also explores allocating optimal resources to mobile devices in order to provide with the quality of service for all running applications whilst growing the communications network spectrally coexistent with the radar systems. The rate allocation problem is formulated as two convex optimizations, where the radar-interfering sector assignments are extracted from the portion of the spectrum non-overlapping with the radar operating frequency. Such a double-stage resource allocation procedure inherits the fairness into the rate allocation scheme by first assigning the spectrally radar-overlapping resources
    corecore