1 research outputs found

    Integrating Optimization and Sampling for Robot Motion Planning with Applications in Healthcare

    Get PDF
    Robots deployed in human-centric environments, such as a person's home in a home-assistance setting or inside a person's body in a surgical setting, have the potential to have a large, positive impact on human quality of life. However, for robots to operate in such environments they must be able to move efficiently while avoiding colliding with obstacles such as objects in the person's home or sensitive anatomical structures in the person's body. Robot motion planning aims to compute safe and efficient motions for robots that avoid obstacles, but home assistance and surgical robots come with unique challenges that can make this difficult. For instance, many state of the art surgical robots have computationally expensive kinematic models, i.e., it can be computationally expensive to predict their shape as they move. Some of these robots have hybrid dynamics, i.e., they consist of multiple stages that behave differently. Additionally, it can be difficult to plan motions for robots while leveraging real-world sensor data, such as point clouds. In this dissertation, we demonstrate and empirically evaluate methods for overcoming these challenges to compute high-quality and safe motions for robots in home-assistance and surgical settings. First, we present a motion planning method for a continuum, parallel surgical manipulator that accounts for its computationally expensive kinematics. We then leverage this motion planner to optimize its kinematic design chosen prior to a surgical procedure. Next, we present a motion planning method for a 3-stage lung tumor biopsy robot that accounts for its hybrid dynamics and evaluate the robot and planner in simulation and in inflated porcine lung tissue. Next, we present a motion planning method for a home-assistance robot that leverages real-world, point-cloud obstacle representations. We then expand this method to work with a type of continuum surgical manipulator, a concentric tube robot, with point-cloud anatomical representations. Finally, we present a data-driven machine learning method for more accurately estimating the shape of concentric tube robots. By effectively addressing challenges associated with home assistance and surgical robots operating in human-centric environments, we take steps toward enabling robots to have a positive impact on human quality of life.Doctor of Philosoph
    corecore