1,132 research outputs found

    Non-uniform spline recovery from small degree polynomial approximation

    Get PDF
    We investigate the sparse spikes deconvolution problem onto spaces of algebraic polynomials. Our framework encompasses the measure reconstruction problem from a combination of noiseless and noisy moment measurements. We study a TV-norm regularization procedure to localize the support and estimate the weights of a target discrete measure in this frame. Furthermore, we derive quantitative bounds on the support recovery and the amplitudes errors under a Chebyshev-type minimal separation condition on its support. Incidentally, we study the localization of the knots of non-uniform splines when a Gaussian perturbation of their inner-products with a known polynomial basis is observed (i.e. a small degree polynomial approximation is known) and the boundary conditions are known. We prove that the knots can be recovered in a grid-free manner using semidefinite programming

    A new class of trigonometric B-Spline Curves

    Get PDF
    We construct one-frequency trigonometric spline curves with a de Boor-like algorithm for evaluation and analyze their shape-preserving properties. The convergence to quadratic B-spline curves is also analyzed. A fundamental tool is the concept of the normalized B-basis, which has optimal shape-preserving properties and good symmetric properties

    Fast multi-dimensional scattered data approximation with Neumann boundary conditions

    Full text link
    An important problem in applications is the approximation of a function ff from a finite set of randomly scattered data f(xj)f(x_j). A common and powerful approach is to construct a trigonometric least squares approximation based on the set of exponentials {e2πikx}\{e^{2\pi i kx}\}. This leads to fast numerical algorithms, but suffers from disturbing boundary effects due to the underlying periodicity assumption on the data, an assumption that is rarely satisfied in practice. To overcome this drawback we impose Neumann boundary conditions on the data. This implies the use of cosine polynomials cos(πkx)\cos (\pi kx) as basis functions. We show that scattered data approximation using cosine polynomials leads to a least squares problem involving certain Toeplitz+Hankel matrices. We derive estimates on the condition number of these matrices. Unlike other Toeplitz+Hankel matrices, the Toeplitz+Hankel matrices arising in our context cannot be diagonalized by the discrete cosine transform, but they still allow a fast matrix-vector multiplication via DCT which gives rise to fast conjugate gradient type algorithms. We show how the results can be generalized to higher dimensions. Finally we demonstrate the performance of the proposed method by applying it to a two-dimensional geophysical scattered data problem

    Optimal Uniform Convergence Rates and Asymptotic Normality for Series Estimators Under Weak Dependence and Weak Conditions

    Get PDF
    We show that spline and wavelet series regression estimators for weakly dependent regressors attain the optimal uniform (i.e. sup-norm) convergence rate (n/logn)p/(2p+d)(n/\log n)^{-p/(2p+d)} of Stone (1982), where dd is the number of regressors and pp is the smoothness of the regression function. The optimal rate is achieved even for heavy-tailed martingale difference errors with finite (2+(d/p))(2+(d/p))th absolute moment for d/p<2d/p<2. We also establish the asymptotic normality of t statistics for possibly nonlinear, irregular functionals of the conditional mean function under weak conditions. The results are proved by deriving a new exponential inequality for sums of weakly dependent random matrices, which is of independent interest.Comment: forthcoming in Journal of Econometric

    Tchebycheffian B-splines in isogeometric Galerkin methods

    Full text link
    Tchebycheffian splines are smooth piecewise functions whose pieces are drawn from (possibly different) Tchebycheff spaces, a natural generalization of algebraic polynomial spaces. They enjoy most of the properties known in the polynomial spline case. In particular, under suitable assumptions, Tchebycheffian splines admit a representation in terms of basis functions, called Tchebycheffian B-splines (TB-splines), completely analogous to polynomial B-splines. A particularly interesting subclass consists of Tchebycheffian splines with pieces belonging to null-spaces of constant-coefficient linear differential operators. They grant the freedom of combining polynomials with exponential and trigonometric functions with any number of individual shape parameters. Moreover, they have been recently equipped with efficient evaluation and manipulation procedures. In this paper, we consider the use of TB-splines with pieces belonging to null-spaces of constant-coefficient linear differential operators as an attractive substitute for standard polynomial B-splines and rational NURBS in isogeometric Galerkin methods. We discuss how to exploit the large flexibility of the geometrical and analytical features of the underlying Tchebycheff spaces according to problem-driven selection strategies. TB-splines offer a wide and robust environment for the isogeometric paradigm beyond the limits of the rational NURBS model.Comment: 35 pages, 18 figure
    corecore