
INTEGRATING OPTIMIZATION AND SAMPLING FOR ROBOT MOTION
PLANNING WITH APPLICATIONS IN HEALTHCARE

Alan Kuntz

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Computer Science in the College of Arts and Sciences.

Chapel Hill
2019

Approved by:

Ron Alterovitz

Nancy M. Amato

Jessica Burgner-Kahrs

Parasara Sridhar Duggirala

Marc Niethammer

c© 2019
Alan Kuntz

ALL RIGHTS RESERVED

ii

ABSTRACT

Alan Kuntz: Integrating Optimization and Sampling for Robot Motion
Planning with Applications in Healthcare
(Under the direction of Ron Alterovitz)

Robots deployed in human-centric environments, such as a person’s home in a home-assistance

setting or inside a person’s body in a surgical setting, have the potential to have a large, positive

impact on human quality of life. However, for robots to operate in such environments they must be

able to move efficiently while avoiding colliding with obstacles such as objects in the person’s home

or sensitive anatomical structures in the person’s body. Robot motion planning aims to compute

safe and efficient motions for robots that avoid obstacles, but home assistance and surgical robots

come with unique challenges that can make this difficult. For instance, many state of the art surgical

robots have computationally expensive kinematic models, i.e., it can be computationally expensive

to predict their shape as they move. Some of these robots have hybrid dynamics, i.e., they consist of

multiple stages that behave differently. Additionally, it can be difficult to plan motions for robots

while leveraging real-world sensor data, such as point clouds.

In this dissertation, we demonstrate and empirically evaluate methods for overcoming these

challenges to compute high-quality and safe motions for robots in home-assistance and surgical

settings. First, we present a motion planning method for a continuum, parallel surgical manipulator

that accounts for its computationally expensive kinematics. We then leverage this motion planner

to optimize its kinematic design chosen prior to a surgical procedure. Next, we present a motion

planning method for a 3-stage lung tumor biopsy robot that accounts for its hybrid dynamics

and evaluate the robot and planner in simulation and in inflated porcine lung tissue. Next, we

present a motion planning method for a home-assistance robot that leverages real-world, point-cloud

obstacle representations. We then expand this method to work with a type of continuum surgical

manipulator, a concentric tube robot, with point-cloud anatomical representations. Finally, we

present a data-driven machine learning method for more accurately estimating the shape of concentric

iii

tube robots. By effectively addressing challenges associated with home assistance and surgical robots

operating in human-centric environments, we take steps toward enabling robots to have a positive

impact on human quality of life.

iv

To my family and mentors.

v

ACKNOWLEDGEMENTS

First, I would like to thank my graduate advisor, Ron Alterovitz, for his invaluable support and

guidance in matters both technical and otherwise throughout my time in graduate school. I would

like to thank my undergraduate advisor, Lydia Tapia, for encouraging me to pursue a graduate

education and setting me up for success as I continue my career. I would also like to thank my

committee members for their valuable time, guidance, support, and feedback.

Next, I would like to thank the other students with whom I’ve shared a lab, offices, and the

graduate experience. Specifically, I would not have been successful without the mentorship of Luis

Torres, Jeff Ichnowski, Chris Bowen, and Kasra Manavi.

This work was made possible by the National Science Foundation (NSF) under awards IIS-

1149965, CNS-1305286, and CCF-1533844, and the National Institutes of Health (NIH) under awards

R21EB017952 and R01EB024864.

Finally, I would like to thank my family for their endless love, patience, and support, without

whom this would not have been possible.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xiii

CHAPTER 1: INTRODUCTION . 1

1.1 Challenges . 2

1.2 Contributions . 4

1.2.1 Motion Planning for Continuum Reconfigurable Incisionless Surgical Parallel
Robots . 4

1.2.2 Kinematic Design Optimization of a Parallel Surgical Robot to Maximize
Anatomical Visibility via Motion Planning . 5

1.2.3 Motion Planning for a Three-Stage Multilumen Transoral Lung Access System 5

1.2.4 Toward Transoral Peripheral Lung Access: Steering Bronchoscope-Deployed
Needles through Porcine Lung Tissue . 6

1.2.5 Fast Anytime Motion Planning in Point Clouds by Interleaving Sampling and
Interior Point Optimization . 6

1.2.6 Planning High-Quality Motions for Concentric Tube Robots in Point Clouds
via Parallel Sampling and Optimization . 6

1.2.7 Estimating the Complete Shape of Concentric Tube Robots via Learning . . . 7

1.3 Thesis Statement . 8

1.4 Organization . 8

CHAPTER 2: MOTION PLANNING FOR CONTINUUM RECONFIGURABLE
INCISIONLESS SURGICAL PARALLEL ROBOTS 9

2.1 Related Work . 11

2.2 Problem Formulation . 12

2.2.1 CRISP Robot . 12

2.2.2 Motion Planning . 13

2.3 Method . 14

vii

2.3.1 Motion Planning . 14

2.3.2 Mechanics & Solution Seeding . 16

2.3.3 Candidate CRISP Setup Evaluation . 19

2.4 Results . 19

2.4.1 Generating Visibility Sets . 20

2.4.2 Motion Planning to View a Specific Goal Point 22

2.4.3 Mechanics Solution Seeding . 22

2.5 Conclusion . 23

CHAPTER 3: KINEMATIC DESIGN OPTIMIZATION OF A PARALLEL
SURGICAL ROBOT TO MAXIMIZE ANATOMICAL VISIBILITY VIA
MOTION PLANNING . 25

3.1 Related Work . 27

3.2 Problem Definition . 29

3.2.1 Design Space . 29

3.2.2 Configuration Space . 30

3.2.3 Workspace . 30

3.2.4 Maximizing Viewable Anatomy . 31

3.3 Method . 31

3.3.1 Exploring Design Space . 33

3.3.2 Evaluating Candidate Designs . 33

3.4 Analysis . 35

3.4.1 Preliminaries . 35

3.4.2 Sampling Optimal Designs Infinitely Often . 36

3.4.3 Asymptotic Optimality . 38

3.5 Results . 38

3.6 Conclusion . 40

CHAPTER 4: MOTION PLANNING FOR A THREE-STAGE MULTILUMEN
TRANSORAL LUNG ACCESS SYSTEM . 43

4.1 Related Work . 45

4.2 Problem Definition . 47

viii

4.3 Method . 49

4.3.1 Planning Deployment of the Bronchoscope . 50

4.3.2 Planning Deployment of the Concentric Tube Robot 51

4.3.3 Steering the Bevel-Tip Needle to the Goal Point 51

4.3.4 Motion Planning for the Entire System . 53

4.4 Results . 53

4.5 Conclusion . 56

CHAPTER 5: TOWARD TRANSORAL PERIPHERAL LUNG ACCESS:
STEERING BRONCHOSCOPE-DEPLOYED NEEDLES THROUGH
PORCINE LUNG TISSUE . 57

5.1 Materials & Methods . 57

5.2 Results . 59

5.3 Discussion . 60

CHAPTER 6: FAST ANYTIME MOTION PLANNING IN POINT CLOUDS BY
INTERLEAVING SAMPLING AND INTERIOR POINT OPTIMIZATION . 62

6.1 Related Work . 65

6.2 Problem Definition . 66

6.3 Method . 67

6.3.1 Global Exploration using Sampling-Based Motion Planning 68

6.3.2 Lazy Interior Point Optimization . 69

6.3.3 Asymptotic Optimality . 73

6.4 Results . 73

6.4.1 Motion Planning for a 3D Spherical Robot . 75

6.4.2 Motion Planning for the Arm of a Baxter Robot 76

6.5 Conclusion . 80

CHAPTER 7: PLANNING HIGH-QUALITY MOTIONS FOR CONCENTRIC
TUBE ROBOTS IN POINT CLOUDS VIA PARALLEL SAMPLING AND
OPTIMIZATION . 81

7.1 Related Work . 84

7.2 Problem Definition . 86

7.3 Method . 88

ix

7.3.1 Method Overview . 88

7.3.2 Global Exploration through Sampling . 89

7.3.3 Interior Point Local Optimization . 90

7.3.4 Keeping Track of the Best Plan Found . 91

7.4 Results . 92

7.4.1 Comparison and Analysis . 93

7.4.2 Adapting to Changing Anatomy . 95

7.5 Conclusion . 97

CHAPTER 8: ESTIMATING THE COMPLETE SHAPE OF CONCENTRIC
TUBE ROBOTS VIA LEARNING . 98

8.1 Materials & Methods . 99

8.2 Results . 101

8.3 Discussion . 103

CHAPTER 9: CONCLUSION . 104

REFERENCES . 106

x

LIST OF FIGURES

1.1 Examples of robotic systems that may be used in a healthcare setting 2

2.1 CRISP system and motion planning framework overview 10

2.2 CRISP parameter diagram . 13

2.3 Segmented pleural effusion volume in anatomical setting 20

2.4 Two setups for the CRISP robot . 21

2.5 Visibility sets for each setup . 21

2.6 Percentage of goal points seen . 22

2.7 An example CRISP motion plan . 23

3.1 Two images of the CRISP robot . 26

3.2 2D example of the impact of different designs . 27

3.3 The CRISP robot’s kinematic design parameters . 30

3.4 Scenario 1 . 39

3.5 Scenario 2 . 40

3.6 Percent viewed over time for each scenario . 41

3.7 Anatomy visualized at 2 minutes and at 8 hours . 41

4.1 Example motion plan for three-stage robot . 44

4.2 The three stages . 45

4.3 Utilizing different branches of bronchial tree . 50

4.4 Trunpet-shaped reachable workspace of the steerable needle 52

4.5 Safe bronchoscope deploy positions . 54

4.6 First 15 solutions across multiple homotopic classes 54

4.7 Lung nodule query locations . 55

4.8 Percentage of lung nodules successfully planned to 55

4.9 Path cost over time . 56

5.1 System deployed in inflated ex vivo porcine lung in CT scanner 58

5.2 The robot’s three stages . 59

xi

5.3 Segmentation and path from CT scan . 60

5.4 CT scan slices of deployment . 61

6.1 Overview of ISIMP . 64

6.2 Lazy constraint set use overview . 71

6.3 Cutoff function and bisection overview . 73

6.4 3D point cloud environment . 74

6.5 3D cost over time with varying point cloud sizes . 74

6.6 Comparison to sampling-based methods . 77

6.7 Comparison to optimization-based methods . 78

6.8 Visualization of baxter results . 79

7.1 PSIMP overview . 82

7.2 Concentric tube robot moving through different homotopy classes in point cloud . . . 84

7.3 Examples of plans before and after optimization . 89

7.4 Point clouds from real patient anatomy . 92

7.5 Ratio to best plan over time . 94

7.6 Direct comparison over time . 95

7.7 Point cloud representation of modified anatomy enables new motions 96

8.1 Learned concentric tube model diagram . 99

8.2 Shape from silhouette setup . 100

8.3 Learned model error histogram . 102

xii

LIST OF TABLES

5.1 Needle steering tip errors in porcine lung . 60

6.1 Statistics on point cloud points used by ISIMP . 76

8.1 Polynomial basis function coefficients . 101

8.2 Tube parameters for the 3-tube concentric tube robot 101

8.3 Error value statistics for physics-based and learned models 102

xiii

CHAPTER 1

Introduction

In order for robots to have a large, positive impact on human quality of life, they must be able to

safely and effectively operate in human-centric environments. One area in which robots have a large

potential for positive impact is healthcare. Robots have the potential to assist people in their homes

with tasks that these people may be unable to perform themselves due to age, disease, disability, or

other factors. Robots in a surgical setting have the potential to increase the capabilities of surgeons,

enabling the surgeons to perform new or existing procedures more safely and on a larger class of

patients than is currently possible.

In both of these human-centric settings, robots must be capable of operating safely, avoiding

unintentional collisions with obstacles in their environments. In a home assistance setting, the

obstacles a robot must avoid may be the humans or objects in the humans’ home. In a surgical

setting, the obstacles may be inside the humans themselves—anatomical obstacles, such as bones,

nerve bundles, or vasculature. In addition to avoiding unintended collision with obstacles, the robots

must be effective at performing the tasks required of them. One approach to enabling robots to

operate in a safe and effective manner in human-centric environments is robot motion planning.

Robot motion planning methods compute motions for a robot to perform a user-specified task

subject to a set of constraints. These constraints can be problem and robot specific, and frequently

include kinematic constraints (such as joint limits), differential constraints (such as a minimum

turning radius along the robot’s path), and environmental constraints (such as obstacle avoidance

described above). Then, under a set of assumptions (such as perfect modeling and knowledge of

the environment), any computed motion that satisfies these constraints is known to be safe, as it

does not collide with the environment, as well as feasible, i.e., it conforms to the robot’s kinematic

requirements.

In many settings safe and feasible may not be sufficient, and it is desirable to consider some

notion of cost in order to compute high-quality motions. One popular cost metric is the length of the

1

(a) CRISP Robot (b) Concentric Tube Robot

(c) Three-stage Continuum Robot (d) Baxter Robot

Figure 1.1: We plan safe and effective motions for a variety of different types of robots, including
those shown here. (a) The Continuum Reconfigurable Incisionless Surgical Parallel (CRISP) robot
is composed of multiple needle-diameter tubes that are assembled into a parallel structure using
snares [1, 2]. (b) A concentric tube robot is composed of multiple telescoping precurved flexible
tubes [3, 4]. (c) A three-stage continuum robot combines a tendon-actuated bronchoscope with
concentric tubes and a steerable needle [5]. (d) A Baxter robot is a commercially available robot
with two 7 degree of freedom (DOF) serial-link manipulator arms [6].

motion plan. A high-quality plan under such a metric would ensure that the plan avoids unnecessary

motion, reducing the time and energy spent by the robot to execute the task. Another relevant cost

metric is clearance from obstacles, wherein a high-quality plan would travel far from the obstacles in

the environment, improving the safety of the plan as it is executed.

In this dissertation, we present and evaluate novel algorithms that compute safe (constraint

satisfying) and effective (high-quality) motion plans for robots, such as those shown in Fig. 1.1, in

healthcare applications. In order to do so, our methods leverage a combination of sampling- and

optimization-based methods.

1.1 Challenges

Our contributions in this work focus on developing methods that aim to address the following

specific challenges:

2

Computationally expensive kinematic models One class of robot that we focus on is contin-

uum surgical robots. Continuum surgical robots are robots that are capable of taking curved shapes

which allow them to safely travel deep into the human body [7], enabling minimally invasive surgical

procedures (for examples of such systems, see Figs. 1.1a, 1.1b, and 1.1c). Successfully planning

motions for such systems will allow for less invasive surgical procedures as they curve around sensitive

anatomical structures. However, computing the anticipated shape of continuum surgical robots

frequently takes orders of magnitude longer than computing the shape of traditional robotic systems

such as serial-link manipulators [4, 8]. This limitation must be addressed for motion planning to be

successful for such systems.

Parameters set pre-procedure which greatly impact capabilities For systems such as the

Continuum Reconfigurable Incisionless Surgical Parallel (CRISP) robot (see Fig. 1.1a), decisions

are made prior to the surgical procedure such as where on the patient’s body the robot is inserted

and the robot’s parallel structure. We refer to these parameters as the robot’s kinematic design.

Decisions about the robot’s kinematic design are frequently made heuristically and can have a large

impact on the success of the surgical procedure.

Hybrid and highly-constrained kinematics in multistage robots The 3-stage robot shown

in Fig. 1.1c consists of multiple robotic stages that are deployed in sequence and that all behave

differently. Some of these stages are holonomic, while others are non-holonomic, making it difficult

to efficiently integrate the stages into a single motion planning framework. Additionally, decisions

made when planning motions for each of the stages dramatically impacts the stages that are deployed

later in time. This property must be accounted for when planning motions for such hybrid systems.

Quickly planning motions using point cloud obstacle representations In order to make

systems more reactive to changing environments, motion planning algorithms should work quickly

to produce high-quality motion plans in order to move while their knowledge of the environment is

relevant. Many environmental sensors, such as laser scanners, stereo cameras, and RGB-D sensors,

produce point clouds to represent the robot’s environment. Such sensors can provide high quality

information about a robot’s environment and can be deployed both in a home assistance setting and

in a surgical setting (frequently through an endoscope). However, planning motions with point cloud

3

environments can be difficult due to the large number of points and their lack of inherent structure.

Inaccurate shape models For some continuum robot systems, such as concentric tube robots

(see Fig. 1.1b) the physics-based shape models may be inaccurate due to issues such as material

inhomogeneities and inconsistent and difficult to predict physical phenomena such as friction [9, 10].

Motion planning and control of these systems rely on the assumption that the shape model is

accurate.

1.2 Contributions

Many methods have already been developed for planning motions for a variety of robots. However,

these methods frequently do not work well in the presence of the challenges described above. As

such, in this work we adapt, integrate, and develop novel algorithms specifically to address the above

challenges as we plan motions for these systems. We discuss our methods briefly here and in full

detail in the corresponding chapters.

1.2.1 Motion Planning for Continuum Reconfigurable Incisionless Surgical Parallel
Robots

One system that suffers from the challenge of a computationally expensive kinematic model is

the CRISP robot. CRISP robots consist of multiple needle-diameter flexible instruments that are

assembled into a parallel structure inside the human body. With a camera placed at the tip of

one of the instruments, the CRISP robot can be used to inspect anatomical sites in constrained

body cavities in a minimally invasive manner. We introduce a motion planner for CRISP robots

that computes manipulations of the flexible instruments outside the body such that the camera

can visually inspect a user-specified site of clinical interest inside the body. Our sampling-based

motion planner ensures avoidance of collisions with anatomical obstacles inside the body, enforces

remote-center-of-motion constraints on the instrument’s entry points into the body, and efficiently

handles the expensive computation of CRISP robot kinematics. We also extend the motion planner

to estimate the set of points inside a body cavity that can be visually inspected by the camera of a

CRISP robot for a given kinematic design, i.e., choice of parallel structure for the robot and entry

points into the body. We demonstrate our method’s efficacy in a simulated endoscopic medical

procedure in the pleural space around a lung. This contribution is discussed in Chapter 2 and was

also presented in [8].

4

1.2.2 Kinematic Design Optimization of a Parallel Surgical Robot to Maximize
Anatomical Visibility via Motion Planning

In order to address the challenge of effectively setting pre-procedure parameters, we introduce

a method to optimize, on a patient-specific basis, the kinematic design of the CRISP robot. Our

objective is to maximize the ability of the robot’s tip camera to view tissue surfaces in constrained

spaces. The kinematic design of the CRISP robot, which greatly influences its ability to perform

a task, includes parameters that are fixed before the procedure begins, such as entry points into

the body and parallel structure connection points. We combine a global stochastic optimization

algorithm, Adaptive Simulated Annealing (ASA), with the motion planner designed for the CRISP

robot. ASA facilitates exploration of the robot’s design space while the motion planner enables

evaluation of candidate designs based on their ability to successfully view target regions on a tissue

surface. By leveraging motion planning, we ensure that the evaluation of a design only considers

motions which do not collide with the patient’s anatomy. We analytically show that the method

asymptotically converges to a globally optimal solution and demonstrate our algorithm’s ability

to optimize kinematic designs of the CRISP robot on a patient-specific basis. This contribution is

discussed in Chapter 3 and was presented in [11].

1.2.3 Motion Planning for a Three-Stage Multilumen Transoral Lung Access System

In this contribution, we develop a motion planner for a multilumen transoral lung access system

(shown in Fig. 1.1c), a new system that has the potential to perform safe biopsies anywhere in the

lung—enabling more effective early-stage diagnosis of lung cancer. The system consists of three

cascading stages in which a bronchoscope is deployed transorally to the lung, a concentric tube robot

pierces through the bronchial tubes into the lung parenchyma, and a steerable needle deploys through

a properly oriented concentric tube and steers through the lung parenchyma to the target site while

avoiding anatomical obstacles such as significant blood vessels. We present a sampling-based motion

planner that computes actions for each stage of the system while addressing the challenge of the

system’s hybrid and highly-constrained kinematics and considering the coupling of the stages in an

efficient manner. We demonstrate the motion planner’s fast performance and ability to compute

plans with high clearance from obstacles in simulated anatomical scenarios. This contribution is

discussed in Chapter 4 and was originally presented in [12].

5

1.2.4 Toward Transoral Peripheral Lung Access: Steering Bronchoscope-Deployed
Needles through Porcine Lung Tissue

In this work, we physically deploy and evaluate the efficacy of the three-stage lung tumor biopsy

robot in biological tissue. We deploy the robot into inflated porcine lung and demonstrate the

robot’s ability to steer around anatomical obstacles to targets in the periphery of the lung with high

accuracy. We run a number of trials in the lung achieving average needle-tip errors in the 1 mm to 2

mm range. We also gather CT scans of the robot’s deployment in the lung to visualize the robot’s

placement in the anatomy. This contribution is discussed in Chapter 5 and was originally presented

in [13].

1.2.5 Fast Anytime Motion Planning in Point Clouds by Interleaving Sampling and
Interior Point Optimization

Robot manipulators operating in unstructured environments, such as in home assistance settings,

need to plan their motions quickly while relying on real-world sensors, which typically produce point

clouds. To enable intuitive, interactive, and reactive user interfaces, the motion plan computation

should provide high-quality solutions quickly and in an anytime manner, meaning the algorithm

progressively improves its solution and can be interrupted at any time and return a valid solution.

To address these challenges, we combine two paradigms: (1) asymptotically-optimal sampling-based

motion planning, which is effective at providing anytime solutions but can struggle to quickly

converge to high quality solutions in high dimensional configuration spaces, and (2) optimization,

which locally refines paths quickly. We propose the use of interior point optimization for its ability

to perform in an anytime manner that guarantees obstacle avoidance in each iteration, and we

provide a novel lazy formulation that efficiently operates directly on point cloud data. Our method

iteratively alternates between anytime sampling-based motion planning and anytime, lazy interior

point optimization to compute high quality motion plans quickly, converging to a globally optimal

solution. This contribution is discussed in Chapter 6 and was originally presented in [14].

1.2.6 Planning High-Quality Motions for Concentric Tube Robots in Point Clouds
via Parallel Sampling and Optimization

We present a method that plans motions for a concentric tube robot to automatically reach

surgical targets inside the body while avoiding obstacles, where the patient’s anatomy is represented

by point clouds. Point clouds can be generated intra-operatively via endoscopic instruments, enabling

the system to update obstacle representations over time as the patient anatomy changes during

6

surgery. As in the previous contribution, our motion planning method uses a combination of sampling-

based motion planning methods and local optimization, via an interior point method, to efficiently

handle point cloud data and quickly compute high quality plans. This ensures that the computed plan

is feasible and avoids obstacles at every iteration, in an anytime fashion. Building upon the previous

contribution, rather than interleaving the sampling- and optimization-based methods we instead

present a framework that leverages parallelism to efficiently do both simultaneously. Additionally,

rather than minimizing the motion plan’s length, we instead minimize a cost metric that encourages

clearance from obstacles, promoting safer motion plans. We demonstrate the method’s efficacy in

three anatomical scenarios, including two generated from endoscopic videos of real patient anatomy.

This contribution is discussed in Chapter 7 and will appear in [15].

1.2.7 Estimating the Complete Shape of Concentric Tube Robots via Learning

In order to successfully plan motions for concentric tube robots, the motion planner needs to be

able to accurately determine the shape of the robot as it moves through the world. Traditionally,

this is done using physics-based mechanical models that are based on complex mechanical concepts

such as Cosserat rod theory. However, these models have difficulty accurately accounting for all

of the complex physical phenomenon associated with the robot in the real world, such as friction

between the tubes. As a result, the mechanical models are frequently inaccurate. We propose a

data-driven, machine learning based approach using a deep neural network to solve this problem.

To apply a data-driven approach to solving this problem, we need three pieces. First, we require

a parameterization of the robot’s joint values to be used as input to the model—we leverage a

parameterization derived in recent work on learning the forward kinematics of concentric tube

robots that was shown to be effective [16]. Next, a parameterization of the robot’s shape in space is

necessary to be used as the output of the model—we derive a 3D shape function based on linear

combinations of arc-length parameterized orthonormal basis functions, allowing the neural network

to output the entire shape of the robot in one pass with a relatively low dimensional output (3 ×

the number of basis functions, 15 dimensions in this work). Finally, we must train the model on

real world data that maps between the two—we use a method from multiview computer vision,

called shape from silhouette [17], to generate real-world data mapping the concentric tube robot’s

configuration space to its shape in the real world. This contribution is discussed in Chapter 8 and

was originally presented in [18].

7

1.3 Thesis Statement

This dissertation proposes the following thesis:

For robots operating in human-centric environments, robot motion planning, via a combination of

sampling- and optimization-based methods, enables fast and high-quality kinematic design optimization

and motion computation while overcoming challenges associated with computationally expensive

kinematic models, hybrid and highly-constrained kinematics, and point-cloud obstacle representations.

Each chapter of this dissertation supports this thesis statement as outlined below.

1.4 Organization

In Chapter 2 we propose a novel sampling-based motion planning algorithm to enable a robot

with complex, computationally expensive kinematics—the CRISP robot—to safely move through the

body. In Chapter 3 we integrate the CRISP robot’s sampling-based motion planner with a global

optimization method to optimize the pre-procedure kinematic design of the system on a patient-

specific basis. In Chapter 4 we develop a sampling-based motion planning algorithm that plans

motions for a three-stage lung tumor biopsy robot with hybrid and highly-constrained kinematics to

safely steer needles through the complex anatomy of a person’s lungs. In Chapter 5 we physically

evaluate the three-stage robot’s ability to safely and accurately steer through inflated porcine lung

tissue. In Chapter 6 we present a method that interleaves sampling- and optimization-based motion

planning techniques to plan motions in point cloud obstacle environments for a serial link manipulator

robot. In Chapter 7 we extend the above method to work for concentric tube robots and parallelize

the algorithm to plan motions more quickly than otherwise possible. Finally, in Chapter 8 we present

a learned shape model for concentric tube robots that aims to help safely plan and execute motions

for surgical tasks in the human body. We then conclude in Chapter 9.

8

CHAPTER 2

Motion Planning for Continuum Reconfigurable Incisionless
Surgical Parallel Robots

The Continuum Reconfigurable Incisionless Surgical Parallel (CRISP) robot [1] is a new type

of continuum robot [7, 19] that consists of multiple needle-diameter flexible instruments that are

assembled together inside a body cavity to perform minimally invasive medical procedures. The

CRISP robot typically includes (1) a flexible instrument with a working channel through which a

tool (e.g., chip-tip camera, ablation probe, etc.) is passed, and (2) one or more additional flexible

instruments that are inserted into the body cavity and attach to the first instrument via snares,

creating a strong, parallel kinematic structure (see Fig. 2.1). The parallel nature of the structure

provides strength to the robot, enabling the device to apply larger forces during medical procedures

when required. The tool’s tip can be repositioned and reoriented inside the body by robotically

moving the instruments outside the body in concert.

The CRISP robot is an ideal platform for inspecting and manipulating tissues on the surface

of a pleural effusion, which is a collection of excess fluid in the pleural space around the lungs.

Pleural effusions can be caused by over 50 different diseases [20]. Accurate diagnosis of the disease is

critical, as the underlying cause can be deadly and may have drastically different treatment paths.

Thoracoscopy is the gold standard and involves insertion of endoscopic tools through the ribs [21].

Endoscopic tools give clinicians direct visualization of the pleural space. However, thoracoscopy is

invasive: it requires incisions, and major complications are reported to be as high as 15% [22]. A

CRISP robot, with a chip-tip camera deployed through the tool working channel, has the potential

to combine the minimal invasiveness of needles with the ability of endoscopic tools to systematically

inspect the interior surface of a patient’s pleural effusion.

We introduce a motion planner for CRISP robots that manipulates the flexible instruments

outside the body such that the tool tip camera can see a user-specified site of clinical interest

inside the body. The motion planner computes motions such that all the flexible instruments inside

9

RCM

obstaclechip-tip
camera

Figure 2.1: An overview of the CRISP robotic system and motion planning framework. (a) The
needle-diameter flexible instruments form a parallel structure inside the body whose shape is modified
by actuating the instruments outside the body. (b) The instruments can be inserted and rotated
to change the view of the camera at the tip. (c) The motion planner incrementally computes
a tree data structure of collision-free robot configurations, which can be used to manipulate the
instruments (shown in red) outside the body to reposition and reorient the camera tip while ensuring
the instruments avoid anatomical obstacles inside the body.

the body avoid collision with anatomical obstacles, including the chest wall, the lung surface, and

potential connections between the lung and chest wall. The configuration of the CRISP robot is the

position and orientation of the instruments outside the body, and the motion planner computes a

sequence of configurations that avoids collisions with anatomical obstacles inside the body, enforces

remote-center-of-motion constraints on the tube’s entry points into the body, and enables visibility

of the desired clinical site inside the body with the tool’s camera. Motion planning for CRISP robots

is challenging because evaluating their kinematics for each configuration requires modeling the elastic

and torsional interactions of the robot’s constituent tubes, which is computationally expensive. We

introduce a sampling-based motion planner that efficiently propagates presolved state information

for the kinematic model through a tree data structure in configuration space to accelerate motion

plan computation.

The set of sites that can be inspected via the camera at the tool tip of a CRISP robot is heavily

influenced by the robot’s setup, i.e., where on the skin surface the tubes enter the body and where

the snares grasp the tool instrument. We demonstrate how our motion planner can be used to both

10

estimate the set of points on the pleural effusion surface that can be seen by the tool tip camera of a

CRISP robot for a given setup, as well as provide collision free motion plans for the robot to view

the points on the pleural effusion surface. This analysis can provide physicians with insights into

CRISP robot setups that are appropriate for specific clinical tasks that require pointing the camera

at specific sites in the pleural effusion.

We demonstrate the speed and effectiveness of our new motion planner for CRISP robots in

simulation using a pleural effusion segmented from a patient CT scan. We demonstrate both the

method’s ability to plan motions for the robot to view specific clinically relevant sites as well as the

ability to estimate the set of points that can be seen by the CRISP robot’s tool tip camera.

This chapter is based on work previously published in [8].

2.1 Related Work

Motion planning for the CRISP robot [1] is influenced by the way the shape of the robot is

calculated. This influence is not unique to the CRISP robot and is a consideration present in motion

planning for other continuum surgical robots.

One continuum surgical robot with related mechanics is the concentric tube robot [23]. Concentric

tube robots are needle-like surgical manipulators composed of thin, nested, pre-curved nitinol tubes.

Similar to the mechanics of the CRISP robot, the tubes of the concentric tube robot elastically

interact in different configurations to influence the robot’s shape. Using various control methods, prior

work has achieved position control of concentric tube robot tips [24, 9, 25]. Sampling based motion

planning has also been used to control concentric tube robots. Torres et. al. use a combination of

a precomputed roadmap and an inverse kinematics controller to achieve interactive rate planning

for concentric tube robots [4]. Lyons et. al. apply optimization-based motion planning using a

simplified kinematics model [26].

Another related medical robotic device for interventional medical procedures is steerable needles,

which are composed of a highly flexible tube and employ an asymmetric tip to steer through soft

tissue [27]. Motion planning for steerable needles has been achieved in a variety of ways [28, 29, 30],

including sampling-based motion planning [31, 32, 12].

Automatically controlling the motion of cameras to view specific sites can be challenging, as

discussed by Christie et al. [33]. Rosell et al. plan motions of a virtual bronchoscope to view lesions

11

in the lung through the airway [34] but are restricted in their motion to the structure of the bronchial

tree. In non-medical applications, probabilistic roadmaps have been applied to plan camera paths in

virtual environments when given a specified goal position and orientation for the camera [35]. There

has also been work in computer vision on how to plan new viewpoints for a camera such that object

recognition is optimized [36, 37]. These works primarily consider how to plan the viewing angles of

the camera, while we primarily focus on motion planning for a medical robot that contains a camera

for purposes of viewing specific sites in cluttered and constrained spaces.

2.2 Problem Formulation

2.2.1 CRISP Robot

We consider a CRISP robot composed of N needle-diameter tubes. One of these tubes has a

chip-tip camera affixed to its tip which we refer to as the camera tube, ρc. The remaining N−1 tubes

are deployed with snares, and will be referred to as snare tubes, ρk, where k is an integer uniquely

identifying a specific snare tube. In order to perform accurate mechanical modeling, we require as

input each tube’s inner diameter (ID) and outer diameter (OD). We also require a description of the

chip-tip camera, in the form of its angular field of view, θv.

A CRISP robot’s set of tubes can be assembled into parallel structures inside the patient’s body

in an infinite number of ways. We require as input a description of the CRISP robot state (illustrated

in Fig. 2.2). We make a distinction between the CRISP robot’s setup state and the robot’s actuatable

state. We define the CRISP robot’s setup state as:

{rc, r1, . . . , rN−1, s1, . . . , sN−1}, (2.1)

where rc ∈ R3 and rk ∈ R3, k = 1, . . . , N − 1 denotes the tubes’ entry points into the patient’s

body, expressed in a global coordinate system, and the scalars sk denote the arc length along the

camera tube at which the kth snare tube attaches to the camera tube. The subscript c denotes

a value corresponding to the camera tube, and an integer k denotes the value corresponding to

the kth snare tube. This setup state is set prior to the surgical procedure and is not varied during

motion execution. The entry points r remain fixed as remote center of motion (RCM) constraints,

preventing the system’s tubes from pulling laterally on the patient’s body during maneuvers, and

the snare grasping locations sk remain fixed throughout the surgical procedure. We then define the

12

x1 x2xc

l1 l2

s1 s2

rc r1 r2

lc
�eld

of
view

chip-tip
camera

�exible
instruments

body
entry
points

sti� outer
sheaths

snare grasp
point

Figure 2.2: A stiff outer sheath introduces the tubes into the body entry points rc, r1, and r2. The
snares grasp the camera tube at arc lengths s1 and s2. A mechanics-based model predicts the states
of the camera tube xc and the snare tubes, x1 and x2, in arc length.

CRISP robot’s actuatable state as:

{Rc, R1, . . . , RN−1, `c, `1, . . . , `N−1}, (2.2)

where R ∈ SO(3) denotes the tubes’ orientations at their entry points as expressed in a global

coordinate system, and the scalars ` describe how far each of the tubes are inserted beyond their

respective entry points into the body (with a maximum insertion length for each tube imposed by

the physical robot). This actuatable state represents the robot’s state which will be varied during

the execution of motions during the surgical procedure. The CRISP robot’s total state then becomes

the union of the setup and actuatable states.

2.2.2 Motion Planning

We consider the problem of planning motions for a CRISP robot. To produce motion, each tube

can be actuated via changing its orientation at the entry point into the pleural effusion space and

translating the tube into and out of the space.

We define an instance of the robot’s actuatable state as a configuration

q = {Rc, R1, . . . RN−1, lc, l1, . . . , lN−1}.

13

The space of all configurations the robot can assume is then Q ⊆ SO(3)N × RN .

For a given configuration q ∈ Q we define the shape of the CRISP robot as a function

P(q, ρ, s) : SO(3)N × RN ×N × R 7→ R3.

Function P is a 3D space curve representing the backbone of tube ρ, at arc length s in the domain

[0, lρmax]. Function P, combined with knowledge of the cross-sectional outer diameter (OD) of each

tube allows us to calculate the shape of the entire CRISP robot. Also note, that as a special case,

pcamera is the 3D location of the camera on the tip of ρc, and it has a direction of view defined by

the vector vcamera which is tangent to the space curve at pcamera.

We then define a motion plan σ = (q0,q1, . . . ,qn) as an ordered sequence of robot configurations.

We define a collision free plan as a plan for which the shape of the robot at every configuration in

the plan does not collide with obstacles in the environment, and an interpolation between adjacent

configurations does not collide with obstacles in the environment. We then define a valid plan as a

plan that is collision free and achievable given the robot hardware.

When computing a motion plan, our method takes as input a CRISP setup, an initial configuration

q0, a Computed Tomography (CT) scan from which we will define the environment, and a goal point

pgoal, the location in the anatomy that the physician is attempting to view with the camera. Our

method then produces as output a plan σ, which is a collision-free sequence of configurations that

will result in the robot being able to view pgoal.

When evaluating the quality of a candidate setup, we require as input the setup, an initial

configuration q0, and the CT scan. Then, instead of outputting a plan to a specific goal point, we

instead output a set of cells on the interior surface of the pleural effusion which can be seen by

manipulation of the CRISP robot with that specific setup, which we define as a visibility set.

2.3 Method

2.3.1 Motion Planning

To model the environment for our motion planner, we use an occupancy grid. The grid has free

cells, Sfree, in which the robot is allowed to freely move, and occupied cells, Sobs, which the motion

planner treats as an obstacle and restricts the robot from moving into. To generate these sets, we

segment the pleural effusion from the CT scan using a semi-automatic region-growing method [38].

14

We set Sfree to be the cells in the CT scan consistent with the pleural effusion and Sobs to be the

inverse segmentation. We also define a third set, Sbound to be the cells in Sobs which are adjacent

to Sfree which will contain the goal point of interest pgoal and which will be the set we attempt to

visualize in the evaluation of a setup.

We solve the motion planning problem formulated in Sec. 2.2.2 using a sampling-based approach.

We implement a planner based on the Rapidly-Exploring Random Trees (RRT) method [39]. The

RRT method begins at a root node, the initial configuration, and iteratively and randomly constructs

a tree structure where each node in the tree is a valid configuration, and an edge linking two nodes

is a valid, collision free motion between them as a linear interpolation in configuration space. As

the tree grows, it expands and explores the obstacle free configuration space of the robot. Once a

node is found which has a camera pose with a clear view of the goal point, pgoal in the lung, the

tree can be traced back to the root node, and a valid plan from the initial configuration to a goal

configuration has been found.

Specifically, we begin with our root node. We then sample a randomly generated point in

configuration space. We linearly interpolate between the two configurations, using spherical linear

interpolation (SLERP) [40] to interpolate between the rotational degrees of freedom. We then

propagate along the line segment starting at the root node for a random percentage of the line

segment, computing the shape of the robot and checking it against Sobs at a fine discretization. If the

robot collides with obstacles or reaches a configuration that the forward kinematics solver is unable

to solve, we stop at the prior step of the discretization. We then add the last valid configuration and

edge to the tree. This process is then repeated, but the node from which to start the propagation is

chosen as the nearest neighbor in the tree to the newly sampled point.

This process continues until a time limit has passed or until a configuration has an unobstructed

view of pgoal, whichever comes first.

To perform collision detection, we need an accurate estimate of the robot’s shape at a given

configuration. To calculate the robot’s shape at a given configuration, we use a modification of the

mechanics-based model developed by Mahoney et al. [1] and described in greater detail in Sec. 2.3.2.

Having calculated the backbone shape of each tube, and knowing each tube’s radius, we are able to

efficiently check for collisions between the robot’s geometry and the occupancy grid. This is done

by interpolating along the shape of each flexible instrument, identifying which cells the shape will

15

occupy, and doing an index lookup into the CT-derived occupancy grid for those cells.

To identify whether at a sampled configuration pgoal is visible from the camera on the tip of

ρc we implement a ray trace. First, the camera position and direction of view, pcamera and vcamera

are inferred from the tip of the shape computed for ρc. The vector between pgoal and pcamera is

computed, and it is compared with vcamera. To identify if pgoal lies within the field of view of the

camera, we examine the planar angle between the two vectors. If the angle is larger than θv/2, then

pgoal does not lie within the field of view of the camera. If, however, the angle is less than θv/2, then

pgoal does lie in the field of view of the camera. This is not enough, however, because there must

exist line of sight between the camera and pgoal—the view of pgoal may be occluded by another part

of the patient anatomy. To identify if there exists clear line of site, a ray is traced from pcamera to

pgoal. If the ray strikes an occupied cell in Sobs before it reaches pgoal, there is not clear line of site

and the motion planning continues. However, if there exists clear line of site then the plan is traced

back to the root initial configuration and is returned.

2.3.2 Mechanics & Solution Seeding

One of the most computationally intensive aspects of the method is computing the forward

kinematics of the CRISP robot that determines its shape. This is done for every node in the tree,

and at every finely discretized point along each edge in the tree. The forward kinematics is calculated

both to ensure the configuration is collision free everywhere on the CRISP robot’s body and to

identify the camera pose.

The forward kinematics of the CRISP robot results from its mechanics, which were initially

presented in [1]. In this chapter, we assume that the flexible instruments of a CRISP robot can be

physically held by robot manipulators at the point where the tubes enter the patient’s body. This

reduces the dimensionality of the CRISP robot’s actuation space to only include orientation of each

tube at the body entry point and each tubes’ insertion length into the body. This assumption also

simplifies the system mechanics and can be physically implemented in practice using stiff introducer

sheaths through which the flexible instruments can be deployed. What follows is a summary of the

simplified CRISP robot’s mechanics and forward kinematics.

We model the CRISP robot using the Cosserat rod equations [41, 42], which define a system of

ordinary differential equations that govern the Cosserat-rod state of each tube. This state consists

of the backbone position p ∈ R3, orientation expressed as a rotation matrix R ∈ SO(3), internal

16

moment m ∈ R3, and internal force n ∈ R3 of each tube, each as a function of arc length along the

tube’s backbone. For instance, the Cosserat-rod state of the camera tube is defined as

xc(s) = [pc(s) Rc(s) mc(s) nc(s)] , 0 ≤ s ≤ `c, (2.3)

where s is the arc length parameter and `c is the length of the camera tube. We define the Cosserat-

rod state of the snare tubes, xk(s) for the kth snare tube, similarly. For more details on Cosserat

rod theory, we direct the reader to [41] and [42].

The forward kinematics of a multi-tube system are formulated as a multi-point boundary value

differential equation, where the Cosserat-rod states of the kth snare tube propagate along its backbone

in arc length 0 ≤ s ≤ `k as

x′k(s) =

[p′k(s) R′k(s) m′k(s) n′k(s)] , sk − `k ≤ s ≤ sk

0, otherwise
, (2.4)

where sk is the grasp location of the kth snare tube. The states of the camera tube propagate along

its backbone in arc length 0 ≤ s ≤ `c, as

x′c(s) =

[p′c(s) R′c(s) m′c(s) + α n′c(s) + β] , 0 ≤ s ≤ `c

0, otherwise
, (2.5)

where ′ denotes the derivative with respect to arc length. These derivatives, as well as the terms α

and β, can be found in [1]. The tube lengths (`c and `k) and the initial values of the tube position

(pk(0) and pc(0)) and orientation (Rk(0) and Rc(0)) at the body entry points are given by the

corresponding entry point position and orientation from the starting state, (2.1) and (2.2). The

initial values of the Cosserat-rod internal moments (mk(0) and mc(0)) and forces (nk(0) and nk(0))

for both the snare and camera tubes are determined later to satisfy the constraints of the multi-point

boundary value problem.

The constraints of the multi-point boundary value problem include a constraint at each of the

grasp points sk on the camera tube’s body. The grasp constraints enforce the tip position of the

snare tube to be coincident with the camera tube’s position at arc length sk and the tip pose of the

17

snare tube is constrained so that there is a constant rigid body rotation that maps the snare tip

orientation to the backbone pose of the camera tube’s orientation at arc length sk as

ck =

 pk(`k)− pc(sk)

RTc (sk)Rk(`k)Rx − I

 = 0 (2.6)

where Rx ∈ SO(3) is the rotation in the [−1, 0, 0]T direction by 90◦ and I ∈ R3×3 is the identity

matrix.

Under the assumption that the system is quasistatic and in the absence of applied forces and

moments at the camera tube’s tip, the force and moment at the camera tube’s tip will be zero,

leading to the additional constraint of

cc(`c) =

mc(`c)

nc(`c)

 = 0. (2.7)

The N − 1 grasp constraints ci and the tip constraint cc can be packed into the total constraint

vector

c =

[
cc c1 . . . cN−1

]
= 0. (2.8)

The multi-point boundary value problem is solved by varying the snare and camera tube’s initial

conditions of their moments (mk(0) and mc(0)) and forces (nk(0) and nc(0)) so that the total

constraint equation (2.8) is satisfied. When solved, the multi-point boundary value problem yields

the system’s forward kinematics. We accomplish this using a numerical optimization routine known

as a “shooting” method, where an initial seed of the snare and camera tube’s initial internal moment

are iteratively perturbed to minimize ‖c‖ [1].

The runtime of the forward kinematics computation is heavily dependent on the initial conditions

seeded into the shooting method. If the initial conditions lie far from the true solution, not only will

the shooting method converge more slowly, but it may not converge to a solution at all. However, if

the initial conditions lie close to the true solution, then the shooting method will run much more

quickly and the forward kinematics will be solved faster.

This insight is a significant motivation for our choice of an RRT based motion planner. RRT’s

incremental growth property means that we can always view tree expansion as a sequential small

18

perturbation on an already solved forward kinematics problem. More specifically, as we expand

the tree, we seed the initial conditions of each subsequent shape calculation with the true values

found at the state from which it is propagating. Because each step is relatively small, we are always

seeding the initial moments and forces with a solution that lies close to the true solution. We note a

substantial computational speedup associated with this property compared to seeding the initial

moments and forces with a generic set of initial conditions, as discussed in Sec. 2.4.3.

2.3.3 Candidate CRISP Setup Evaluation

An adaptation of our method can be used to evaluate a specific candidate CRISP setup and

initial configuration by generating a visibility set. Rather than attempting to find a plan from the

initial configuration to a viewpoint for a specific pgoal, one can ask the question “What is the total

set of all points that can be viewed in the space, if we start at a specific q0 using a given candidate

setup?" An answer to this question may be useful in evaluating how effective an initial configuration

and setup is. To answer this question, we attempt to generate the set of all points in Sbound which

can be viewed by the robot starting at q0 with the candidate setup. This can be viewed as the

endoscopic equivalent of evaluating the reachable workspace of the robot.

We extend our method to construct a visibility set by allowing the tree to expand for a fixed

and relatively long duration of time, while observing which cells in Sbound can be seen from each

configuration in the tree. Rather than checking whether a specific pgoal can be seen, we instead ask

what the set of cells is which is visible from the configuration. This is done in a similar fashion as

above, but all cells in Sbound are evaluated and filtered by their relative angle to vcamera. For each

cell that lies in the field of view of the camera, a ray is then traced to a point p in the cell, and the

cell in Sbound at which the ray terminates is added to the visibility set. The union of the sets for

each configuration in the tree then becomes the total visibility set and is returned.

2.4 Results

We demonstrate the speed and effectiveness of our new motion planner for CRISP robots in

a simulated scenario based on a pleural effusion segmented from a patient CT scan. We ran the

motion planner on an Intel Xeon E5-1680 CPU with 8 cores running at 3.40GHz and 64GB of RAM.

19

Sagittal Plane

Frontal Plane

pelvis

pleural
e�usion

de�ated
lung

Segmented Pleural E�usion

Fr
on

ta
l V

ie
w

Sa
gi

tt
al

 V
ie

w

Figure 2.3: An isometric view of the segmented open pleural effusion volume, bone structure, and
lung is shown on the left. Frontal and sagittal views of the pleural effusion volume are shown on the
right. Note that the collapsed lung lies on the posterior side of the pleural effusion.

2.4.1 Generating Visibility Sets

We first evaluated the ability of the method to generate visibility sets for two CRISP robot

setups. Each setup included one snare tube and the camera tube, where the snare tube is affixed to

the camera tube 1 cm from its tip. Both tubes have an OD of 1.02 mm and an ID of 0.84 mm. The

two starting setups are shown in Fig. 2.4 in the pleural effusion space. The setups initially point the

camera in different directions and have differing entry points and orientations into the effusion.

For each setup, we ran the motion planner for 1 hour to explore the space and recorded cells

on the pleural effusion surface that could be seen by the camera. As can be seen in Fig. 2.5, from

each setup the robot is able to visualize a large portion of the interior surface of the pleural effusion.

After 1 hour, Setup 1 has visualized 38% percent of the pleural effusion surface and Setup 2 has

visualized 57% percent of the pleural effusion surface. The difference in the visibility sets between

the two setups implies that the ability of CRISP to visually inspect a particular set of goal points is

dependent on choosing a high quality setup. The computed visibility sets can provide feedback to a

physician on the usefulness of each specific setup. The union of the two visibility sets covers 80% of

the total effusion surface, illustrating that using multiple setups increases the size of the visibility

set and can enable the physician to see most of the pleural effusion.

20

Setup 1 Setup 2

Fr
on

ta
l V

ie
w

Sa
gi

tt
al

 V
ie

w
Is

om
et

ric
 V

ie
w

Entry Points

Figure 2.4: The setups and initial configurations for both Setup 1 (left column) and Setup 2 (right
column). The pleural effusion is rendered transparent so the initial shape of the robot can be
visualized.

Fr
on

ta
l V

ie
w

Sa
gi

tt
al

 V
ie

w

Setup 1 Setup 2

visible
surface

pleural
e�usion

Figure 2.5: The visibility sets found by the motion planner for Setup 1 (left column) and Setup 2
(right column) after 1 hour of computation. The portion of the surface visualized is rendered in
orange.

21

0 10 20 30 40 50 60
Time (m)

0

20

40

60

80

100

Pe
rc

en
t F

ou
nd

Setup 1
Setup 2
Setup 1 / Total
Setup 2 / Total

Figure 2.6: The percent of goal points seen by the camera as a function of the motion planner’s
exploration time for each setup. Solid lines show the percent of goal points seen by the camera with
respect to each setup’s visibility set. Dashed lines represent the percent of goal points seen with
respect to the total number of points on the pleural effusion surface.

2.4.2 Motion Planning to View a Specific Goal Point

We next evaluate the motion planner for computing a motion to view a specific goal point using

the chip-tip camera. Using ≈ 49, 500 goal points on the surface of the pleural effusion, we show in

Fig. 2.6 the percentage of the goal points which have been visualized as a function of time. The

percentage of points found can be viewed as the probability that the motion planner finds a plan

to visualize a goal point if it were sampled uniformly from the set of visible points found by that

specific setup (solid lines) or if it were sampled from all points on the interior surface of the pleural

effusion (dashed lines). An example of a motion being planned to view a specific goal point can be

seen in Fig. 2.7.

2.4.3 Mechanics Solution Seeding

To evaluate the efficacy of seeding the forward kinematics computation with the solution of an

already known near-by shape, we repeated the experiments but without the the seeding. Instead, we

initialize each shape calculation with the solved solution of only the initial configuration, corresponding

to the root node in the tree.

At the end of the hour-long planning time, the motion planner for Setup 1 without the mechanics

solution seeding had only planned visualizations for 30% of the total cells in Sbounds compared to

the 38% found by the planner with the mechanics solution seeding. For Setup 2, the planner without

22

Figure 2.7: A motion plan viewed from inside the pleural effusion. Potential points of interest on
the interior surface of the pleural effusion are rendered as blue spheres, with the specific goal point
rendered in pink. The plan goes from the initial configuration (a), through collision free intermediate
configurations (b) and (c), to a configuration in which the tip of the camera tube can view the goal
point in (d).

the seeding had only computed motion plans to visualize 38% of the cells compared to the 57%

found by the motion planner with the mechanics solution seeding. A stark difference was also found

in the number of configurations being added to the tree. For example, from Setup 1, after 1 hour

the motion planner without the seeding had only added 2,177 configurations to the tree, while the

motion planner with seeding had added 37,855 configurations. For Setup 2, the motion planner

without the seeding had added 2,627 configurations, while the motion planner with the seeding had

added 36,610 configurations. The ≈ 14 times increase in the number of configurations when using

the seeding suggests a significantly more expansive motion planning tree capable of viewing more

user-specified points of interest.

2.5 Conclusion

CRISP robots provide new avenues for performing minimally invasive, incisionless medical

procedures. Our motion planner for CRISP robots computes manipulations of the needle-diameter

flexible instruments outside the body such that the camera can visually inspect a user-specified

site of clinical interest inside the body. Our sampling-based motion planner ensures avoidance of

collisions with anatomical obstacles inside the body, enforces remote-center-of-motion constraints on

23

the flexible instrument’s entry points into the body, and efficiently handles the expensive computation

of CRISP robot kinematics. We also extended the motion planner to estimate the set of points inside

a body cavity that can be visually inspected by the camera of a CRISP robot for a given setup.

In future work, we plan to build upon this new motion planner to bring CRISP robots closer to

clinical use. We plan to further accelerate the motion planner using sampling heuristics, precom-

putation, and parallelization. Additionally, we plan to extend the motion planner to account for

uncertainty such as patient motion during the procedure. We also plan to integrate our motion

planner with a physical robot prototype and evaluate the performance of the integrated physical

system.

In Chapter 3 we utilize the motion planner presented in this chapter to automatically optimize

the setup of the CRISP robot on a patient-specific basis to maximize the ability of the camera to

see sites of clinical interest.

24

CHAPTER 3

Kinematic Design Optimization of a Parallel Surgical Robot to Maximize
Anatomical Visibility via Motion Planning

A robot’s kinematic design, i.e., physical parameters fixed prior to the robot’s use that affect a

robot’s kinematics, can greatly impact the robot’s ability to perform a task. The quality of a specific

kinematic design can vary as the robot’s task and environment changes. In medical robotics, the

quality of a robot’s kinematic design is influenced by the specific surgical or interventional procedure

it will perform as well as the specific patient anatomy in which it will operate. A suboptimal

kinematic design may negatively impact patient outcomes. In this work, we introduce a method to

optimize on a patient-specific basis the kinematic design of the CRISP robot [1, 2] to maximize the

ability of the robot’s tip camera to view tissues in constrained spaces.

We remind the reader that the CRISP robot is a minimally invasive surgical robot composed of

needle-diameter tubes which are inserted into the patient and assembled into a parallel structure

(see Fig. 3.1). This assembly is performed using snares, which the tubes use to grip one another.

In addition to snares, other tools can be passed through or placed at the end of the tubes, such as

chip-tip cameras, biopsy needles, ablation probes, etc. As the tubes are then manipulated outside

the body by robotic manipulators, the shape is changed inside the body to perform the surgical task.

Due to the needle-like diameter of the tubes, the CRISP robot has the potential to further reduce

invasiveness of minimally invasive surgical procedures such as abdominal, fetal, and neonatal surgery

[1, 8]. When a chip-tip camera is mounted at the tip of one of the tubes, the robot can operate as

an endoscope, enabling the physician to view the interior surface of an anatomical cavity, such as

the abdomen or pleural space (between a lung and the chest wall) [21]. Whereas typical pleural

endoscopes have diameters of 7mm and may require an incision as large as 10mm, the CRISP robot

requires only needle-size (1-3mm diameter) entry points in the skin.

In this chapter we investigate kinematic design optimization for the CRISP robot with a chip-tip

camera to maximize the surface area of tissues visible to the physician in a constrained space. We

25

Figure 3.1: Two images of the CRISP robot, where 2 manipulators adjust the base poses of
needle-diameter tubes that are inserted into the body and assembled into a parallel structure.

consider as part of the optimization the anatomical entry points of each tube into the patient’s

body, which may be constrained by anatomical factors, as well as the snare grasping locations which

define the parallel structure of the robot. Appropriately choosing these kinematic design parameters

significantly impacts the robot’s ability to view the anatomical sites of interest to the physician (see

Fig. 3.2).

Our design optimization approach combines a global numerical optimization method with a

motion planner to evaluate the ability of candidate kinematic designs to view the anatomical sites

of interest. Specifically, we use the global optimization algorithm Adaptive Simulated Annealing

(ASA) [43, 44] to generate candidate designs, which we evaluate using a sampling-based motion

planner specifically designed for viewing anatomical sites using the CRISP robot [8]. By evaluating

candidate designs with a motion planner, we ensure that a target is considered viewable by the robot

only if viewing the target can be achieved by a robot motion that avoids collision with obstacles

in the patient anatomy. This guarantees that the evaluation of the design takes into account the

motions required by the robot to view the target regions, not just the robot’s theoretical ability to

do so in the absence of constrained anatomy.

Whereas other previous ASA based approaches [44] optimize a design’s ability to reach goal

regions, we focus on optimizing a design’s ability to view target regions with its camera, an application

which introduces unique challenges in providing theoretical guarantees. We prove that for this

application the optimization is asymptotically optimal, i.e., almost surely converges to a globally

optimal kinematic design. We then demonstrate the ability of the design optimization algorithm to

produce high quality designs in two simulated scenarios, including a pleuroscopic scenario based

on patient anatomy. We show that the algorithm generates designs which over time significantly

26

Design 1

Design 2

Figure 3.2: Different designs can greatly impact the robot’s ability to view the interior surface of a
volume via its tip camera. Here we show 2D examples of a robot (blue) and its field of view (yellow)
after being occluded by obstacles (red). In Design 1 (top), the robot cannot view much of the interior
surface of the volume (the black circle) due to obstacles as it is manipulated through 3 collision-free
configurations. However a different design (bottom), which has different entry points into the volume
and a different snare grasping location, can view a much larger percentage of the interior surface.

improve the robot’s ability to view target regions.

This chapter is based on work originally presented in [11].

3.1 Related Work

Numerical optimization methods have been developed to optimize the design of various medical

robots. Another continuum surgical robotic system for which design optimization methods have

been developed is the concentric tube robot. Concentric tube robots are similar to the CRISP robot

in that they are continuum systems with complex and computationally costly kinematics due to the

elastic and torsional interactions between their tubes. The complex kinematics of these devices have

motivated unique approaches to their design optimization.

Bergeles et al. provide a method that computationally optimizes concentric tube robot designs

to reach a set of goal points while avoiding collisions with anatomy [45]. This method, however,

does not provide a guarantee of global optimality. Burgner et al. leverage a grid-based search of the

robot’s configuration space with a nonlinear optimization method to optimize designs, maximizing

27

reachable workspace while satisfying anatomical constraints [46]. Ha et al. optimize designs to

maximize the concentric tube robot’s elastic stability, a problem which is of particular concern for

concentric tube robots [47]. Morimoto et al. take a unique approach to concentric tube robot design

by providing a human with an interface to interactively design the tubes of the robot [48]. These

works focus on computing goal configurations of the robot for a given design, and as such do not

provide a guarantee that there exists a collision free path, or sequence of configurations, which allows

the computed design to achieve a goal configuration.

To accomplish optimization with start to goal path guarantees, Torres et al. integrate a motion

planner into the design optimization process, ensuring that valid paths exist to each reachable target

for a given design [49], but this method suffers from slow performance. Baykal et al. build upon this

method to compute a minimal set of designs that reach multiple targets [50]. Niyaz et al. utilize a

motion planner designed to follow surgeon specified tip trajectories [51] to optimize a concentric

tube robot’s starting pose [52]. Recently, Baykal et al. provide asymptotic optimality in the design

of piecewise cylindrical robots, which includes concentric tube robots, for reaching workspace targets

[44]. In this chapter, we build upon this prior work to optimize the kinematic design of the CRISP

robot for anatomical visibility, rather than reachability, and show asymptotic optimality under this

new optimization metric.

The optimization of surgical port placement, which has parallels to our optimization of needle

entry points, has received previous study as well. Liu et al. optimize port placement and needle

grasping locations for autonomous suturing [53], but they require as input a discrete set of candidate

grasping and port placement locations. Hayashi et al. investigate abdominal port placement by

examining the angular relationship between the port location and anatomical sites in the abdomen

[54]. They do not, however consider the requirement of more complex motions during the procedure.

Feng et al. optimize laparoscopic port placement for robotic assisted surgery by evaluating the

robot’s reachable workspace in the patient [55], but do not consider complex motions or obstacle

avoidance during the procedure.

Design optimization has been studied outside of the surgical robotics domain as well. For instance,

discrete parameter design optimization has been studied for a variety of applications, including

multi-modal robots [56, 57], jumping robots [58], modular robots [59, 60], and protein chains [61].

These methods focus on optimizing over a finite, discrete set of features, whereas in this work we

28

optimize over continuous design parameters.

Methods for optimizing the design of serial manipulators has received a large amount of study

and include grid-based approaches [62], geometric approaches [63], interval analysis [64], and genetic

algorithms [65, 66, 67, 68]. Frequently these methods require simplified kinematic models or restrictive

assumptions to achieve computational feasibility, and typically provide no theoretical performance

guarantees.

Taylor et al. present a non-linear constrained optimization approach to the simultaneous design

of shape and motion for dynamic planar manipulation tasks [69]. Ha et al. explore the relationship

between design and motion by leveraging the implicit function theorem to jointly optimize robot

joint and motion parameters for manipulators and quadruped robots [70]. These methods, however,

do not provide global guarantees and may be subject to local minima.

3.2 Problem Definition

Similar to as in Sec. 2.2, we consider a CRISP robot composed of n needle-diameter tubes. One

of the tubes, the camera tube ρcam, has a chip-tip camera attached to its tip. The rest of the n− 1

tubes have snares with which they grip ρcam and are denoted ρk where k is a unique integer label.

3.2.1 Design Space

Let rcam, r1, . . . , rn−1,∈ R3 represent the points at which the tubes of the CRISP robot enter

the patient’s body expressed in a global coordinate system. Let the set of all valid such entry points

be R ⊆ R3. The entry points into the patient’s body act as remote center of motion (RCM) points,

preventing the tubes from applying lateral load to the patient’s skin during the procedure, and are

fixed during the operation of the robot.

The CRISP robot is assembled into a parallel structure where each snare tube ρk grips the

camera tube at sk ∈ R, the scalar valued arc length along ρcam. The snare grasping locations are

fixed during operation.

We define a kinematic design d of the CRISP robot as a vector describing each tube’s entry

point into the body and each snare tube’s grasping location. The open set of all kinematic designs is

D ⊆ Rn−1 × R3n (see Fig. 3.3).

29

Figure 3.3: Highlighting the differences between the CRISP robot’s design parameters and configura-
tion variables: The CRISP robot’s kinematic design parameters (orange), which must be set before a
procedure, include the entry points into the body (rcam or rk) and the snare grasping locations (sk).
The robot’s configuration variables (blue), which can be continuously modified during a procedure,
include the tubes’ insertion lengths into the body (`cam or `k) and the tubes’ orientations at the
entry point (Rcam or Rk).

3.2.2 Configuration Space

Once the kinematic design d is fixed and the CRISP robot is assembled inside the patient, the

operation of the robot may then be performed by rotating the tubes about their RCM entry points

and inserting and withdrawing the tubes from the patient. We define a configuration of the robot as

q = (Rcam, R1, . . . Rn−1, `cam, `1, . . . , `n−1),

whereR ∈ SO(3) represents a tube’s rotation at its entry point, and ` ∈ R represents a tube’s insertion

length into the patient’s body. The open set of all configurations then becomes Q ⊆ SO(3)n × Rn.

We define a path as a continuous function σ : [0, 1]→ Q, where σ(0) = q0, with q0 defined as the

starting configuration of the robot, which may vary for different designs (see Fig. 3.3).

3.2.3 Workspace

We define the robot’s workspace as W ⊆ R3. We define Shape : D × Q × K → W as the

continuous shape function of the robot, where K is the compact set of points representing the robot’s

geometry.

Given a compact obstacle set O ⊆ W, the set of points which must be avoided by the robot’s

geometry, we say a design-configuration pair (d,q) ∈ D ×Q is in collision if there exists k ∈ K such

30

that Shape(d,q,k) ∈ O.

A design-configuration pair (d,q) is said to be reachable if there exists a path σ : [0, 1]→ Q with

σ(0) = q0 and σ(1) = q such that for all 0 ≤ s ≤ 1, (d, σ(s)) is not in collision.

Let View : D × Q × V × [0, 1] → W be a continuous function defining the view of the robot,

where V represents the set of rays along which the robot can see as determined by the camera’s field

of view, and [0, 1] is the domain of a distance along the ray. A target region T ⊆ W is said to be

visible from a design-configuration pair if there exists a ray in V that reaches any point in the target

region, unoccluded by any obstacle. More formally, a target region T ⊆ W is visible from a design-

configuration pair (d,q) if ∃v ∈ V, r ∈ [0, 1] : View(d,q,v, r) ∈ T ∧∀s ∈ [0, r] : View(d,q,v, s) /∈ O.

3.2.4 Maximizing Viewable Anatomy

Let T = {T1, . . . , Tm} denote the set of m physician-specified target regions that we seek to

view, where each target region denotes an open set of points in the workspace, Ti ⊆ W, ∀i ∈ [m].

We define a target region as viewable under design d if the target region can be viewed from any

configuration that can be reached by following a collision-free path. We then define the number of

viewable target regions from a given d as Π(d) : D → [0,m], where

Π(d) := |TargetRegionsViewable(d)|. (3.1)

TargetRegionsViewable(d) denotes the set of viewable target regions when using kinematic design

d. Our goal then becomes finding an optimal design d∗ such that Π(d) is maximized.

3.3 Method

We present a method which optimizes the kinematic design of a CRISP robot to maximize the

robot’s viewable target regions in a specific anatomy while avoiding collision with obstacles, and

which does so in an asymptotically optimal way (see Sec. 3.4). The method, detailed in Alg. 1, is

based on the global stochastic optimization algorithm Adaptive Simulated Annealing (ASA) [43, 71],

which iteratively samples and evaluates candidate designs. We evaluate candidate kinematic designs

with a motion planner designed specifically for the CRISP robot, and which can determine the

viewable target regions for a given design [8].

31

Algorithm 1: CRISP Robot Design Optimization
Input:
T : target regions
O: obstacles
iinit: initial number of RRT iterations
i∆: RRT iteration increment
Output: d∗: optimal CRISP design maximizing (3.1)

1 i← iinit; Temp← Tempinitial; Π̂current ← 0; Π̂∗ ← 0
2 dcurrent,q0 ← random initial design
3 d∗ ← dcurrent

4 while time allows do
5 d′,q′0 ← SampleDesign(dcurrent,Temp, i);
6 targetsViewed← CrispRRT(d′, i,O,q′0);
7 Π̂′ ← |targetsViewed|;
8 if Accept(Π̂′, Π̂current,Temp) then
9 dcurrent ← d′;

10 Π̂current ← Π̂′;
11 end
12 if Π̂′ > Π̂∗ then
13 d∗ ← d′;
14 Π̂∗ ← Π̂′;
15 end
16 i← i+ i∆;
17 Temp← UpdateTemperature(Temp);
18 end

32

3.3.1 Exploring Design Space

To explore the CRISP robot’s design space, we leverage the ASA method. ASA is a global

optimization algorithm, ensuring it does not become trapped in local optima. ASA works by

iteratively improving upon the current best design. It first samples a candidate design some distance

from the current design in design space (SampleDesign at line 5 of Alg. 1). It then evaluates the

quality of the candidate design (Accept at line 8 of Alg. 1). If the candidate design is of higher

quality than the current design, i.e., Π̂′ > Π̂current, ASA will accept the candidate design. However,

with some probability Accept will accept an inferior design. It is this mechanism that allows the

algorithm to avoid local maxima. Both the distance at which it samples and the probability of

allowing an inferior design to be accepted depend upon a “temperature" value (Temp in Alg. 1).

The temperature is initially set to a large value, but is decreased over time according to a cooling

schedule. In this way, early in the optimization process the algorithm is much more likely to explore

more distant designs or accept inferior designs, but later in the process converges to a high quality

design. Our algorithm keeps track of the best design found through the course of its execution and

returns the best design at its conclusion.

3.3.2 Evaluating Candidate Designs

We evaluate the number of target regions viewable by a candidate design d, denoted Π(d), using

a sampling-based motion planner for the CRISP robot [8]. This approach enables our method to

estimate the total number of targets which are viewable by a given design, while only considering

those configurations reachable by following collision-free paths. The motion planner, CrispRRT, is

based on the Rapidly-exploring Random Tree (RRT) algorithm [72] and has the property that the

estimate of viewable target regions approaches the correct value as the number of motion planning

iterations rises.

Sampling an Initial Configuration The motion planner requires as input a collision-free starting

configuration q0 from which to plan motions. In the case of the CRISP robot, q0 depends on d and

is non-trivial to generate.

A key challenge with planning the motions for the CRISP robot is that evaluating the forward

kinematics to solve for the shape of the robot is costly and requires an initial guess as to the forces

and moments being applied to the tubes of the robot. Generally, if the state of the first configuration

33

is known then subsequent configurations can be propagated out using the forces and moments of the

previous configuration to seed that guess. This is a key insight behind the CRISP motion planner [8].

There is, however, no previous state with which to seed the initial configuration q0, as all subsequent

configurations are grown from it, and it is unique to a given design. To solve this problem, we require

q0 to be a load free configuration, i.e., one in which the tubes are applying no forces or moments

to each other. This geometrically restricts the shape of the robot to a right triangle without any

axial twist applied to the tubes. There are, however, an infinite number of right triangles that pass

through the entry points defined by d.

We address this challenge by selecting initial configurations uniformly at random from the set of

possible initial configurations which satisfy the design constraints (note that the set of valid initial

configurations from which to sample can be defined relatively simply geometrically). The sampled

initial configuration is then collision checked against the environment. If it is found to be in collision,

it is discarded and another starting configuration is sampled. This process repeats at most i times

(the iteration parameter), or until a collision-free initial configuration is found, whichever comes

first. If a collision-free initial configuration is not found, the design is assigned a value of 0, and the

motion planner immediately returns.

Running the Motion Planner If a valid initial configuration is found, the motion planner is run

to determine the design’s set of viewable targets. The motion planner builds a tree in configuration

space with collision-free configurations as nodes and collision-free transitions between configurations

as edges. During CrispRRT (line 6 of Alg. 1), the motion planner attempts to expand its tree i

times, keeping track of the set of all target regions viewable by the robot configurations represented

by nodes of the tree.

A sampling-based motion planner which runs for a finite duration may only return an approxi-

mation of the viewable set of targets for a given design (as noted in [44] for the case of reachability).

To guarantee that the approximations increasingly approach the true value, the number of iterations

for which the planner is run is increased by i∆ at each iteration of Alg. 1 (line 16). This allows the

algorithm to evaluate the quality of candidate designs with increasing accuracy as the algorithm

executes.

34

3.4 Analysis

In this section, we prove under mild assumptions the asymptotic optimality of the proposed

method, which provides the user a guarantee that the method’s solution will approach a globally

optimal kinematic design as more computation time is allowed.

Specifically, we show that the method almost surely converges to a design under which the

maximum number of target regions are viewable. This proof builds on ideas from [44] and adapts

them to the case of maximizing viewable goal regions. Our approach reduces to showing that the set

of optimal designs has non-zero measure and applying results from prior work on design optimization

based on the motivating property of ASA. We prove this via open sets, which are either empty or

have non-zero measure. In Lemma 1, we show openness of the set of design-configuration pairs

for which the configuration is reachable under the design, a useful lemma in its own right. In

Lemma 2, we show that the set of design-configuration pairs from which a given target region is

visible is also open. We combine these results in Lemma 3 to show that the set of optimal designs is

open. Straightforward application of prior work is then sufficient to prove asymptotic optimality in

Theorem 1.

3.4.1 Preliminaries

Our proofs use the fact that the inverse images of open and closed sets under continuous functions

are themselves open and closed respectively where the inverse image of A ⊆ B under f : C → B

(denoted f−1[A]) is the set {c ∈ C | f(c) ∈ A}. In the following proofs, we will also frequently refer

to the topological projection (or simply projection) from a Cartesian product of topological spaces

X ×Y to X. The projection of a set Z ⊆ X ×Y to X is the set {x ∈ X | ∃y ∈ Y : (x, y) ∈ Z}. Two

useful properties of projections enable the proofs below. First, the projection of an open set is itself

open. Second, if Y is compact, then the projection X × Y → X of a closed set is itself closed. This

latter property is referred to as the Tube Lemma below.

Assumption 1 (Target Regions as Open Sets). Each target region Ti ∈ T , is defined as an open

set.

Assumption 2 (Continuity of Shape). Shape : D ×Q×K →W is continuous.

Assumption 3 (Continuity of View). View : D ×Q× V × [0, 1]→W is continuous.

35

3.4.2 Sampling Optimal Designs Infinitely Often

Lemma 1. The set of reachable design-configuration pairs, denoted R, is open.

Proof. Consider a reachable design-configuration pair (d,q) for which we wish to construct a

reachable neighborhood. By definition of reachable, there must exist some path σ ∈ [0, 1] → Q

with σ(0) = q0 and σ(1) = q such that ∀s ∈ [0, 1] : ∀k ∈ K : Shape(d, σ(s),k) ∈ (W \ O). Let

σq′(s) = σ(s) + s · (q′ − q). σq′ is continuous by continuity of σ and σq′(1) = q′ by construction, so

σq′ is a path to q′. We thus have only to show that σq′ is collision-free under each design d′ for all

(d′,q′) in a neighborhood of (d,q).

Observe that the mapping L : D ×Q×K × [0, 1]→W given by

d′,q′,k, s 7→ Shape(d′, σq′(s),k) (3.2)

is continuous by continuity of σq′ and Shape. We then have that B = L−1[O] ⊆ D ×Q×K × [0, 1]

is closed by closedness of O. Let C be the projection of B to D ×Q. C is thus the set of all (d′,q′)

for which σq′(s) is in collision under design d′ for some s ∈ [0, 1], and is closed by compactness of

K × [0, 1] and the Tube Lemma.

Let C = (D ×Q) \ C. Now observe that (d,q) ∈ C because σq = σ, and σ is collision-free for

design d by definition. But C is open, so it covers some neighborhood N of (d,q). N is thus a

neighborhood of (d,q) in which σq′ is collision-free under design d′ for all (d′,q′) ∈ N .

Lemma 2. The set of design-configuration pairs from which target region T is visible, denoted G(T),

is open.

Proof. Consider A = View−1[O], the set of all design-configuration-ray-distance tuples which yield

points inside obstacles, which is closed because O is closed and View is continuous. We next construct

Â, the set of all design-configuration pairs from which O is visible. Â is the projection of A to D×Q,

and because V × [0, 1] is compact and A is closed, Â is also closed by the Tube Lemma.

Let L = {(s, r) | s ≤ r ∧ (s, r) ∈ [0, 1]2} denote the set of all (s, r) such that if an obstacle were

at distance s, it would occlude a target region at distance r and observe that this set is closed by

36

construction. From A, Â, and L, we construct

B = (A× [0, 1]) ∩ (Â× V × L),

which as the finite intersection of finite products of closed sets is, itself, closed. This is the set of all

tuples (d,q,v, s, r) such that under a design d in configuration q an obstacle at distance s would

occlude a target region at distance r along ray v.

Let C be the image of B under the projection

d,q,v, s, r 7→ d,q,v, r.

Again by the Tube Lemma, C is closed because B is closed and the interval [0, 1] is compact. C is

the set of all (d,q,v, r) such that under a design d in configuration q ray v is occluded at or before

a distance r.

Consider U = View−1[T], the set of all design-configuration-ray-distance tuples via which T

is visible, which is open by openness of T and continuity of View. V = U ∩ C is then the set of

unoccluded design-configuration-ray-distance tuples via which target region T is visible. Furthermore,

as the finite intersection of open sets, V is itself open. But G(T) is simply the projection of V to

D ×Q, and projections preserve openness.

Lemma 3. Given a set of target regions T1, . . . , Tm, the set of designs under which a maximum

number of these target regions are viewable, denoted D∗, is open.

Proof. Let Ri = G(Ti) ∩R, the set of reachable design-configuration pairs from which Ti is visible.

By Lemma 1, R is open, and by Lemma 2, G(Ti) is open, so their intersection Ri is also open. Let

Di denote the projection of Ri to its designs. Projection is an open mapping, so each Di is open.

Let m∗ be the number of target regions viewable by an optimal design. Observe that the union of all

m∗-wise intersections of {D1, . . . ,Dm} is the set of optimal designs. This is a finite union of finite

intersections of open sets, and is thus open itself.

Corollary 1. D∗ has non-zero measure.

Proof. By Lemma 3, D∗ is open, and by definition, it contains an optimal design. Every non-empty

37

open set has non-zero measure.

Corollary 2. Designs from D∗ will be sampled and evaluated infinitely often by Alg. 1.

Proof. This result follows readily from the fact that ASA samples from non-zero measure sets

infinitely often [43, 71].

3.4.3 Asymptotic Optimality

We conclude the asymptotic optimality of our algorithm by invoking Corollary 2, established

above, and Theorem 5 of [44] which extends directly to the objective of visibility.

Let (Y)k∈N denote the sequence of random variables such that for each k ∈ N, Yk denotes the

maximum number of viewable target regions attained over all the designs sampled in optimization

iterations 1, . . . , k. Let m∗ be the number of target regions viewable by an optimal design, as in the

proof of Lemma 3.

Theorem 1 (Asymptotic Optimality). The solution generated by Alg. 1 almost surely converges to

a globally optimal design d∗ ∈ D∗, i.e.,

P
(

lim
k→∞

Yk = m∗
)

= 1.

For completeness, we note that as an implementation detail of our method, the robot’s initial

configuration depends upon the design. The theorem above continues to hold in this context

because the initial configuration may conceptually be incorporated into the robot’s design space by

introducing D′ = D ×Q and letting Shape′(d′,q,k) = Shape(d,q + q0,k) and View′(d′,q,v, r) =

View(d,q + q0,v, r) where d′ = (d,q0).

3.5 Results

We evaluate the performance of our algorithm, denoted ASA+MP, in two scenarios. Scenario 1

is an anatomically inspired but generic volume defined by an ellipsoid with a flattened side and with

cylindrical obstacles in the interior (see Fig. 3.4). Scenario 2 is based on a pleuroscopic scenario

using patient anatomy (see Fig. 3.5). In Scenario 2, the CRISP robot enters the volume of a pleural

effusion, a serious medical condition which causes the collapse of a patient’s lung [21]. The robot

38

Valid Entry
Line Segments Cylindrical

Obstacles

Figure 3.4: Two views of the environment for Scenario 1. The environment is a flat-topped ellipsoidal
volume with 5 internal cylindrical obstacles. The line segments which define the valid points of entry
are shown as green lines on the top of the volume. The pink spheres (down-sampled for ease of
visualization) represent the target regions for the motion planner to view under a sampled design, as
well as the obstacles which must be avoided by the robot’s geometry during planning.

enters the effusion space between the patient’s ribs and maneuvers inside the space to enable a

physician to view the internal surface of the volume.

For both scenarios we consider a CRISP robot with a camera tube grasped by one snare tube. In

the experiments we define the CRISP robot’s set of valid entry points into the volume as a sequence

of line segments, on the top surface of the volume for Scenario 1 and between the patient’s ribs for

Scenario 2. In both scenarios, the pink spheres shown in Figs. 3.4 and 3.5 were used as both the set

of target regions to be viewed and as obstacles for the motion planner. All results were generated on

a 3.40GHz Intel Xeon E5-1680 CPU with 64GB of RAM.

We compare our method against an implementation which uses the Nelder-Mead algorithm to

explore the design space, and which has been used successfully in concentric tube robot design

optimization before [46]. Even when using Nelder-Mead to explore the design space, we still use

the CRISP motion planner to evaluate the candidate designs, keeping in the spirit of our desire to

consider only collision-free motions. We represent this as NM+MP.

For Scenario 1 we allow both algorithms to optimize designs for 16 hours and average the results

over 20 different runs. For Scenario 2 we run each algorithm for 8 hours and average over 5 runs. As

can be seen in Fig. 3.6, ASA+MP performs well in both scenarios. In Scenario 1, ASA+MP goes

from designs that are able to view approximately 20% of the target regions early in the optimization

to designs which are able to view approximately 64% of the target regions late in the optimization. In

39

Valid Entry
Line Segments

Pleural
Effusion

Collapsed
Lung

Rib Cage

Figure 3.5: Scenario 2 is a segmented pleural effusion volume from a real patient CT scan. The
pleural effusion is shown in pink, displacing the collapsed lung (blue). The valid entry line segments
(green) are placed such that the robot can enter the pleural space between the ribs. The target
regions are rendered as pink spheres in the bottom two images, and which serve both as target
regions to be viewed under a design and as obstacles for the motion planner.

Scenario 2, ASA+MP goes from designs that can view approximately 14% to designs that can view

approximately 46% of the target regions. ASA+MP also outperforms NM+MP in both Scenarios,

finding kinematic designs that enable more target regions to be viewed in less computation time.

Fig. 3.7 shows a comparison between a design early in the ASA+MP optimization process and a

design late in the optimization process for Scenario 2. The ability of the later design to visualize a

significantly larger percentage of the target regions demonstrates the efficacy of design optimization

in this scenario.

3.6 Conclusion

Design optimization can have a large impact on a robot’s ability to successfully perform a task.

This is especially important in surgical robotics where positive patient outcomes are so vital. In

this work, we demonstrated a method for optimizing the kinematic design of the CRISP robot for

endoscopic purposes on a patient-specific basis. Our method leverages Adaptive Simulated Annealing

(ASA) combined with sampling-based motion planning to ensure that candidate designs are evaluated

in such a way that only valid motions, i.e., motions which do not cause the robot to collide with the

patient’s anatomy, are considered. The results show that the method is able to significantly improve

the performance of the robot.

40

0 5 10 15
0

20

40

60

80

100
ASA+MP
NM+MP

Time (h)

Pe
rc

en
t V

ie
w

ed

Scenario 1

0 2 4 6 8
0

20

40

60

80

100
ASA+MP
NM+MP

Time (h)

Pe
rc

en
t V

ie
w

ed

Scenario 2

Figure 3.6: The percent of target regions viewed by the best design found over time for Scenarios
1 (top) and 2 (bottom). The blue line represents the results for the ASA algorithm with motion
planning, and the red line represents results for the Nelder-Mead algorithm with motion planning.
The results are averaged over multiple runs, 20 for Scenario 1 and 5 for Scenario 2.

Entry	Points

Snare	Grasping	Positions

Figure 3.7: A comparison between a design generated after 2 minutes of optimization (left) and a
design generated after 8 hours of optimization (right). Starting configurations for each design are
overlaid in light blue, the target regions viewed by the design during motion planning are shown in
purple, and target regions not viewed are shown in pink. The design generated after 2 minutes is
only able to view < 7% of the target regions, while the design generated after 8 hours of optimization
is capable of viewing > 50% of the target regions.

41

In future work, we plan to expand upon our results to help bring the CRISP robot closer to

clinical use. We plan to implement and evaluate this design optimization method and the motion

planner on a physical prototype of the robot. Because two designs may be near optimal but view

different regions of the anatomy, we also plan to extend the work to optimize sets of designs to

maximize the visibility of target regions, as multiple designs could potentially be employed during a

single procedure. We also believe that our method and analysis can be extended for purposes of

asymptotically optimal design optimization with respect to other continuous objectives and intend

to pursue this idea as well. Due to the hours-long scale of the optimization, the current work would

require time between imaging and the use of the robot in the clinical setting. The current time-scale

would limit the use of this method to procedures for which that delay is clinically feasible, such as

the pleuroscopic procedure described above. We would like to explore ways to make the optimization

faster, so that it has the potential to be used in more emergent clinical procedures as well.

42

CHAPTER 4

Motion Planning for a Three-Stage Multilumen Transoral Lung Access System

Lung cancer, which kills over 150,000 people each year in the United States alone, is the leading

cause of cancer-related death [73]. Early diagnosis is critical to survival. Medical imaging can

detect nodules that are potentially cancerous, but biopsy is required for a definitive diagnosis [74].

Unfortunately, currently available biopsy techniques have significant downsides, especially when

nodules are detected in the peripheral zone of the lung (i.e., near the ribs). Percutaneous approaches

(i.e, needle insertion between the ribs) require puncturing the pulmonary pleura, the membrane

surrounding the lung [75], and hence carry a significant risk of pneumothorax (lung collapse), a

serious complication [76]. Current transoral approaches (i.e., inserting a bronchoscope through the

mouth into the lungs) has a low risk of pneumothorax but cannot reach many sites in the peripheral

lung due to the bronchoscope’s diameter and the constraint of staying within the bronchial tubes.

To enable safe and effective lung biopsies for definitive early stage lung cancer diagnosis, a

new multilumen transoral lung access system is being developed [5]. This new device provides the

benefits of the transoral approach (e.g., low risk of pneuomothorax since the pulmonary pleura

is not punctured) while enabling access to peripheral lung nodules. The device uses three stages,

as shown in Fig. 4.1. In the first stage, a bronchoscope is inserted transorally and steered to a

bronchial tube near the nodule. In the second stage, a concentric tube robot deploys through the

bronchoscope, pierces the bronchial tube, enters the lung parenchyma (i.e., the lung’s functional

tissue), and is oriented toward the nodule. In the third stage, a bevel-tip steerable needle deploys

through the concentric tube robot and steers through the lung parenchyma to the nodule while

avoiding significant blood vessels. This system, shown in Fig. 4.2, has the potential to enable safe

access to peripheral lung nodules, but the strong coupling between each stage of the system makes

operation of the system difficult for a human operator.

In this chapter, we introduce a motion planner for this new multilumen transoral lung access

system. The motion planner computes actions for each of the system’s stages to enable the device

43

Figure 4.1: Example motion plan for the multilumen transoral lung access system reaching a lung
nodule (yellow) while avoiding significant blood vessels (red and blue). Upper Left: Anatomical
environment. Upper Right: The first stage of the system, a bronchoscope (light blue), is deployed
through a bronchial tube. Lower Left: The second stage of the system, a concentric tube robot
(green), is deployed through the bronchoscope and pierces the bronchial tube, entering the lung
parenchyma. Lower Right: The third stage of the system, a bevel-tip steerable needle (pink), is
deployed from the concentric tube robot and steers through the parenchyma to reach the lung nodule
while avoiding anatomical obstacles. Each stage in this coupled system must be considered when
computing a safe motion plan.

to safely reach a biopsy target, as shown in Fig. 4.1. The motion planner explicitly considers the

coupling between the stages, e.g., the location of the tip of the bronchoscope and the configuration

of the concentric tube robot both greatly affect the reachable workspace of the steerable needle

and its ability to safely reach the nodule. The input to the motion planner includes specifications

of the structure of the bronchial tubes, the target nodule location, and the anatomical obstacles

(e.g., significant arteries and veins in the lung), all of which can be either manually or automatically

segmented from medical imaging before a procedure [38]. To decrease the risk of internal bleeding,

we prefer motion plans in which the steerable needle in the third stage has greater clearance from

the anatomical obstacles as it maneuvers to the target nodule.

The motion planner runs in an anytime manner, computing better and better motion plans as

computation time is allowed to rise. We use a sampling-based motion planner that builds a variant of

44

Figure 4.2: The multilumen transoral lung access system consisting of (A) a bronchoscope, (B) a
2-tube concentric tube robot, and (C) an asymmetric-tip steerable needle.

a Rapidly-Exploring Random Tree (RRT) [39] and considers the coupling of the stages in an efficient

manner. The plan computed by the motion planner could be used by a physician as a guideline for

controlling the device manually or could be used with a feedback controller for automatic execution.

We demonstrate the performance of the motion planner in simulation for nodules in the peripheral

zone of a lung and show that high quality motion plans can be computed in only a couple of minutes

using a standard PC.

This chapter is based on work that was previously published in [12].

4.1 Related Work

Motion planning for the multilumen transoral lung access system requires modeling and computing

plans for each of the stages of the system. We use sampling-based motion planning, an approach that

has been very successful for robots with many degrees of freedom for a variety of applications [72].

The first stage of our system is a bronchoscope, an endoscopic device that is typically inserted

into a patient’s airway via the mouth and can maneuver through large-diameter bronchial tubes.

Rosell et al. use haptic feedback and visual navigation for virtual bronchoscopy [34] and demonstrate

successful guidance of a bronchoscope toward lesions in the bronchi. We are interested in positioning

the bronchoscope to deploy other tools to reach points beyond the bronchi.

The second stage of our system deploys a concentric tube robot via the working channel of the

bronchoscope. Concentric tube robots consist of thin, nested, pre-curved nitinol tubes. As the

tubes are individually rotated and translated, the entire shape of the robot changes, enabling the

robot to curve around anatomy to reach surgical sites unreachable by traditional straight tools.

45

Deploying concentric tube robots through tendon-actuated endoscopic devices has recently been

shown to effectively increase surgical dexterity [77, 78]. Controlling the motion of a concentric tube

robot is difficult due to the complicated mechanics of the tubes’ interactions. Kinematic modeling of

concentric tube robots has rapidly developed to consider bending and torsional interactions among

the tubes [79, 9, 24]. Prior work has also achieved position control [24, 9, 25] and obstacle avoidance

[4] with these robots. In our work, we use a mechanics-based kinematic model [9] to compute the

concentric tube robot’s shape during planning.

The third stage of our system deploys an asymmetric-tip steerable needle via the concentric tube

robot. Asymmetric-tip steerable needles, such as those with a bevel tip, are flexible and exert an

asymmetric force on soft tissue when inserted, causing them to achieve curved paths through the

body [27]. The needle can be steered by axially rotating the needle, which changes the direction of

the bevel tip. Kinematic models of varying complexity have been proposed for steerable needles

[27]. Park et al. proposed a unicycle model on which our work is based [80], and various kinematic

models were analyzed and experimentally validated by Webster et al. [81]. We can vary the turning

radius during insertion of steerable needles using duty cycling [82].

Both control and motion planning for steerable needles have received a lot of attention [83, 84].

Park et al. developed a path-of-probability algorithm for steerable needle control based on error

propagation [85]. Hauser et al. proposed a control method to account for tissue deformation during

needle insertion by adapting helical trajectories [28]. Bernardes et al. achieved closed-loop control

using feedback from medical imaging for planar needle steering [29]. Closed-loop control of steerable

needles has also been achieved without knowledge of needle curvature properties using a sliding

mode controller [86]. Seiler et al. accounted for uncertainty during insertion through fast trajectory

correction [30]. Variations on the Rapidly-exploring Random Tree (RRT) algorithm have been

successfully applied to steerable needles for a variety of applications. Obstacle avoidance in 3D

with closed-loop feedback has been achieved through high-frequency replanning [31, 32]. We use the

planning approach of Patil et al. [31] to quickly generate many different candidate paths.

The primary concern of this chapter is combining the motion planning for each of these three

individual stages into a single cohesive algorithm. Computing a motion plan for the entire system

can be considered a special case of a hybrid system; Branicky et al. provide a general framework for

using RRTs for hybrid system planning [87]. We introduce a specialized approach that explicitly

46

considers the coupling across different stages of the multilumen transoral lung access system.

4.2 Problem Definition

Our motion planner requires as input a specification of the geometry of the relevant patient

anatomy, including the target site and obstacles to avoid. Prior to lung biopsy procedures, physicians

typically obtain a volumetric medical image (e.g., a CT scan) from which this data can be obtained

via manual or automatic segmentation of the patient anatomy [38]. Specifically, we require (1) the

geometry of the bronchial tubes B, (2) the geometry of significant blood vessels V in the lung,

including arteries and veins, whose puncture would result in clinically significant internal bleeding,

and (3) a point specifying the target site pgoal ∈ R3. In our implementation, we assume B and V

are represented using polygonal surface meshes. We define the set of anatomical obstacles O for

needle steering in the parenchyma as the union of B and V , since the needle should not pierce a

significant blood vessel and should also avoid bronchial tubes that would cause the needle to deflect

from its intended path.

The multilumen transoral lung access system consists of three stages, and the configuration of the

system encodes the degrees of freedom of each stage. The first stage of the system, the bronchoscope,

is deployed via the patient’s airway to a specific point pscope inside the bronchial tubes. The second

stage of the system, the concentric tube robot, is deployed through the bronchoscope, exiting at

its tip, pscope. We parameterize the 2-tube concentric tube robot’s configuration by the vector

m = {β1, β2, θ1, θ2}T where βk ∈ R for k ∈ {1, 2} is the insertional degree of freedom of the k’th

tube and θk ∈ [0, 2π) is the rotational degree of freedom of the k’th tube. The third stage of the

system is a steerable needle deployed through the concentric tubes. We describe the configuration of

the steerable needle by the pose of the needle tip, which we represent by the 4× 4 matrix

X =

 R p

0 1

where R ∈ SO(3) is the rotation matrix representing the orientation of the needle tip and p ∈ R3

denotes the needle tip’s position in the coordinate frame of the medical image. The configuration of

47

the entire system can then be described by the tuple

q = (pscope,m,X)

where q ∈ Q = R8 × (S1)2 × SO(3).

In the third stage, the bevel-tip steerable needle is controlled by inserting the needle and axially

rotating it about its base. Because the needle is flexible and has an asymmetric tip, it curves in the

direction of the bevel [80, 81]. We define the control input to the steerable needle as u = {l, φ, κ}T

where l ∈ R is an insertion distance, φ ∈ [0, 2π) is the axial rotation angle of the asymmetric tip

(which corresponds to the angle defining the plane of the needle’s curvature when inserted), and

κ ∈ R+ is the curvature achieved using duty cycling [82]. We note κ has an upper bound of κmax,

which is a property of a specific steerable needle in lung tissue.

The system is designed such that the location of the bronchoscope tip pscope is set first and fixed,

then the concentric tube robot configuration m is set and fixed, and finally the steerable needle

is controlled such that its tip pose X maneuvers to the target site while avoiding obstacles. We

define a motion plan σ as the sequence of configurations of the system {q0,q1, . . . ,qT } and the

corresponding control inputs for each stage of the system.

To maximize safety, we prefer motion plans that guide the steerable needle along paths with

greater clearance from the anatomical obstacles. We define the cost of a motion plan as

c(σ) =

∫ pT

p0

1

clearance(p, O)
dp (4.1)

which is the integration over the curve of the clearance between the tip of the steerable needle and the

closest anatomical obstacle over the continuous path of the tip resulting from σ. This cost function

encodes a balance between clearance from obstacles and path length, as both small clearance and

long paths incur risk of damage to the patient. The objective of our motion planner is to compute a

motion plan σ such that the final position pT of the needle tip at configuration qT reaches pgoal,

the obstacles O are avoided, and cost c(σ) is low.

48

Algorithm 2: Motion planner for the multilumen lung access system.
input :T : time to execute outer loop; TRRT: time allotted to an individual RRT; B:

surface mesh of bronchial tubes; V : surface mesh of blood vessels; κmax: maximum
needle curvature; pgoal: target site position

output : σ: best motion plan computed by time T

1 σ ← ∅;
2 while elapsed time < T do
3 pscope ← sample_bronchial_medial_axis();
4 θ1 = θ2 ← uniform_random(0, 2π);
5 β1, β2 ← random_tube_translations();
6 m← {β1, β2, θ1, θ2};
7 Xstart ← CTR_tip_frame(pscope,m);
8 if pgoal is in workspace of needle at Xstart then
9 σneedle← RRT(Xstart, TRRT, B, V, κmax,pgoal);

10 if σneedle 6= null then
11 σ′ ← (pscope,m, σneedle);
12 if c(σ′) < c(σ) then
13 σ ← σ′

14 end
15 end
16 end
17 end
18 return σ;

4.3 Method

Our motion planner (Alg. 2) computes motions for each stage of the lung access system, in-

cluding the bronchoscope, the concentric tube robot, and the steerable needle, to enable access to

the physician-specified goal. The motion planner first searches for an optimal placement of the

bronchoscope and the concentric tube robot by setting the deployment variables pscope and m.

A desirable (pscope,m) pair places the steerable needle’s start state Xstart such that the needle

can follow a collision-free path to the goal with large clearance from anatomical obstacles. We

evaluate this property of a sampled (pscope,m) pair by using a sampling-based motion planner to

find steerable needle controls (u1,u2, . . .) that create a collision-free path to the goal point pgoal. We

re-execute the motion planner for the entire system repeatedly for a given amount of time, leveraging

randomization to create many different motion plans and then selecting the one with lowest cost

(i.e., greater clearance from obstacles).

49

Figure 4.3: Accessing goals in the right lung, the bronchoscope utilizes different branches in the
bronchial tree: the upper right branch (left images) for one goal and the lower right branch (right
images) for another goal. Top to bottom show the same paths from different angles and with different
transparencies for visualization.

4.3.1 Planning Deployment of the Bronchoscope

We use a sampling-based approach to create candidate placements of the bronchoscope tip pscope

within the bronchial tree. For efficiency, we leverage the fact that the bronchial tubes form a tree,

which is a linear structure, and create a mapping between a parameter y ∈ R and the point pscope

in the world coordinate system. We assume that all possible bronchoscope placements must lie

on the medial axis of the bronchial tree (which can be constructed automatically [88], although

in our results an approximation was constructed manually). In practice, in certain wide-diameter

bronchial tubes it may be possible to manipulate the bronchoscope such that its tip is not on the

medial access, which will be a topic of future work. We uniformly sample points from the line

50

segments of the medial axis by placing the medial axis’s line segments si = (pi,p
′
i) in an arbitrarily

ordered sequence (s1, . . . , sn) and then viewing this sequence of segments as a piecewise linear (and

discontinuous) space curve parameterized by arc length y ∈ [0,
∑

i ‖pi − p′i‖]. We can sample a

parameter y from the domain of this space curve to generate a placement for the bronchoscope tip

pscope in the bronchial tree, and can then directly map y to pscope via the mapping from the medial

axis to the world coordinate system. The bronchoscope’s ability to move through different branches

of the bronchial tree broadens the set of reachable goals in the lung (Fig. 4.3).

4.3.2 Planning Deployment of the Concentric Tube Robot

The sampled placement pscope of the bronchoscope tip describes the start point of deployment of

the concentric tube robot. From this point, we wish to sample possible deployments of the concentric

tube robot, where deployments are parameterized by the vector m = {β1, β2, θ1, θ2} to encode each

component tube’s axial rotation and translation. Due to physical constraints of our system and

the desire for follow-the-leader trajectories that do not significantly deform tissues, we disallow

relative rotation between the tubes. Hence, we can parameterize deployment with one rotation θ. A

deployment m corresponds to sequentially performing the following actions: (1) rotating the tubes

to required angle θ, (2) inserting both tubes at the same rate until the outermost tube reaches its

stopping point β2, and then (3) inserting the inner tube past the outer tube until it reaches its

stopping point β1.

We use a mechanics-based kinematic model [9] to compute the tip frame of the concentric tube

robot after deployment. This tip frame marks the initial configuration Xstart of steerable needle

deployment. If the goal point pgoal lies outside of the reachable workspace of the steerable needle

when deployed from Xstart (see Fig. 4.4), we reject this proposed bronchoscope and concentric tube

robot deployment.

4.3.3 Steering the Bevel-Tip Needle to the Goal Point

A proposed placement (pscope,m) of the bronchoscope and concentric tube robot fully specifies

the start state Xstart of the steerable needle. We evaluate the placement (pscope,m) by attempting

to find a steerable needle trajectory starting at Xstart that reaches the goal while avoiding anatomical

obstacles. We search for this trajectory using a sampling-based motion planning algorithm for

steerable needles developed by Patil et al. [31].

This motion planner is based on a Rapidly-exploring Random Trees (RRT) motion planner [72].

51

Figure 4.4: The reachable workspace of the steerable needle is a trumpet shaped volume defined by
its start configuration and the maximum curvature κmax it is capable of achieving in the tissue.

RRT incrementally builds a tree of robot states that are reachable from Xstart by collision-free paths.

At each iteration, RRT samples a state Xsample in the robot’s state space, uses a distance function

distance to select the nearest state Xnear already in the tree, and uses a function steer to compute

a control input u that, when applied to Xnear results in a new state Xnew nearer to Xsample. If the

motion between Xnear and Xnew is collision-free, Xnew is added to the tree. RRT iterates these steps

until either (1) the tree connects to the goal, or (2) the algorithm exceeds its time allotment.

To compute the steer function, we compute the unique control usteer that directly connects

the state Xnear to the 3D position of Xsample, and then clamp the insertion length of usteer to a

maximum of lmax to generate the resulting control u. To compute the distance function between

two states X and X′, we compute the control usteer that connects X to the 3D position of X′ as

above and return the insertion arc length of usteer. We check whether the motion between two states

is collision-free by using the Flexible Collision Library (FCL) [89] for collision detection between the

needle and the anatomical obstacles.

In order to more quickly generate motion plans to the goal pgoal, we introduce a strong goal bias;

after each iteration of RRT, we perform an additional RRT iteration using pgoal as Xsample in order

to bias growth of the tree toward the goal.

Additionally, due to stresses on surrounding tissue, bevel-tip steerable needle insertion is impeded

52

if the orientation of the needle tip is oriented more than 90◦ from its orientation at Xstart. As such,

controls that produce such states are discarded as invalid.

We allow the RRT to search for a collision-free path to the goal point for 0.05 seconds. This

time limit is based on an intuition that the RRT either finds a path very quickly or not at all in this

scenario. If a path is found, we use the path’s clearance metric from Eq. 4.1 to quantify the cost of

this particular placement (pscope,m) of the bronchoscope and concentric tube robot. In practice, we

approximate the integral in Eq. 4.1 by finely discretizing the needle’s path and using the trapezoidal

rule. We compute the clearance function using FCL [89]. If the RRT fails to find a collision-free

path in the allotted time, we discard Xstart.

4.3.4 Motion Planning for the Entire System

After generating a placement pscope of the bronchoscope, a deployment m of the concentric tube

robot, and appropriate control inputs (u1,u2, . . .) for the steerable needle, we concatenate these

operations to form a motion plan σ of a collision-free sequence of configurations (q1,q2, . . .) and

associated control inputs for the entire multilumen lung access system.

The approach above generates a single plan, but we can repeat the process to generate new,

different plans due to the randomization in the algorithm. We iteratively create new motion plans

σ and evaluate their quality, always saving the best motion plan found so far. We repeat until we

exhaust the time allotted for plan computation.

4.4 Results

We evaluated our motion planner in a simulated lung biopsy scenario. The scenario consists of a

commercially available anatomical model which includes the bronchial tree, both the left and right

lungs (evaluated separately), the heart, and large vasculature. We sampled valid bronchoscope access

points with the manually approximated medial axis shown in Fig. 4.5. While the bronchoscope can

physically access both the blue and purple segments in the figure, we did not consider the purple

segments because exiting the bronchus from points along these segments would require puncturing

the pulmonary pleura and increase the risk of pneumothorax. We blocked off deeper parts of the

bronchial tree where a bronchoscope’s diameter would typically impede further progress due to the

narrowing of the bronchial tubes. We used a maximum needle steering curvature κmax = (0.121m)−1

in accordance with the physical prototype in prior work [90, 5]. We also used concentric tube robot

design parameters that matched this prior work.

53

Figure 4.5: Positions from which the bronchoscope can safely deploy the latter stages of the system
without puncturing the pulmonary pleura are shown in cyan. These positions can be reached via the
airways shown in purple.

Figure 4.6: The first 15 solutions (in gold) found to a single goal spanning multiple homotopic
classes.

In Fig. 4.1, we show the output of our motion planner, which computes the bronchoscope tip

position, concentric tube robot configuration, and steerable needle control inputs to guide the device

to a nodule while avoiding obstacles. Depending on the computation time allowed, our method may

generate large numbers of motion plans to a target. In Fig. 4.6, the method computed 15 feasible

motion plans to the target nodule in 5.63 seconds. This set allows our motion planner to select the

best plan given the cost function. The motion plans in the set span multiple homotopic classes.

We evaluated the ability of our motion planner to compute plans to reach nodules across the

peripheral zone of the lung. We randomly sampled 50 lung nodule locations in the periphery of each

lung (100 total nodules) as shown in Fig. 4.7. For each query nodule, we ran our motion planner

54

Figure 4.7: Lung nodule query locations (shown in teal) used for the reachability experiment.

Time (s)

Pe
rc

en
ta

ge
 fo

un
d

0!

20!

40!

60!

80!

100!

0! 10! 20! 30! 40! 50! 60!

Figure 4.8: Percentage of randomly sampled peripheral lung nodules (100 nodules) to which a motion
plan has been found as a function of computation time.

for 1 hour. We show the percentage of nodules reached using our motion planner as a function of

computation time (first 60 seconds) in Fig. 4.8. For 36% of the lung nodules, our motion planner

computed a valid motion plan to reach them in the first second of planning. By 60 seconds, our

motion planner found valid plans reaching 70% of the nodules and by 1 hour valid plans were found

to 75% of the nodules. We note that, with a steerable needle of tighter curvature (a subject of future

work regarding the mechanical design), the percentage of nodules for which a plan is found would

likely increase substantially.

We also investigated how motion plan quality increases as we increase computation time. We

selected 6 of the reachable lung nodules found in the experiment above and executed 3 instances of

our motion planner on each nodule for 300 seconds per instance. In Fig. 4.9, we show the best costs

found by the motion planner over time for each considered nodule.

55

Time (s)
Av

er
ag

e
pa

th
 c

os
t

0!

5!

10!

15!

20!

25!

0! 50! 100! 150! 200! 250! 300!

Figure 4.9: Over six distinct goals (three from each lung), the cost of the best path found by time
averaged over three runs each.

Recall that we only consider placements (pstart,m) of the bronchoscope and concentric tube

robot that place pgoal in the workspace of the steerable needle. We demonstrate the computational

speedup of this algorithm design choice by leaving it out of our algorithm and comparing the results.

With the placement rejection scheme, we found 15 paths to the goal shown in Fig. 4.6 in 5.63 seconds;

without the placement rejection scheme, it took 42.62 seconds to find 15 paths to the goal.

To justify our choice of TRRT, we ran an additional experiment where we allowed each instance

of the RRT 2 seconds to find a solution. We found that a large percentage of valid RRTs were found

very quickly, with more than 95% of valid plans being found within the first 0.05 seconds.

4.5 Conclusion

We introduced a motion planner for a three-stage multilumen transoral lung access system. The

planner computes actions for deployment of a bronchoscope into the bronchial tubes, followed by

concentric tube robot deployment into the lung parenchyma, and finally deployment of a bevel-

tip steerable needle to reach a goal site while avoiding collisions with anatomical obstacles. Our

sampling-based motion planner quickly computes plans with high clearance from obstacles in a

simulated clinical scenario involving biopsy of lung nodules.

In future work, we will consider additional anatomical obstacles (such as lung fissures) to further

decrease risk to the patient. We also plan to quantify the reachable space of the robot in the lung

model and to investigate different sampling strategies and motion planning paradigms. We also plan

to relax some of our restrictive assumptions on the concentric tube robot and consider approximate

follow-the-leader plans that provide added control but are still safe to perform in the lung.

In Chapter 5, we integrate aspects of this motion planner with the hardware developed by Swaney

et al. [5] and evaluate its efficacy in porcine lung tissue.

56

CHAPTER 5

Toward Transoral Peripheral Lung Access: Steering Bronchoscope-Deployed
Needles through Porcine Lung Tissue

The three-stage transoral lung access system, introduced in [5] and discussed in Chapter 4

leverages the minimally invasive nature and lowered risks of the transoral biopsy approach, while

having the potential to reach difficult-to-access lung nodules in the periphery of the lung with high

accuracy. The system consists of three stages deployed in sequence: a bronchoscope, a concentric

tube channel, and a flexure-tip steerable needle (see Figs. 5.1 and 5.2). First, the physician guides

the bronchoscope to a feasible location en route to the nodule. From the working channel of the

bronchoscope, the concentric tube channel is deployed, bending toward the wall of the bronchial tree.

Using a pneumatic puncture mechanism, the tube then pierces through and enters the parenchyma,

orienting its tip toward the lung nodule. The flexure-tip steerable needle then deploys from the tip

of the concentric tube and steers through the lung parenchyma, curving around sensitive structures

such as large vasculature to reach the nodule. The needle’s controller uses an NDI Aurora 6-DOF

magnetic tracking probe which is embedded in the tip of the flexure-tip steerable needle. The robot

has previously been evaluated only in phantom gel in [5] and in simulation [12], as discussed in

Chapter 4.

In this chapter, we report the first results for the deployment of the robotic lung access system

inside an inflated ex vivo porcine lung in a CT scanner. We segmented the lung in the CT scan,

including bronchial tubes and blood vessels. We steered the needle to avoid obstacles in the

parenchyma (i.e., blood vessels and bronchial tubes) and achieved clinically-desirable accuracy in

accessing targets near the lung periphery.

This chapter is based on work originally publish in [13].

5.1 Materials & Methods

We inflated the ex vivo porcine lung using a pressure regulator attached to an endotracheal (ET)

tube inserted into the trachea. We connected a T-connector to the ET tube, capped with a thin

57

Figure 5.1: Our transoral lung access system, consisting of a concentric tube channel and a steerable
needle deployed via a bronchoscope, operating in an inflated ex vivo porcine lung. CT scans were
acquired at each stage of deployment.

membrane to maintain lung inflation, through which we inserted the robot.

We estimated the needle’s maximum curvature by inserting the needle without rotation into

inflated lung tissue, recording the tip’s path using magnetic tracking, and fitting a circle to the path.

This resulted in an experimentally determined curvature value of 0.498 m−1. This curvature value

was used in all future experiments.

To conduct the system experiments, we transported the system to the CT scanner, inflated the

lung, and acquired a CT scan (with voxel sizes of 0.9mm×0.9mm×1.0mm). We segmented the

bronchial tubes and significant vessels in the CT scan using a combination of manual segmentation

and region growing-based segmentation modules in 3D Slicer [91] (see Fig. 5.3).

The needle steers through the anatomy using feedback from the electromagnetic tracking system

mentioned above. As such, a transformation between the CT scan and the magnetic tracker’s frame

needed to be computed. To do so, we affixed 3 spherical fiducials to the surface of the lung prior to

the CT scan, which we then manually segmented in the CT scan. To register the scan to the magnetic

tracker we then probed the fiducials with a hand-held magnetic tracking probe and computed the

rigid-body transformation between the two reference frames.

The focus of our experiments was to evaluate the ability of the steerable needle to steer through

58

Figure 5.2: The robot’s three stages: (1) the bronchoscope is inserted into the airway, (2) the
concentric tube channel is deployed and exits the bronchial tube, and (3) the steerable needle travels
through the parenchyma to the nodule.

lung parenchyma and accurately reach targets in the peripheral lung. We evaluated the steerable

needle for 6 deployments. For each deployment, we started with the bronchoscope outside the lung

and manually guided the bronchoscope into the airway. The concentric tube was then robotically

deployed from the bronchoscope’s tip to the bronchial tube wall where it pneumatically punctured

into the lung parenchyma. Constrained to the reachable workspace of the needle, we chose a point

on the surface of the lung as the target by projecting a straight line from the concentric tube and

selecting a random offset. This process was aided by the hand-held electromagnetic tracking probe

mentioned above, which allowed us to constrain the offset to the lung’s surface. Although clinical

peripheral targets would be just below the surface, we selected targets on the surface for ease of

measurement. We then planned a needle path [12] that avoids the obstacles (i.e., the segmented

blood vessels and bronchial tubes) and deployed the steerable needle using closed-loop control [86]

to guide the tip of the needle along the planned path (see Fig. 5.3). We conducted 3 deployments

with obstacle avoidance, and 3 deployments without obstacle avoidance in which we skipped motion

planning and applied the automatic controller directly to the target.

5.2 Results

We show CT scan slices in Fig. 5.4 for a deployment of the system. Table 5.1 shows the accuracy

results for the 6 deployments (3 with obstacle avoidance and 3 without). The average tip error

was 1.97 mm with obstacle avoidance and 1.07 mm without, with average needle insertion length

64.8 mm.

59

Figure 5.3: From the CT scan we segment the bronchial tree (gray), and large vasculature (red). The
motion planner then computes a plan for the needle (pink) to reach a target point (yellow sphere)
that obeys the maximum curvature constraint (reachable volume subject to that constraint here
visualized by the orange trumpet shape).

5.3 Discussion

Our experimental results show that the device is on track to achieve accurate biopsy of clinically-

relevant small suspicious nodules, which are defined by the American College of Radiology as being

as small as 6 mm in diameter. The results also illustrate the trade-off of obstacle avoidance; the

obstacles place constraints on the motion planner and controller that restrict the needle’s feasible

workspace resulting in slightly larger tip error, but avoiding significant blood vessels is important to

reduce the risk of internal bleeding.

Run 1 Run 2 Run 3 Avg
With obstacle avoidance 0.83 3.27 1.82 1.97
Without obstacle avoidance 0.19 2.47 0.55 1.07

Table 5.1: Tip error (mm) as measured by the magnetic tracker.

60

Figure 5.4: CT scans of the inflated lung, (A) prior to inserting the robot, (B) prior to the pneumatic
puncture, (C) after the pneumatic puncture, and (D) after deployment of the steerable needle to the
lung periphery. The blue arrows point to the robot.

The anatomical segmentation used in this work is both insufficiently detailed and the process

too difficult for clinical applications. In recent work, we have demonstrated automatic segmentation

of a much more extensive set of relevant lung anatomy [92]. Additionally, in this work we did

not characterize the registration error between the CT scan and the electromagnetic tracker. This

remains the subject of future work, but will be a necessary step prior to clinical deployment.

The early diagnosis of suspicious lung nodules is integral to combatting lung cancer. To bring

definitive diagnosis to a larger percentage of the population earlier in the course of the disease, a

new class of medical devices will be required. Our transoral lung access system has the potential to

be such a device. While integration into clinical workflows must still be investigated, in this work we

showed the ability of the bronchoscope-deployed steerable needle to reach targets with high accuracy

in inflated ex vivo porcine lungs.

61

CHAPTER 6

Fast Anytime Motion Planning in Point Clouds by Interleaving Sampling and
Interior Point Optimization

Robotic manipulators are entering unstructured environments, such as homes, offices, hospitals,

and restaurants, where robots need to plan motions quickly while ensuring safety via obstacle

avoidance. Motion planning in such settings is challenging in part because the robot must rely on

real-world sensors such as laser scanners, RGB-D sensors, or stereo reconstruction, which typically

produce point clouds. In addition, enabling intuitive, interactive, and reactive user experiences

requires that the robot generate plans of high quality as quickly as possible, without necessarily

knowing in advance the maximum time allocatable to motion planning. Hence, motion planning in

such settings should be implemented as an anytime algorithm, meaning the algorithm progressively

improves its solution and can be interrupted at any time and return a valid solution.

To enable fast, anytime, asymptotically-optimal motion planning in point clouds, we propose

to blend two popular motion planning paradigms: (1) sampling-based motion planning and (2)

optimization-based motion planning. Sampling-based motion planners can directly use point cloud

data by incorporating appropriate collision detection algorithms [89] and can optimize a cost metric

in an asymptotically optimal manner [93]. However, sampling-based motion planners in practice can

be slow to converge and frequently return paths in finite time that are far from optimal, especially

for problems with higher dimensional configuration spaces [94]. In contrast, optimization-based

motion planners are often very fast [95, 96, 97, 98], but typically do not converge to globally optimal

solutions, do not operate in an anytime manner (since, even when initialized with a feasible solution,

their intermediate iterations may consider robot configurations that are in collision with obstacles),

and are inefficient when using large point clouds. In this chapter, we introduce a new optimization

approach to motion planning based on interior point optimization [99, 100], which has unique

properties that enable anytime motion planning and efficient handling of large point clouds. By

integrating our new interior point optimization formulation with a sampling-based method, our

62

approach quickly computes locally optimized plans in an anytime fashion, and continues to refine

the solution toward global optimality for as long as time allows.

Our new method, Interleaved Sampling and Interior point optimization Motion Planning (ISIMP),

interleaves global exploration with local optimization (see Fig. 6.1). The method starts with global

exploration by building a graph using an asymptotically optimal motion planner, such as k-nearest

Probabilistic Roadmap (PRM*) [93], until it finds a collision-free path. It then uses our lazy

interior point optimization formulation to refine the path found by the sampling-based method. The

algorithm then iterates between (1) resuming the sampling-based motion planner until a new better

path is found and (2) running interior point optimization on this new path. The sampling-based

motion planning phase of each iteration explores globally, discovering other homotopy classes in

configuration space, as well as escaping local minima in the path cost landscape. The interior point

optimization phase in turn allows the method to provide a high quality locally-optimized motion plan

based on the best path found by the sampling-based method. Either phase can be interrupted at any

time and still return a valid, collision-free result. Interleaving these phases provides higher quality

motion plans earlier than asymptotically optimal sampling-based motion planning algorithms alone.

In this way, our method preserves guarantees which are not provided by most optimization-based

motion planning algorithms—namely completeness and asymptotic optimality—all in an anytime

fashion and designed specifically to work efficiently on point cloud data.

ISIMP is based on interior point optimization, a type of local optimization that has properties

critical to achieving fast, anytime motion planning for robotic manipulators. Interior point methods

solve optimization problems by only considering feasible points in each iteration of the method. These

methods typically incorporate constraints into the objective function by adding barrier functions,

continuous functions whose value on a point increases to infinity as the point approaches the boundary

of the feasible region. These methods adjust weights on the barrier functions over time so the solution

converges to a locally optimal solution of the original objective function. We apply interior point

optimization to refining motion plans and show that it is fast (like other motion plan optimizers,

e.g., [95, 96, 97, 98, 101, 102]) while providing three additional important properties. First, our

interior point optimization implementation is an anytime algorithm: each intermediate iteration

of the optimization algorithm considers only collision-free robot configurations, so the optimizer

always returns a feasible motion plan even when interrupted. Second, interior point optimization

63

S G

(a) Sampled 1st Path

S G

(b) Optimized 1st Path

S G

(c) Sampled 2nd Path

S G

(d) Optimized 2nd Path

(e) Sampled Baxter Path (f) Optimized Baxter Path

Figure 6.1: ISIMP interleaves sampling-based and optimization-based motion planning. (a) ISIMP
first performs sampling-based motion planning until a feasible motion plan is found from start to
goal. (b) It then uses interior point optimization to locally optimize the plan. (c) Sampling-based
motion planning resumes until a shorter plan is found. (d) The shorter plan is then optimized. The
method iterates in this fashion and can be interrupted at any time after step (a) and return a feasible
solution that gets better over time. (e) An example sampling-based plan found for a Baxter robot in
a point cloud sensed by Microsoft Kinect. (f) That plan locally optimized.

can be formulated to efficiently and directly handle large point clouds, which we accomplish using

a lazy evaluation of constraints. This eliminates the time-consuming process of transforming the

point cloud into more complex geometric primitives or meshes, which is often required by other

optimization-based motion planners to be efficient. Third, our interior point optimization is designed

to optimize path length, a commonly desired metric which is often used by sampling-based motion

planners. Many existing optimization-based motion planners [95, 96, 97, 98] are designed to optimize

metrics such as smoothness, which do not satisfy the triangle inequality and hence are incompatible

with cost requirements of asymptotically-optimal sampling-based motion planners.

We evaluate the efficacy of ISIMP in two settings. In the first, we apply ISIMP to plan motions

for a spherical robot moving in 3D in a point cloud environment. In the second, we apply ISIMP to

plan motions for a Baxter robot’s 7 degree of freedom manipulator arm using a Microsoft Kinect

to sense point cloud data in a cluttered environment. We demonstrate ISIMP’s fast, anytime, and

asymptotically optimal performance in comparison to other motion planners that only use either

64

sampling or local optimization.

This chapter is adapted from work originally published in [14], as well as a journal paper that is

currently in preparation.

6.1 Related Work

In sampling-based motion planning, a graph data structure is constructed incrementally via

random sampling providing a collision-free tree or roadmap in the robot’s configuration space. These

algorithms provide probabilistic completeness, i.e., the probability of finding a path, if one exists,

approaches one as the number of samples approaches infinity. Examples include the Rapidly-exploring

Random Tree (RRT) [103] and the Probabilistic Roadmap (PRM) [101] methods. These have been

adapted in many ways, such as taking advantage of structure in the robot’s configuration space or

modifying the sampling strategy [104, 105].

Adaptations of these algorithms can provide asymptotic optimality guarantees in which the path

cost (e.g., path length) will approach the global optimum as the number of algorithm iterations

increases. Examples include RRT* and PRM* [93] where the underlying motion planning graph is

either rewired or has asymptotically changing connection strategies. Other asymptotically optimal

algorithms grow a tree in cost-to-arrive space [94], identify vertices likely to be a part of an optimal

path [106], or investigate the distributions from which samples and trajectories are taken [107]. Lazy

collision checking has been shown to substantially improve the speed of these algorithms [108], and

in some cases, near optimality can be achieved while improving speed [109, 110].

Optimization-based motion planning algorithms perform numerical optimization in a high

dimensional trajectory space. Each trajectory is typically encoded as a vector of parameters

representing a sequence of robot configurations or controls. A cost can be computed for each

trajectory, and the motion planner’s goal is to compute a trajectory that minimizes cost. In

the presence of obstacles and other constraints, the problem can be formulated and solved as a

numerical optimization problem. Examples include taking an initial trajectory and performing

gradient descent [95], using sequential quadratic programming with inequality constraints to locally

optimize trajectories [96], and combining optimization with re-planning to account for dynamic

obstacles [97]. These methods typically produce high quality paths but are frequently unable to

escape local minima, and as such are subject to initialization concerns. To avoid local minima, some

65

methods inject randomness [98, 111]. The solutions of these existing optimization-based motion

planners may converge to locally optimal motion plans that include robot configurations that are in

collision with obstacles. This limitation can be partially circumvented through techniques such as

restarting the optimization with multiple different initial paths (e.g., [96]), but such approaches are

heuristic and provide no guarantee that a collision-free trajectory will be found in general.

Several methods aim to bridge the gap between sampling-based methods and optimization. Some

methods use paths generated by global planners and refine them using shortcutting or smoothing

methods adaptively or in post processing [102, 112]. GradienT-RRT moves vertices to lower cost

regions using gradient descent during the construction of an RRT [113]. More recently, local

optimization has been used on in-collision edges during sampling-based planning to bring them out

of collision and effectively find narrow passages [114]. In contrast, our method is using the local

optimizer not to find narrow passages, but to improve the overall quality of the paths found by

the sampling-based planner, while relying on the sampling-based planner’s completeness property

to discover narrow passages. BiRRT-Opt [115] utilizes a bi-directional RRT to generate an initial

trajectory for trajectory optimization, demonstrating the efficacy of a collision-free initial solution

for local optimization. Our method differs in that interior point optimization provides collision-free

iterates allowing it to work in an anytime fashion, and our method continues beyond a single local

optimization to provide global asymptotic optimality.

6.2 Problem Definition

Let C be the configuration space of the robot. Let q ∈ C represent a single robot configuration

of dimensionality d and σ = {q0,q1, . . . ,qn−1} represent a continuous path in configuration space

in a piecewise linear manner by a sequence of n configurations. Such paths may need to satisfy

generalized, user-defined inequality constraints. These constraints could include joint limits, end

effector orientation requirements, etc, where each constraint may be represented by the inequality

g(σ) ≥ 0 for some constraint specific function g. Let the set of all such user-defined constraints be J .

In the robot’s workspace are obstacles that must be avoided, and which are being represented

by a point cloud. We consider each point in the point cloud an obstacle and let the set of all such

points be O. We also define the robot’s geometry as a set of geometric primitives S. An individual

geometric primitive s ∈ S could be represented as a mesh, bounding sphere, capsule, etc.

A path is collision-free if the robot’s geometry S over each edge (qi,qi+1), i = 0, . . . , n− 2, does

66

not intersect an obstacle o ∈ O. Formally, we require a function clearance(qi,qi+1, s, o) which is a

function parameterized by a path edge (qi,qi+1), a geometric primitive s, and an obstacle o. This

function, defined in Sec. 6.3, is continuous and monotonically increasing, has positive value when o

is not in collision with s over the edge, negative value when o penetrates into s on the edge, and 0 at

the boundary. A collision-free path is then one for which each edge has non-negative clearance for all

o ∈ O and s ∈ S. This requirement can be represented as an additional set of inequality constraints,

which we define as K, wherein clearance(qi,qi+1, s, o) ≥ 0, for all o ∈ O and s ∈ S.

Our objective is to find a collision-free path for the robot from the robot’s start configuration

qstart to a user specified goal configuration qgoal that satisfies all the constraints and minimizes

path length. We define path length by length(σ), the sum of Euclidean distances in configuration

space along the path. We use the sum of Euclidean distances because it is a commonly used metric

for path length and because it satisfies the triangle inequality property required by asymptotically

optimal sampling-based motion planners (unlike other metrics such as sum of squared distances).

This optimal motion planning problem can be formulated as a nonlinear, constrained optimization

problem:

σ∗ = argmin
σ

length(σ)

Subject to:

clearance(qi,qi+1, s, o) ≥ 0, 0 ≤ i < n− 1, ∀ o ∈ O, ∀ s ∈ S

g(σ) ≥ 0, ∀ g ∈ J

q0 = qstart

qn−1 = qgoal

(6.1)

where σ∗ is an optimal motion plan. To solve this optimization problem, we present an efficient,

anytime, iterative algorithm in which the solution asymptotically approaches σ∗.

6.3 Method

ISIMP integrates ideas from both sampling-based and optimization-based motion planning. The

method interleaves interior point optimization steps with sampling-based motion planning steps to

achieve fast convergence. The top level algorithm, Alg. 3, runs in an anytime manner, iterating as

time allows and storing the best path found as it runs.

The first step of each iteration is the global exploration step, wherein ISIMP executes a sampling-

67

Algorithm 3: ISIMP
Input: qstart, qgoal, O, optimization convergence threshold ∆σ

Output: motion plan σ∗

1 Sampling-based motion planner path cost csamp ←∞
2 σ∗ ← ∅
3 while time remaining do
4 σsamp ← GlobalExplorationStep(O, csamp,qstart,qgoal)
5 csamp ← cost(σsamp)
6 σ∗ ← minCostPlan(σsamp, σ

∗)
7 σ∗ ← LazyAnytimeInteriorPointOptimization(σsamp, O,∆σ, σ

∗)

8 end

based motion planner until a new path is found that has cost lower than csamp, the best cost found

by the sampling-based motion planner up until that point. The sampling-based motion planner

returns the new path σ and updates csamp. In the second step of each iteration, the interior point

optimization step, our method executes an interior point local optimization method to locally

optimize σ. The local optimizer constantly compares against the best path found, and updates it

if a better path is found during the optimization. At the end of the interior point optimization it

returns the best path found. The algorithm then iterates, returning to global exploration with the

sampling-based motion planner, and optimizing better paths as they are found. If the algorithm is

interrupted, it returns the best path found up until that time.

6.3.1 Global Exploration using Sampling-Based Motion Planning

The global exploration step uses a sampling-based motion planner to expand a graph until a new

path is found that is of lower cost than any path it has previously found. The sampling-based motion

planner maintains a graph G = (V,E), where V is a set of vertices which represent collision-free

configurations of the robot and E is a set of edges, where an edge represents a collision-free transition

between two robot configurations.

To expand the graph G, our method is designed to use an asymptotically optimal sampling-based

motion planner. Although many methods would work, we implement ISIMP with both k-nearest

Probabilistic Roadmap (PRM*) [93] and RRT# [106]. PRM* samples random configurations in

the robot’s configuration space, locates their k nearest neighbors (where k changes as a function

of the number of vertices in the graph), and attempts to connect the configurations to each of its

neighbors. RRT# is a state-of-the-art asymptotically optimal sampling-based motion planner, which

68

incrementally builds a tree identifying which vertices are likely to belong to an optimal path. In each

global exploration step, the asymptotically optimal sampling based motion planner executes until it

finds a collision-free path better than the current best, at which point the optimization step begins.

6.3.2 Lazy Interior Point Optimization

Local optimization for motion planning is typically performed by constructing a high dimensional

vector out of the state variables of the problem to be optimized. In our case, this would be a

vector representing the motion plan we are optimizing, i.e. if we have a path with n configurations

of dimensionality d, then each motion plan can be represented as an n × d dimensional vector.

Optimization can then be viewed as iteratively moving this vector through its high dimensional

space to minimize the cost. In the case of constrained optimization, there are regions of this space

which represent areas where the constraints are satisfied (i.e., feasible or unconstrained space) and

areas where the constraints are not satisfied (i.e., infeasible or constrained space).

Many other classes of optimization methods (such as penalty methods and sequential quadratic

programming) allow their intermediate solutions to move through infeasible space, i.e. collide with

obstacles or violate joint limits, with the hope that the eventual locally optimal solution is feasible.

Interior point methods, by contrast, require their intermediate solutions to always be feasible [99, 100].

This is typically accomplished through the use of barrier functions. A barrier function works by

introducing a continuous function whose value approaches infinity at the edge of the constrained

space. The intermediate iterations of optimization are then influenced by the barrier functions to

avoid the constrained regions. As the optimization iterates, the width of these barrier functions is

reduced such that the solution is allowed to approach the constrained space but not to enter it. This

is the property that we leverage to create an anytime solution inside the optimization framework.

Each intermediate solution of the optimization is always a collision-free motion plan and as such can

be returned early if necessary.

We build an interior point optimization framework around a black box interior point optimizer.

The optimizer is responsible for generating intermediate, feasible solutions, and our framework

updates the state for the optimizer as a function of those intermediate solutions to allow for faster

computation. Details of our lazy interior point optimization framework can be seen in Alg. 4.

We optimize our paths with respect to path length. The collision avoidance constraints are

formulated over each edge in the path, i.e. the linear interpolation through configuration space

69

Algorithm 4: Lazy Anytime Interior Point Path Optimization
Input: initial path σinit, obstacle set O, convergence threshold ∆σ, best found path so far σ∗

Output: best path found σ∗

1 Kenab ← ∅, σ̂ ← σinit, σ ← σinit

2 while time remaining do
3 σnext ← takeInteriorPointOptimizationStep(Kenab, σ)
4 Ocollide ← inCollisionPoints(σnext, O)
5 if Ocollide 6= ∅ then
6 Kenab ← Kenab

⋃
Ocollide

7 σ ← σinit

8 else
9 if discontinuousConstraintDetected(Kenab, σnext) then

10 {k, k + 1} = discontinuousJacobianEdge(Kenab, σnext)
11 σinit ← bisectEdge(σinit, k, k + 1)
12 σ ← σinit

13 else
14 if converged(σnext, σ̂,∆π) then
15 return minCostPlan(σnext, σ̂, σ

∗)
16 end
17 σ̂ ← minCostPlan(σnext, σ̂)
18 σ∗ ← minCostPlan(σ̂, σ∗)
19 σ ← σnext

20 end
21 end
22 end
23 return σ∗

between the two configurations. We define our clearance function (as in equation (6.1)) as a function of

the minimum distance between the point in the point cloud and the geometric primitive interpolated

through the workspace as determined by the robot’s forward kinematics. This formulation generates

a large number of constraints (# of robot geometric primitives × # of edges in the path × # of

points in the point cloud). Because the optimization must consider each constraint, fewer constraints

results in quicker optimization times. In the following paragraphs, we discuss our novel approach to

reducing the number of constraints that are considered by the optimization by adding constraints in

a lazy fashion.

Improving Performance through Lazy Constraint Addition Instead of using the entire set

of obstacle-based inequality constraints K, which contains constraints for each point in the point

cloud, we instead define a subset Kenab as the enabled constraint set. This set, initially empty,

70

S G
(a) PRM* Path Empy Constraint Set

S G
(b) In Collision Optimization Iteration

S G
(c) PRM* Path with Added Constraints

S G
(d) Optimized Collision-Free Path

Figure 6.2: An example of the way our method adds constraints from the point cloud in a lazy
fashion, using a 2D disk robot in a point cloud (grey points are un-enabled constraint points). (a)
Example unoptimized path returned by the PRM* and used to initialize the optimizer. The optimizer
starts out with an empty enabled constraint set. (b) During optimization, the robot’s path is found
to be in collision with the point cloud (orange points). (c) The in-collision points of the cloud are
immediately added to the enabled constraint set (black points) and optimization is restarted. (d)
The optimizer converges to a collision-free path using the enabled constraint set, which is smaller
than the set of all points.

is added to as points in the cloud become relevant to the optimization (see Fig. 6.2 and Alg. 4

lines 5-7).

We start the optimization with an empty enabled constraint set (Fig. 6.2a). We then take an

optimization step, modifying the motion plan (Fig. 6.2b). At each iteration of such a step, we check

the robot’s path for collision with the whole point cloud (an operation which is computationally

inexpensive compared with optimizing with each point as a constraint). If the path is found to be in

collision, we identify which points are in collision, and add those points to the enabled constraint set,

and restart the optimization (Fig. 6.2c). In the next iteration, the optimizer avoids collision with

the previously added points (Fig. 6.2d). The process then repeats until a collision-free convergence

is achieved. In this way, only points which prove to be relevant over the course of the optimization

are taken into account by the optimizer. This improves the computational speed of the optimization

algorithm drastically, as in practice relatively few points turn out to be relevant to collision detection

in an otherwise large point cloud.

71

Enabled Constraint Cutoff Function One of the most time consuming parts of the optimization

is computing the constraint Jacobian for the constraints in Kenab, which has a row for each constraint

and a column for each state variable, i.e. d× (n− 1) columns. Even if a constraint is relevant to

the optimization as a whole, and as such included in Kenab, sometimes the point represented by

the constraint is far away from the specific robot geometric primitive or edge representing an entry

in the Jacobian. To leverage this intuition and further speed up the evaluation of the constraints

in Kenab, we use a cutoff function (6.3) as our clearance function (see Fig. 6.3a) rather than the

distance itself, allowing the user to set a radius, r > 0, as a “look-ahead" distance. Let

d = min_dist(s,qi,qi+1, o), (6.2)

clearance(d, r) =

2
(
d
r

) (
d
r

)
< 0(

d
r

)4 − 2
(
d
r

)3
+ 2

(
d
r

)
0 ≤

(
d
r

)
≤ 1

1
(
d
r

)
> 1,

(6.3)

where min_dist is the minimum distance between the point o and the geometric primitive s when s

is swept along the space curve defined by the transition between configurations qi and qi+1, i.e. as

the robot arm is moving from configuration qi to qi+1. Equation 6.3 sends the clearance function’s

derivative to zero at r, allowing us to sparsify the constraint Jacobian and only consider points in

Kenab which are within distance r from the robot’s geometry at a given time. This allows even

greater speedup to the optimization, as the constraint set Kenab, which is already greatly reduced

in size from the full point cloud, is still larger than needs to be considered in many entries of the

constraint Jacobian.

Another challenge of our constraint formulation is that the minimum clearance between a given

robot geometric primitive along an edge and a point in the point cloud is not guaranteed to be

differentiable. This is because the robot’s arm is tracing a nonlinear, complex curve through the

workspace, even though the edge is linear in configuration space. This means that in some places,

the closest position on that curve to an obstacle point can be discontinuous as the edge is perturbed

(see Fig. 6.3b), i.e., there are multiple closest positions on the curve which are equidistant to the

point cloud point. Using distance over the nonlinear edge allows us to ensure obstacle avoidance,

72

-0.5 0 0.5 1 1.5
d

r

-1

0

1
cl

ea
ra

nc
e

(a) Cutoff Function

o

qk qk+1

d1d2

s1

min_dist(qk,	qk+1,	s1, o)	=	d1 =	d2
(b) Non-Differentiable

o

qk qk+2

d1d2

s1

min_dist(qk,	qk+1,	s1, o)	=	d2,
min_dist(qk+1,	qk+2,	s1, o)	=	d1

qk+1

(c) Bisection

Figure 6.3: (a) The cutoff function used as the clearance function for our obstacle avoidance
constraints. The function flattens out after a certain distance so as to allow us to only consider points
in Kenab which are within a specified radius r. (b-c) An example with a manipulator (shown in red).
(b) If a sphere bounding the robot geometry is swept between two configurations and produces a
curve such as the blue curve here, then when d1 and d2 are equal, the minimum distance between
sphere s1 swept from qk to qk+1 and point cloud point o is not necessarily differentiable. (c) When
such a case is detected, an intermediate configuration is added into the path with its own constraint.
In this way, both d1 and d2 are used in different constraints and are both locally differentiable.

but can cause numerical problems during the optimization. To address this issue, when we are

evaluating the derivative of a constraint and find it to be discontinuous over an edge, we bisect that

edge and start the optimization anew (see Fig. 6.3c, and Alg. 4 lines 9-12). In this way, after enough

bisections the discontinuity is avoided. In practice, we observed relatively few bisections.

6.3.3 Asymptotic Optimality

Asymptotic optimality of our method follows naturally from the use of an asymptotically optimal

motion planner as the underlying sampling-based motion planner, as long as three conditions are

met. First, the sampling-based motion planner adds at least one node to its roadmap between

adjacent interior point optimization calls. Second, the interior point optimization does not make the

roadmap’s solution worse. Third, the interior point optimization completes in finite time.

The first condition is dependent on the implementation of the sampling-based motion planner.

The implementations we use guarantee this property. The second condition can be handled by

discarding any solutions which are worse than the best that has been found at any point in time.

The third condition can be guaranteed with an external time limiter on the optimization.

6.4 Results

We implement the sampling-based motion planning portion of our method using the OMPL

framework [116], including OMPL’s PRM* and RRT# implementations. For the purposes of this

73

Figure 6.4: Randomly generated 3D environment. The environment contains points on the surface
of 10 boxes.

0 25 50 75 100

Time (s)

10

10.1

10.2

10.3

10.4

P
a

th
 L

e
n

g
th

ISIMP

PRM*

(a) 15,000 points in point cloud

0 25 50 75 100

Time (s)

10

10.1

10.2

10.3

10.4

P
a

th
 L

e
n

g
th

ISIMP

PRM*

(b) 37,500 points in point cloud

0 25 50 75 100

Time (s)

10

10.1

10.2

10.3

10.4

P
a

th
 L

e
n

g
th

ISIMP

PRM*

(c) 150,000 points in point cloud

Figure 6.5: Average path length over time for the 3D point cloud scenario with (a) 15,000 points, (b)
37,500 points, and (c) 150,000 points in the point cloud. Results are averaged over 100 runs with
the shaded region denoting 1 standard deviation.

74

section, we will refer to ISIMP with PRM* as ISIMP, and ISIMP with RRT# as ISIMP-#. For the

black box local optimizer, we use the IPOPT software framework, an open source interior point

optimization library1 [100].

We evaluate ISIMP in two scenarios. In the first we consider a spherical robot moving in a 3D

point cloud environment (see Fig. 6.4). In the second, we plan motions for the 7-DOF left arm of

a Baxter robot (see Fig. 6.8) in a point cloud environment generated by a real-world sensor. All

results were generated on an 3.40GHz Intel Xeon E5-1680 CPU with 64GB of RAM.

6.4.1 Motion Planning for a 3D Spherical Robot

We consider a spherical robot of radius 0.5 units with 3 degrees of freedom (x, y, and z) moving

in a 3D environment. In the environment we have randomly placed 10 cubes with sides of length 1

unit. We represent the cubes using a point cloud of 3D points densely placed on the surfaces of the

cubes (see Fig. 6.4). We then task ISIMP with planning a motion for the spherical robot from one

side of the environment to the other. We evaluate this task with three separate point cloud sizes.

The first involves the full point cloud, which contains 150, 000 points. We downsample this point

cloud, using 37, 500 points for the second and 10, 000 for the third.

We generate results for each of these three environments using 100 different random seeds. The

average path length over time for each of the three point cloud sizes is shown in Fig. 6.5. We

compare ISIMP with PRM*, plotting the shortest path length found at any given time for each of

the methods averaged over the 100 runs, with 1 standard deviation shown in the shaded regions. As

can be seen, ISIMP outperforms PRM*, on average finding shorter paths earlier in the planning

process.

We also evaluate the efficacy of the lazy constraint addition aspect of ISIMP. For each of the 3

point cloud sizes, we keep track over all 100 runs of the total number of points that were added to

the constraint set at the convergence of each interior point path optimization loop (i.e. execution

of Alg. 4). These results are shown in Table 6.1. The results show that it is necessary to add as

constraints only a very small percentage (≈ 1.2%) of the overall number of points in the point cloud

1IPOPT requires definitions of a cost function to be minimized (path length in our case), constraint functions (J
and K or Kenab), and cost and constraint Jacobians. It then handles the optimization iterations itself. Note that
default settings will allow intermediate solutions to potentially exist in infeasible space. We set the settings to prevent
infeasible intermediate solutions.

75

Total Points Average Points Used Percentage Instances
15, 000 188.67± 160.69 1.26% 1323

37, 500 438.21± 381.58 1.17% 1357

150, 000 1, 755.05± 1, 710.01 1.17% 1319

Table 6.1: Statistics on point cloud points added to the constraint set by executions of the lazy
interior point optimization algorithm

in order for the interior point optimization to converge to a high-quality solution that is collision-free

with respect to the entire point cloud. For example, in the 150, 000 point environment, averaged

over 1319 instances of converged interior point optimization, only 1.17% of points were used by the

optimization.

6.4.2 Motion Planning for the Arm of a Baxter Robot

We consider a scenario involving motion planning for the left arm of a Baxter robot (see Fig.

6.8). For the purposes of computing constraints in the optimization and obstacle avoidance in the

sampling-based motion planner, we represent the geometry of the robotic manipulator arm as a set

of 9 bounding spheres along the links of the robot’s arm. The choice of bounding spheres allows us

to conservatively represent the robot’s geometry while enabling fast distance calculations between

the geometric primitives and the points in the point cloud.

We evaluate ISIMP’s performance in a real-world point cloud obtained from a Microsoft Kinect

sensor (see Fig 6.8). We evaluate our method utilizing point clouds of differing sizes, ≈ 10, 000 points,

≈ 25, 000 points, and ≈ 100, 000 points, the smaller of which were generated via downsampling

the original point cloud. We generated 50 motion planning scenarios at random in the scene using

random start and goal configurations, using rejection sampling to remove trivial scenarios for which

a straight-line naive trajectory would not collide with the point cloud.

We compare our method to the popular anytime asymptotically-optimal sampling based motion

planners PRM* [93] and RRT# [106] using OMPL [116], and to a popular trajectory optimization

method, Traj-Opt [96], using their distributed source code. All results were generated on an 3.40GHz

Intel Xeon E5-1680 CPU with 64GB of RAM.

Comparison to Asymptotically-Optimal Sampling-Based Motion Planners To evaluate

how well ISIMP performs in an anytime manner, we compare our method to PRM* and RRT# with

the three point cloud sizes. In Fig. 6.6a, we compare the best path found by ISIMP, up until a given

76

0 25 50 75 100
Time (s)

0.9

1

1.1

1.2

1.3

P
R

M
*/

IS
IM

P
Path Length Ratio

~10k Points
~25k Points
~100k Points

(a) PRM* Ratio over time

10k 25k 100k
Point Cloud Size

0

5

10

15

20

Ti
m

es
 S

lo
w

er

PRM* to Similar Path Length

11/50 14/50 20/50

(b) Time to length

0 25 50 75 100
Time (s)

0.9

1

1.1

1.2

1.3

R
R

T
#/

IS
IM

P
-#

Path Length Ratio

~10k Points
~25k Points
~100k Points

(c) RRT# Ratio over time

Figure 6.6: (a) The path length ratio over time between PRM* and ISIMP, averaged over 50 runs
with random start and goal configurations. Results are shown for various sizes of point clouds. A
value greater than one indicates ISIMP has a shorter path than PRM*. (b) Another way to visualize
anytime results. ISIMP is stopped after 1 second, and displayed is how many times longer PRM*
ran to achieve a comparable result. In many cases, PRM* had still not found a comparable result
after 5 minutes, in which case we did not include that run in this analysis. The included runs were
averaged. The number of included runs is shown in white overlaid on each bar. (c) The path length
ratio over time between RRT# and ISIMP-#.

time, to the best path found by PRM* at that same time. We average this over 50 runs, and plot

the ratio of the PRM*’s path length to our method’s path length. A value greater than one indicates

that our method has a shorter path, and a value less than one indicates that PRM* has a shorter

path. Similarly, in Fig. 6.6c, we compare ISIMP-# with RRT#.

As another way of evaluating anytime performance, we stop ISIMP’s execution at 1 second and

then measure how long PRM* requires to produce a solution of equal or better cost. In the majority

of cases, PRM* in 5 minutes failed to produce a path of shorter length than ISIMP’s solution at 1

second. For the cases where PRM* did produce a better solution in less than 5 minutes, we average

the results and show them in Fig. 6.6b.

As can be seen, ISIMP outperforms PRM* on path length by a large percentage for a long

duration (Fig. 6.6a), and ISIMP-# outperforms RRT# similarly, but by a smaller percentage (Fig.

6.6c).

Comparison to an Optimization-Based Motion Planner We also compare ISIMP’s perfor-

mance to a state-of-the-art optimization-based motion planner, Traj-Opt [96], for which open-source

code compatible with the Baxter robot is available. The Traj-Opt distribution recommends several

ways to handle point cloud data input, including: (1) converting the points in the point cloud into

down-sampled cubic boxes, and (2) constructing a polygonal mesh out of the point cloud, and then

77

(a)

0 2 4 6 8
Time (s)

0%

20%

40%

60%

80%

100%

Fe
as

ib
le

 P
at

hs
 F

ou
nd

ISIMP 10k
ISIMP 25k
ISIMP 100k
TO-BS
TO-MS

(b)

Figure 6.7: (a) The percent of trials for which a feasible path has been found over 50 trials. (b)
The percent of trials for which feasible, collision-free, paths have been found over time. The ISIMP
variations find feasible paths for 98% of the trials within 0.5 seconds (and 100% of trials within 30
seconds). The Traj-Opt variations take significantly longer (≈ 5.5–7 seconds) to find feasible paths
for some trials, and fail to find feasible paths at all for the others. (TO-BR and TO-MR are not
shown in (b) because they are seeded with already feasible solutions from a sampling-based motion
planner.)

simplifying the mesh through decimation.

As with most trajectory optimization methods, the question arises of how to generate an

initial trajectory. We evaluate Traj-Opt using two initialization approaches recommended in the

optimization-based motion planning literature. First, we initialize with a straight line trajectory in

configuration space with 10 configurations (the number of configurations used for initialization in the

example code), which starts in collision. Second, we seed Traj-Opt with the first path found by our

method from the sampling-based motion planner, which is augmented with duplicate configurations

if it starts with fewer than 10 total. This initialization starts out collision-free. TO-BS refers to

Traj-Opt with a box environment representation and a straight line initialization, TO-MS refers

to a mesh environment with a straight line initialization, TO-BR refers to a box environment with

a sampling-based motion planner initialization, and TO-MR refers to a mesh environment with a

sampling-based motion planner initialization.

The comparison between our method and Traj-Opt reveals three things. First, Traj-Opt can

fail to converge to a collision-free path in a significant percentage of cases in our scenario. See

Fig. 6.8 for an example. Traj-Opt returned locally optimal paths that were infeasible likely due

to the complex objective function landscape with many in-collision local minima induced by the

real-world point cloud data. Fig 6.7a shows the percentage of problems for which each method

78

(a) PRM* Path (b) Optimized PRM* Path
(c) Alternate View

(d) Traj-Opt Initialization (e) Traj-Opt Converged (f) Alternate View

Figure 6.8: (a) ISIMP’s collision-free initialization found by the sampling-based motion planning
algorithm. (b-c) ISIMP’s collision-free trajectory after interior point optimization, which is still
collision-free and passes behind the obstacles. The path length has been reduced by more than 36%.
(d) Traj-Opt is initialized with a straight line trajectory, passing through the point cloud obstacles.
(e-f) Traj-Opt’s converged trajectory which is still in collision due to being trapped in a poor quality
local minimum.

found a feasible solution. Our method found feasible solutions to 100% of planning problems within

30 seconds, while variations on Traj-Opt returned locally optimal paths that were infeasible in a

significant percentage of planning problems. This is even true in the case where the initialization

was collision-free (TO-BR and TO-MR).

Second, Traj-Opt, when it did produce a valid collision-free solution, takes between 5.3 and

7.1 seconds to initialize the problem, load the scene, and optimize the trajectory. By contrast, our

method initializes the problem, loads the scene, and produces its first valid collision-free solution

in an average of 0.41s for 10k points, 0.43s for 25k, and 0.63s for 100k (See Fig. 6.7b). Traj-Opt’s

slower relative speed is mostly due to the time required to initialize the problem and pre-process the

point cloud data, with Traj-Opt’s optimization itself taking on average less than 1 second.

Third, when Traj-Opt converged to a collision-free solution it produced high quality paths. For

the cases where Traj-Opt produced a collision-free solution, the path lengths of its solutions were

79

comparable to the path lengths produced by ISIMP, with path lengths varying by less than 5%

across the methods.

6.5 Conclusion

We presented a method designed to achieve the benefits of both local optimization and global

sampling-based motion planning when planning motions for a robotic manipulator arm with point

cloud sensor data. ISIMP interleaves asymptotically-optimal sampling-based motion planning with

anytime interior point local optimization. Designed to work with point cloud data directly, our novel

lazy interior point optimization formulation brings the path quality benefits of local optimization

to the anytime performance of sampling-based methods, while providing completeness and global

asymptotic optimality guarantees not present in current optimization-based motion planning methods.

The results demonstrate that our method outperforms asymptotically-optimal sampling-based motion

planning alone, producing higher quality motion plans earlier. Our method also outperforms an

optimization-based method, Traj-Opt, in the percentage of collision-free solutions found and in time

to first valid solution.

In the future, we plan to evaluate ISIMP on a variety of other systems of varying dimensionality.

We also plan to investigate integrating more complex constraints, such as task and non-holonomic

constraints into the method.

In Chapter 7 we extend this method to plan motions for a concentric tube robot, using a cost

metric based on clearance from obstacles, and integrate the optimization- and sampling-based

methods into a parallel structure to do both simultaneously.

80

CHAPTER 7

Planning High-Quality Motions for Concentric Tube Robots in Point Clouds
via Parallel Sampling and Optimization

Motion planning can enable surgical robots such as concentric tube robots [3] to automatically

reach a desired surgical target while avoiding anatomical obstacles. Composed of nested, pre-curved

tubes, concentric tube robots can curve around anatomical obstacles to reach targets in highly

constrained environments such as the skull base, the lungs, and the heart [7]. Enabling the robot

to safely avoid anatomical obstacles (such as blood vessels, critical nerves, sensitive organs, and

bones) requires a fast and effective motion planner, as well as an accurate model of the patient

anatomy. In previous work, such an anatomical model is typically generated from the segmentation

of preoperative 3D volumetric imaging, such as Computed Tomography (CT) [117, 118, 8]. However,

for surgical procedures that modify the anatomy, anatomical models created from preoperative

images may quickly become out-of-date and inaccurate, significantly hindering safe motion planning.

By contrast, a variety of intra-operative endoscopic sensors can be used to quickly produce point

cloud representations of the anatomy. In this work, we introduce a new motion planning method,

Parallel Sampling and Interior point optimization Motion Planning (PSIMP). PSIMP quickly

produces high-quality motion plans for concentric tube robots operating in point cloud anatomical

representations.

Point clouds that represent patient anatomy can be generated during minimally-invasive surgery in

a variety of ways, including via small laser scanners [119], structured light sensors [120], and generated

directly from endoscopic video (see Fig. 7.1) using computer vision techniques [121, 122, 123]. In

contrast to CT imaging, such sensors and techniques can be repeatedly used intra-operatively,

acquiring point clouds in seconds rather than minutes, and do not rely on ionizing radiation (i.e.,

x-rays), which may be harmful to patients and clinical staff when used repeatedly. Such techniques

also have advantages over fluoro imaging due to the reduced radiation exposure and are much cheaper

than MRI. As the anatomy changes, new point clouds can be generated and used by the motion

81

Point Cloud Generated from Anatomy

Generate and Optimize Motion Plans in Point Cloud

Produce Motion Plans with Sampling-Based Planner

Place Plans in Queue
Optimize Plans from Queue with

Thread Pool

Optimization Thread 1

Optimization Thread 2

.

.

.
...

Figure 7.1: Our method, PSIMP, takes as input a point cloud representing patient anatomy (top).
PSIMP generates and optimizes motion plans for the robot to move safely through the point
cloud (bottom). A sampling-based motion planner runs constantly in its own thread (blue box),
generating motion plans over time—represented as collision-free sequences of configurations (2D
cartoon representations of the plans are included here for illustrative purposes). As the motion plans
are generated they are placed in a queue (green box). A thread pool (orange box) then takes each of
the motion plans, and optimization threads (yellow boxes) perform interior point local optimization
on the plans, improving their quality according to a cost based on clearance from obstacles. If the
anatomy has not changed significantly, multiple motion planning queries can be solved for the initial
point cloud, in real time, allowing the physician to move the robot through the anatomy safely. If
the anatomy changes significantly (e.g., due to the surgical procedure), a new point cloud can be
generated to be used by the motion planner in subsequent queries.

planner. In this work, we evaluate our method using point clouds generated via endoscopic video

using a technique called “structure from motion” [124, 125], but the method can be used directly

with point clouds from any source.

82

To enable high-quality, fast motion planning for concentric tube robots when obstacles are repre-

sented using point clouds, PSIMP combines sampling-based motion planning with local optimization

(see Fig. 7.1). This combines the benefits of sampling-based motion planning, such as the exploration

of multiple homotopic classes (see Fig. 7.2), with the benefits of local optimization, namely the ability

to produce high-quality plans very quickly. We introduce a parallel, multi-threaded framework, that

combines a sampling-based motion planning thread with a pool of local optimization threads. As

the sampling-based motion planner generates motion plans, those solutions are placed in a queue

of motion plans that are then locally optimized by a pool of threads that are running the local

optimization method in parallel. This allows the sampling-based motion planner to run uninterrupted,

ensuring that it continues exploring globally, while the local optimizers are iteratively improving

the quality of the motion plans more quickly than the sampling-based motion planner is capable of

doing on its own.

PSIMP plans motions at rates suitable for interactive use, returning the first valid motion plan

in a fraction of a second on average, and rapidly improving upon that initial solution in fractions

more. Our local optimization uses interior point optimization, a class of optimization techniques

that guarantee intermediate solutions satisfy constraints (e.g., obstacle avoidance and joint limits)

during optimization [99]. This property enables the method to run in an anytime fashion, i.e., the

method can be stopped at any time and the best solution found up until that point will be returned.

Our method leverages a cost function, similar to that in [126], based on the robot’s clearance from

the point cloud that encourages the avoidance of anatomical obstacles and helps to produce motions

robust to incomplete obstacle knowledge.

We demonstrate the efficacy of PSIMP in three scenarios in which obstacles are represented via

point clouds: an upper airway environment (near the epiglottis), a colon environment, and a skull

base environment. The upper airway and colon environments are generated from real endoscopic

video of real patients, while the skull base environment is generated from synthetic data. We show

that combining local optimization with sampling-based motion planning outperforms sampling-based

motion planning by itself in each of the anatomical settings. We also demonstrate the ability of

PSIMP to react to a change in the point cloud when the anatomy is modified during a surgical

procedure, which is not feasible when obstacle representations are generated solely from pre-operative

imaging such as CT scans.

83

Figure 7.2: A top down view of an example scenario wherein the robot is tasked with passing between
vertical columns represented as point clouds. The sampling-based motion planning phase of the
planner allows for the discovery of different homotopic classes. (Left) The planner may initially find
a solution to the goal point (green) for the robot (blue) that passes very close to the point cloud
(red). (Right) The planner may later in the planning process find a better homotopic class in which
the robot is able to reach the goal in a safer way, further from points in the point cloud.

This chapter is based on work that will appear in [15].

7.1 Related Work

Point clouds have been used in medical procedures in a variety of ways. Point clouds from

stereoscopic cameras have been used for virtual fixtures in haptic interfaces [127] and for the

registration of a digital overlay for teleoperation [128]. Soft tissue deformation has been tracked

using 3D plenoptic imaging during autonomous suturing [129]. Point clouds generated by structure

from motion in nasal endoscopy have been used for registering endoscopic images to CT data and

overlaying areas of interests on the endoscope images [121]. We propose the use of point clouds as

the anatomical representation during motion planning, enabling the obstacle representation to be

regularly updated during a surgical procedure and hence enabling the motion planner to adapt to

changes in the anatomy during surgery.

Concentric tube robots have been proposed for a variety of surgical tasks [7]. The control of

concentric tube robots has primarily considered computing controls based on desired tip movements.

This includes methods that compute controls based on the robot’s Jacobian [9, 25] and a Fourier

series based approximation of the robot’s kinematics [24].

Motion planning can enable robots to automatically move in an environment while avoiding

obstacles. A popular motion planning paradigm is sampling-based motion planning, which includes

methods such as Probabilistic Roadmaps (PRM) [101] and Rapidly-exploring Random Trees (RRT)

84

[103], in which a collision-free graph or tree data structure is incrementally constructed. Many such

algorithms provide a property called probabilistic completeness which states that the probability the

algorithm finds a valid motion plan, if one exists, approaches 1 as the number of samples approaches

infinity. Extensions to these methods have the stronger guarantee of asymptotic optimality, i.e.,

the method will converge to a globally optimal motion plan under some objective function as the

number of samples approaches infinity. Such methods include RRT*, PRM* [93], BIT* [130], and

FMT* [94].

Optimization-based motion planning methods work by numerically locally optimizing plans

in a high dimensional trajectory space. Such methods include CHOMP [95], ITOMP [97], and

Traj-Opt [96]. In Chapter 6 we presented ISIMP, a method that combines local optimization with

sampling-based motion planning in point clouds for serial link manipulator arms [14]. The motion

planner presented in this chapter, PSIMP, differs from these methods in a few ways. These methods

optimize either for path smoothness [95, 97, 96] or for path length [14]. By contrast, here we introduce

an anatomical clearance cost function that encourages motions that avoid anatomical obstacles

by larger distances, increasing plan safety. This also allows us to simplify the constraint set by

leveraging the new cost function for obstacle avoidance. Additionally, as in [14], PSIMP employs both

sampling-based motion planning and interior point local optimization, but rather than interleaving

the two, we utilize parallelism to perform both optimization and sampling simultaneously.

When computing motions for concentric tube robots that avoid obstacles, a few approaches have

been studied. This includes simplifying the kinematics for fast computation [26, 131]. Sampling-based

motion planning for concentric tube robots has been studied for skull base surgery. However, until

recently, the previous methods either provided planning rates that were much slower than required

for an intra-operative setting [132], or required preoperative imaging and extensive precomputation of

a roadmap over the course of many hours prior to motion planning [118, 4]. The desire for a reactive

anatomical representation precludes the use of methods that require extensive precomputation.

Recently, a template-based, fast kinematic model was developed for concentric tube robots, based

on an unloaded torsionally compliant kinematics model, in conjunction with a PRM-style motion

planner which achieves much faster planning rates [133]. PSIMP uses this new kinematic model to

enable fast shape computations during motion planning. PSIMP efficiently solves motion planning

problems in environments represented by point clouds by leveraging local optimization to improve

85

upon PRM-style motion planning alone.

7.2 Problem Definition

We consider a point cloud P , where P = {p1,p2, . . . ,pj},pk ∈ R3 for k ∈ {1, . . . , j}, is an

unordered set of j 3D points in the global coordinate frame lying on the surface of patient anatomy.

In the anatomical environment represented by this point cloud, we consider a concentric tube robot.

The concentric tube robot consists of N telescoping pre-curved tubes numbered in order of increasing

cross-sectional radius, such that T1 is the innermost tube, and TN is the outermost tube. Each tube

consists of a straight segment followed by a pre-curved segment reaching to its tip. We define the

location of the robot in the global coordinate frame, i.e., the position from which the tubes extend, as

xstart ∈ R3 with orientation vstart ∈ SO(3). Each tube can be inserted linearly starting at xstart and

rotated axially at its base. We define the length of insertion for tube k as βk ∈ R and the rotational

value as θk ∈ [−π, π). A configuration for the robot then becomes q = (θi, βi : i = 1, . . . , N) with

configuration space Q = (S1)N × RN .

Given a configuration q ∈ Q, we define the robot’s backbone shape function as backbone(q, s) :

(S1)N × RN × R 7→ R3. This function describes the centerline of the robot as a space curve

parameterized by s ∈ [0, 1] where backbone(q, 0) = xstart and backbone(q, 1) maps to the 3D

position of the tip of the robot in the global frame for configuration q. This function, combined

with knowledge of the cross-sectional radii of the tubes, allows us to estimate the shape of the robot

shape(q) as the volume in space occupied by the robot in configuration q. To compute backbone

we use the mechanics-based model developed by Leibrandt et al. [133].

We define a path as a continuous function σ : [0, 1]→ Q. The motion planning problem then

becomes one of finding a path such that σ(0) = qstart and backbone(σ(1), 1) = xgoal, the 3D location

of the goal point in the global frame. Intuitively, this states that σ(0) is the starting configuration of

the robot and σ(1) is a configuration for which the tip of the robot is at the goal point. We then

define a collision-free path as a path such that p /∈ shape(σ(s)), ∀p ∈ P,∀s ∈ [0, 1], i.e., one such

that the shape of the robot along the entire path does not contain any points in P . Conceptually,

this defines each point in the point cloud as an obstacle, precluding the need for a more complex

geometric representation of the anatomy. Defining the kinematic constraints, such as joint limits, of

the robot as the general inequality g(σ) ≥ 0, we can then combine these to define a valid motion

86

plan as one such that the following constraints are satisfied:

p /∈ shape(σ(s)), ∀p ∈ P,∀s ∈ [0, 1]

g(σ) ≥ 0

σ(0) = qstart

backbone(σ(1), 1) = xgoal.

(7.1)

To enable the computation of high quality motion plans, we introduce the notion of cost. We

choose a cost function that facilitates safe motion planning by favoring plans that move the robot’s

geometry far from the patient’s anatomy. This has the benefit of increasing the safety of the plans

by making them robust to actuation noise and to the possibility of small holes and gaps in the point

cloud. Specifically, we define a function clear(q) = minp∈P sd(shape(q),p), where sd(shape(q),p)

is the signed distance between the shape of the robot at configuration q and point cloud point p.

The function sd is defined as the positive distance if p is external to the robot’s geometry, and

negative penetration depth if p is internal to the robot’s geometry. clear(q) is the minimum such

value over all the points in the point cloud, for a specific configuration. We define the cost of a

configuration q as:

cost(q) =

1

clear(q)
, clear(q) > 0

∞, clear(q) ≤ 0.

(7.2)

The cost of a path σ then becomes

Cost(σ) =

∫ 1

0
cost(σ(s))ds. (7.3)

We next define a motion planning query as the tuple (P,qstart,xgoal, tmax), where tmax is the

maximum time allotted for the motion planner to solve the query. The goal is then to produce a

valid motion plan that solves the query, satisfies (7.1), and has as low of a cost as possible, as defined

by (7.3).

Multiple queries can be performed, as the physician desires, and P can be updated appropriately

87

as the patient’s anatomy changes during the procedure. We compute motion plans with respect to

the most recent P .

7.3 Method

To plan motions for the concentric tube robot in the point cloud representing the patient’s

anatomy, we propose Parallel Sampling and Interior point optimization Motion Planning (PSIMP).

PSIMP combines sampling-based methods (to globally explore different routes around anatomical

obstacles) with local optimization (to facilitate fast computation of high quality plans).

7.3.1 Method Overview

We begin by using the sampling-based motion planner PRM* [93], which allows for the discovery

of multiple homotopic classes (see Fig. 7.2) while planning using an objective function, (7.3) in

our case, returning better and better motion plans as computation time increases. It does so while

enforcing that paths obey obstacle avoidance constraints as well as other kinematic constraints.

For the concentric tube robot model we use, we have kinematic constraints, i.e., g(σ) ≥ 0 in (7.1),

associated with maximum and minimum insertion values for each tube.

At a high level, our method works by continuously running a PRM* thread which discovers better-

and-better paths over time. PRM* generates paths as a discretized sequence of n configurations

(q0,q1, . . . ,qn−1), such that q0 = qstart and backbone(qn−1, 1) = xgoal, and n can vary depending

on the path. A continuous motion plan is derived from such a representation by moving from

one configuration to the next, via linear interpolation in configuration space. Each time PRM*

discovers a better path than it had previously, that path is placed in a queue of paths that

are awaiting local optimization. Simultaneously, a thread pool of local optimization threads are

continuously taking motion plans from the queue and improving the plans in parallel via interior

point optimization. Interior point optimization iteratively optimizes a path generated by PRM*

by moving the configurations in configuration space to lower the overall cost of the motion plan.

For example, consider Fig. 7.3, which shows a discretized motion plan as a set of configurations,

pre-optimization (Fig. 7.3, top) and post-optimization (Fig. 7.3, bottom). Interior point optimization

is used due to its property of maintaining a solution that is collision-free and satisfies the kinematic

constraints during optimization. This process continues for as long as time allows (i.e., until tmax)

and the best path found up to any given time is retained (see Fig. 7.1).

We next describe the method’s two submethods, global exploration through sampling and interior

88

Figure 7.3: Top: A plan produced early on by the sampling-based planner passes close to obstacles
on its way to a configuration who’s tip touches the goal point (yellow). Observe that during the
motion the robot’s tip stays near the point cloud (the configurations are overlayed on eachother in
the image on the right). Bottom: The intermediate configurations of that plan after optimization will
travel further from obstacles as the robot moves toward the goal point. Observe that the robot’s tip
moves toward the center of the point cloud, far away from the anatomy, as it travels toward the goal
point. For demonstrative purposes, to the left of each plan visualization is a 2-dimensional drawing
illustrating the concepts. Note, however, that the actual plan exists as a sequence of configurations
in the robots 6-dimensional configuration space.

point local optimization.

7.3.2 Global Exploration through Sampling

In our method, we utilize a constantly running PRM* motion planning thread to explore the

configuration space and discover paths in multiple homotopic classes. Specifically, we utilize the

k-nearest variation of PRM*. PRM* works by iteratively constructing a graph G = (V, E) as a

motion-planning roadmap, embedded in Q, where V is a set of vertices which represent collision-free

configurations of the robot and E is a set of edges, where an edge represents a valid transition

between two robot configurations. PRM* randomly samples configurations in Q, and adds the

collision-free configurations to V (we explicitly limit the sampling to configurations that respect the

kinematic constraints). It then attempts to connect each newly sampled configuration to its k nearest

neighbors in V, where k is a parameter that scales with |V| as in [93]. If two configurations can be

89

connected in a collision-free way via linear interpolation in configuration space, an edge between

the two configurations is added in E . Because the goal is defined as a location in R3 and not as a

configuration, multiple configurations can satisfy the goal. In order to discover such a configuration

quickly, our method performs goal biasing by attempting to ensure that a user-specified percentage

of the samples are configurations that touch the goal with their tip and connect them to G. This is

done using a damped least-squares inverse kinematics (DLS-IK) controller [134, 135, 9], and allows

the method to find an initial solution quickly.

For each motion planning query, PRM* starts by running until it finds the first path in G that

connects the start configuration to a configuration that places the tip of the robot within some

radius around the goal point. When that first valid path is found, it is placed in the optimization

queue. It then continues sampling configurations, adding to G, discovering lower cost paths and

other configurations who’s tips reach the goal point. Each time it finds a path with lower cost than

it has found before, that path is placed in the optimization queue and sampling continues. This

process continues as time allows, i.e., until tmax has been reached. It is worth noting that although

we use PRM* in our implementation, many sampling-based motion planning algorithms could be

used in a similar way instead.

7.3.3 Interior Point Local Optimization

We maintain a queue of motion plans generated by the PRM* thread. This queue is being

operated on by a pool of local optimization threads in parallel. Anytime one of the local optimization

threads is available, it retrieves the next motion plan from the queue and performs local optimization

on it. When the thread completes the optimization of a plan, it returns to the pool and optimizes the

next plan in the queue, if the queue is non-empty. These threads locally optimize plans generated by

the PRM* thread using an interior point constrained optimization method [99]. At a high level, this

works by taking the initial path, representing it in a high dimensional path space, and performing

gradient descent with respect to the path’s cost, defined by (7.3), while keeping each iteration interior

to the feasible set, i.e., respects the kinematic constraints and is collision-free.

More formally, given a discretized path generated by the PRM*, (q0,q1, . . . ,qn−1), we concatenate

q1 through qn−2 into a vector of dimensionality 2 ∗N ∗ (n− 2), which represents the intermediate

configurations in the path. This is done in order to ensure that the start and goal configurations

remain unchanged by the optimization. We then perform gradient descent with backtracking line

90

search using the Armijo condition [99] on this vector with respect to the cost in (7.3). Note that

we use only first-order gradient information, computed numerically, as computing higher-order

derivatives can be computationally expensive for concentric tube robots. In order to compute the

cost of the intermediate configurations vector, the first and last configurations must be added back

into the path. In order to ensure there is at least one intermediate configuration, if an initial path

has only a start and goal configuration, a third is added halfway between the two.

We use a cost metric that assigns infinite cost to paths that collide with the environment, and

which encourages paths to be as far from collision as possible. For this reason, we do not need to

formulate the point cloud into the constraint set, enabling us to consider a much simpler set of

constraints. This allows us to use a simpler interior point method than in [14]. At each step of

descent, if the configurations violate the kinematic constraints, they are projected back into the

convex feasible set by clamping the configurations between their maximum and minimum values

defined by the robot’s tube lengths, ensuring g(σ) ≥ 0 is satisfied. In this way, a path is locally

optimized with respect to the path cost, and the constraints are enforced at each iteration. This

frequently results in a large improvement in path cost compared to the pre-optimized path.

7.3.4 Keeping Track of the Best Plan Found

The PRM* thread and the optimization threads are working in parallel to generate better and

better plans as time allows, i.e. until tmax has elapsed, at which time the best plan found is returned

for execution on the robot. However, even prior to tmax, the best plan found at any given time, by

any of the threads, is maintained. In this way, if for any reason the algorithm must be stopped early,

the best plan found up until that time can be used.

It is worth noting that the choice of an interior point optimization strategy augments the ability

to stop the method early and return a high-quality solution. The interior point optimization is an

iterative process, i.e., the optimization is occurring as a sequence of small steps in the intermediate

configuration’s vector space described above. Unlike many other constrained optimization methods,

interior point methods have the property that the plan at each of its iterations are valid and

collision-free. This implies that we do not need to wait for the interior point optimization to complete

before we can leverage the improvements it has found. If PSIMP must stop in the middle of an

optimization, the last iterate of the optimization is itself a valid plan, and as such can be used if it is

of the lowest cost found by any of the threads up until that time.

91

Figure 7.4: We evaluate our method using two point clouds generated from real patient anatomy.
Left: The first is generated from an endoscopic video of the upper airway (UA). Right: The second
is generated from an endoscopic video of a colon. A simulated version of the concentric tube robot
is shown in blue in both point clouds in the bottom row. Both point clouds are generated from
endoscopic video using COLMAP [124, 125]. In addition to these two point clouds generated from
real patient data, we also evaluate in a point cloud generated from simulated skull base anatomy,
which is shown in Fig. 7.7.

7.4 Results

We evaluate PSIMP in two ways. First, we compare it to a pure sampling-based motion planner

PRM* by itself, in three anatomical scenarios, and demonstrate that PSIMP is able to find motion

plans with significantly lower cost in a fraction of a second, and which continue to improve as time

allows. Second, we demonstrate the method’s ability to adapt to changes in the anatomy during the

surgical procedure.

All results were generated on an 3.40GHz Intel Xeon E5-1680 CPU with 64GB of RAM, and 4

threads were allocated for the local optimization thread pool in all experiments.

92

7.4.1 Comparison and Analysis

We evaluate our method in three point cloud scenarios, two generated from real patient data

using the structure from motion library COLMAP [124, 125] (see Fig. 7.4) and one generated from

a synthetic skull model (see Fig. 7.7). The real patient point cloud scenarios are generated from

endoscopic video of a patient’s upper airway (UA) near the epiglottis, and a patient’s colon. Note

that although the point clouds used for evaluation are generated via structure from motion, point

clouds generated by other methods or sensors can be used by the method and the method remain

unchanged.

In all three scenarios, 100 random queries are generated with different collision-free start con-

figurations, and goal points within the reachable workspace of the robot, for 300 total. To ensure

we are evaluating queries that simulate surgical tasks, we construct goal points near the point

cloud by randomly sampling collision-free configurations that place the tip of the robot within 3

mm of the point cloud, and set the goal point to be the robot’s tip position in that configuration.

The configuration that generated the goal point is not recorded, only the R3 goal point and we

do not ensure that a valid motion plan exists between the randomly generated start configuration

and the tip position prior to evaluating the methods. We evaluate PSIMP’s ability to compute

high-quality paths over time, and compare the cost of the best computed paths to those generated

by a PRM* algorithm without our interior point optimization added. The motion planners were

able to successfully plan motions in 98 queries in the UA scenario, 99 queries in the colon scenario,

and 98 queries in the skull base scenario. The results presented here are averaged over the successful

queries for each scenario.

First, we demonstrate how the quality of the paths improve as computation time increases. In

Fig. 7.5, we compare the cost of the best plan found by PSIMP and PRM* up until a given time,

with the cost of the best path found after 100 seconds. Because the queries have different start

configurations and goal points, the costs between the queries in each scenario can vary greatly

making them difficult to compare directly. As such, for each query we compute the ratio of cost at

a given time over the best cost found after 100 seconds, and plot the average over all the queries.

In Fig. 7.5 we show the ratios as they improve over time. We present the time axis in log scale to

provide more detail in the early timescales. As shown, on average the best plans found by PSIMP

start improving upon those found by PRM* after ≈ 0.1 seconds, and are 10%− 30% better by ≈ 0.5

93

C
os

t R
at

io
 to

 B
es

t F
ou

nd

Time (s)

PSIMP-UA PRM*-UA PSIMP-Colon PSIMP-SkullPRM*-Colon PRM*-Skull

Figure 7.5: We evaluate the performance of PSIMP (blue) and PRM* (red) over time for all three
scenarios, UA (solid lines), Colon (dashed lines), and Skull base (dotted lines). Shown here is the
ratio of the cost of the best plan found by each method up to a given time divided by the cost of the
best plan found at any time, by either method, shown for 100 total seconds of computation. At any
time after ≈ 0.25 seconds, the cost of the best plan found by PSIMP is significantly lower than that
of PRM*. The results are averaged over 99 different queries for the Colon scenario, and 98 different
queries for the UA and Skull base scenario. Note that the time axis is plotted on a log scale to show
more detail in the earlier timescales.

seconds, depending on the scenario. Prior to ≈ 0.1 seconds, the methods are comparable as the first

plan found by both methods will be identical, and the first optimization of PSIMP has yet to occur.

In Fig. 7.6, we compare the costs of the plans found by the methods directly to each other,

plotting the ratio of the cost of the best plan found by PRM* divided by the cost of the best plan

found by PSIMP, for any point in time. Similar to the previous results, this shows that PSIMP has

found, on average, a plan that is between 10 and 30 percent better than that found by PRM* at any

point in time after ≈ 0.5 seconds, with improvements beginning around ≈ 0.1 seconds. Prior to that

time, the results between the two methods are very similar due to the reasons described above. This

demonstrates the efficacy of the local optimization performed by PSIMP to improve the quality of

solutions found at very short timescales.

In order to be effective in a surgical setting, the motion planner used must produce a valid path

quickly. This is the case for PSIMP. The first path is found by PSIMP in a fraction of a second,

with a median value of 0.12 seconds. This is the time required by the sampling-based thread in

94

PR
M

* C
os

t /
 P

SI
M

P
C

os
t

Time (s)

UA Colon Skull

Figure 7.6: We compare the two methods directly. Here we show the cost of the best plan found by
PRM* divided by the cost of the best plan found by PSIMP over time. At any time after ≈ 0.5
seconds, PSIMP has found a plan that is 10-30 percent lower in cost than the best plan found by
PRM*. The results are averaged over 99 queries for the Colon scenario and 98 queries for the UA
and Skull base scenario. Note that the time axis is plotted on a log scale to show more detail in the
earlier timescales.

PSIMP to find its first solution. Furthermore, our results demonstrate that if you are willing to

allow a small amount of extra computation, PSIMP will significantly improve the plan via local

optimization, making it safer to execute. For instance, given 0.15 seconds longer of computation

time, PSIMP improves the cost of the best plan found by 13.2% on average across all queries in all

scenarios. Further, as more time is allowed to plan, the quality will continue to improve, allowing for

safer motion plans.

7.4.2 Adapting to Changing Anatomy

To demonstrate our method adapting to changing anatomy, we use a point cloud constructed from

an anatomically inspired model of the human skull base and nasal passageways. For visualization of

the entire process, see Fig. 7.7. We generate the point cloud from the model by moving a virtual

camera through the nasal passageways, and recording the points on the surface of the model visible

to the virtual camera. These points are then concatenated into a point cloud.

We consider an example surgical scenario in the skull base, wherein the robot must move through

the sinuses, remove an obstruction in the sinus passageways on the patient’s left side, and then move

95

Figure 7.7: PSIMP plans collision-free motions for a concentric tube robot in anatomy represented
using a point cloud, and it can quickly replan motions based on a new point cloud when the anatomy
changes. (A) An anatomical model of the skull base from which we derive the initial point cloud.
(B) The point cloud derived from the model using a virtual camera moving through the sinuses and
skull base. (C) Motions are planned for the robot (blue) deep into the sinuses using our method.
(D) In the model, an obstruction exists in the sinuses. The point cloud reflects the obstruction
with points on its surface (in the purple window). We plan a motion for the robot to a point at
the obstruction. (E) A closer view of the obstruction. (F) The obstruction is removed from the
anatomy, and we generate a new point cloud which reflects the new opening (in the purple window).
(G) Our method generates a motion plan for the robot to move through the new opening in the
point cloud to a point behind the opening. (H,I) Two views of the anatomical model that has the
obstruction removed, with the robot passing through the obstruction. (J) The anatomical model
rendered semi-transparent for visualization of the final configuration. Our method was able to find a
collision-free solution both to the obstruction and beyond.

deeper into the skull base to continue the procedure. The point cloud anatomical model initially

reflects this blockage by containing points on the surface of the blockage, and not containing points

behind it (due to occlusion caused by the blockage). We first plan a motion for the concentric tube

robot that brings the tip of the robot up to the blockage. Next we remove the blockage from the

model, as if it were done during the surgical procedure. We then generate a new point cloud with the

blockage removed, adding points that can be viewed from near the robot’s tip, as if it were carrying

a small chip tip camera. This new cloud is then used as the obstacle representation for the robot,

and a motion is planned for it to proceed beyond where the blockage was previously.

Planning the second motion through the opening would not be possible in the case where the

obstacle representation remains static, such as is the case when segmenting obstacles only from

pre-operative imaging. By updating the model, as we do through updating the point cloud, the

obstacle representation accurately represents the patient’s changed anatomy and safe motions can

96

be planned with respect to the changed anatomy.

This is a demonstrative example showing the value of using an obstacle representation that can

be generated quickly intra-operatively, compared with using pre-operative imaging to generate the

obstacle representation for planning.

7.5 Conclusion

Planning motions for concentric tube robots in point clouds allows for adaptation with respect

to changing patient anatomy during the course of a surgical procedure. We presented PSIMP, a

method that effectively and safely plans motions in point cloud representations of anatomy using a

combination of sampling-based global exploration and interior point local optimization. We evaluated

our method in three anatomical scenarios, an upper airway scenario and colon scenario generated

from endoscopic video of real patients, and a skull base scenario with point clouds generated from

simulated images. We evaluated the efficacy of our method, showing that it succeeds in quickly

finding collision-free motion plans and significantly improves upon the initial motion plans in fractions

of a second. We demonstrated the ability of PSIMP to react to changing point clouds and to plan

motions based on the updated information.

We note that as an open-loop method, this work is subject to uncertainty. As such, we plan

to evaluate PSIMP on a physical robot in ex vivo or phantom anatomy using closed-loop, sensed

tip position control in order to follow motion plans computed by PSIMP. We also plan to consider

accounting for the uncertainty associated with concentric tube robot mechanical models during the

motion planning process.

97

CHAPTER 8

Estimating the Complete Shape of Concentric Tube Robots via Learning

In order to safely control and plan motions for concentric tube robots that automatically prevent

unintended collisions with the patient’s anatomy, an accurate shape model of the entire robot’s shaft

is required. Accurate prediction of the entire shape of a concentric tube robot from its control inputs

is challenging, and current state-of-the-art shape models are often unable to accurately account

for complex and unpredictable physical phenomena such as inconsistent friction between tubes,

non-homogenous material properties, and imprecisely shaped tubes [9, 10]. In this work, we present a

data driven, deep neural network-based approach for learning a more accurate model of a concentric

tube robot’s entire shape.

Machine learning enables a data driven approach to the shape estimation of concentric tube

robots. Neural network models have been successfully used to more accurately model the forward

kinematics and inverse kinematics of concentric tube robots [136, 16], and an ensemble method has

been applied to learn and adapt a forward kinematics model online [10]. However, these models only

consider the pose of the robot’s tip. In order to successfully plan and execute motions that avoid

unwanted collisions between the robot’s shaft and patient anatomy, a model must accurately predict

the entire shape of the robot.

In this chapter, we present a deep neural network approach that learns a function that accurately

models the entire shape of the concentric tube robot, for a given set of tubes, as a function of its

configuration (see Fig. 8.1). The neural network takes as input the robot’s configuration, and the

network outputs coefficients for orthonormal polynomial basis functions in x, y, and z parameterized

by arc length along the robot’s tubular shaft. In this way, a function representing the entire shape

of the robot can be produced by one feed forward pass through the neural network.

The key insight behind our parameterization is that the uncertainty in the physics-based shape

models is due mainly to uncertainty in curvature and torsion. The arc length of the robot’s shape,

however, is independent of these and as such is generally not subject to the same sources of uncertainty.

98

g1,1 c1x
c2x
c3x

c5z

g2,1

g3,1

g3,3

!" !#
!$

%"

%#

%$

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

4
P1 P2 P3 P4 P5

0 1

P(
s)

s 0 50 100 150
z

-1000
100

y

-100

-50

0

50

100

x

0 50 100 150
z

-1000
100

y

-100

-50

0

50

100

x
0 50 100 150

z
-1000

100

y

-100

-50

0

50

100

x x

yz

Figure 8.1: Given a concentric tube robot configuration defined by the translations and rotations of
the tubes (upper left), our neural network (upper right) outputs coefficients for a set of polynomial
basis functions (lower left) that are combined to model the backbone of the robot’s 3D shape (lower
right).

We can leverage this known state by parameterizing our shape function by arc length.

This chapter is based on work previously published in [18].

8.1 Materials & Methods

In order to learn a shape function for the concentric tube robot, data representing the robot’s

shape as a function of its configuration must be gathered. To gather shape data, we utilize a

multi-view 3D computer vision technique called shape from silhouette [17], in which multiple images

of the robot’s shape for a given configuration are collected from cameras with known position (see

Fig. 8.2). We then automatically segment the robot’s shaft in each image using color thresholding

and for each pixel in the segmentation a ray is traced out from the camera’s position through its

image plane. These rays then pass through a voxelized representation of the world, and voxels that

are intersected by rays from every camera represent the robot’s shape in the world. We then fit a

3D space curve to the voxels using ordinary least squares, resulting in a curve that represents the

true, sensed backbone of the robot. We then train the neural network using the sensed backbone as

ground truth.

Our neural network architecture consists of a feed forward, fully connected network, with 5

hidden layers of 30 nodes each. We utilize the parametric rectified linear unit as our non-linear

99

1

Cameras

Robot
Figure 8.2: We train the neural network using data from a physical robot. By taking images from
multiple cameras (blue arrows), the shape of the robot’s shaft (pink arrows) can be reconstructed in
3D using shape from silhouette.

activation function between layers, which we noted provided a slight performance improvement over

the standard rectified linear unit.

For a robot consisting of k tubes, we parameterize the ith tube’s state as γi := {γ1,i, γ2,i, γ3,i} =

{cos(αi), sin(αi), βi} where αi ∈ (−π, π] is the ith tube’s rotation and βi ∈ R is the ith tube’s

translation, as in [16]. We then parameterize the robot’s configuration as q = (γ1,γ2, . . . ,γk). This

serves as the input to the neural network.

The network outputs 15 coefficients, c1x, c2x, . . . c5x, c1y, c2y, . . . c5y, c1z, c2z, . . . c5z, which serve

as coefficients for a set of 5 orthonormal polynomial basis functions in x, y, and z parameterized

by arc length, shown in Table 8.1. This results in three functions, x(q, s), y(q, s), and z(q, s),

where x(q, s) = len(q)× (c1xP1(s) + c2xP2(s) + · · ·+ c5xP5(s)), where s is a normalized arc length

parameter between 0 and 1, and len(q) is the total arc length of the robot’s backbone in configuration

q. Then y(q, s) and z(q, s) are defined similarly with their respective coefficients. The resulting

shape function is shape(q, s) = < x(q, s), y(q, s), z(q, s) >. To evaluate the shape of the robot at a

given configuration, the neural network can be evaluated at q, and the resulting coefficients define a

space-curve function that can then be evaluated at any desired arc length. This, combined with

knowledge of the robot’s radius as a function of arc length, results in a prediction of the robot’s

geometry in the world.

We first pretrained our model on 100, 000 data points (configuration and backbone pairs), where

the configuration was sampled uniformly at random from the robot’s configuration space and the

backbone was generated by the physics-based model presented in [9]. Such pretraining allows us to

100

s s2 s3 s4 s5

P1(s) 1.7321 0 0 0 0

P2(s) −6.7082 8.9943 0 0 0

P3(s) 15.8745 −52.915 39.6863 0 0

P4(s) −30.0 180.0 −315.0 168.0 0

P5(s) 49.7494 −464.33 1392.98 −1671.6 696.4912

Table 8.1: Coefficients for the orthonormal polynomial basis functions generated using Gram-Schmidt
orthogonalization. P1(s) := 1.7321s, P2(s) := −6.7082s+ 8.9943s2, etc., plotted in Fig. 8.1 (lower
left).

Tube Outer Diameter
(m)

Inner Diameter
(m)

Straight Length
(m)

Curved Length
(m)

Curvature
(m−1)

Inner 0.0013 0.0010 0.2459 0.0666 9.3354
Middle 0.0019 0.0016 0.1631 0.0456 4.6270
Outer 0.0025 0.0022 0.0952 0.0364 7.4184

Table 8.2: Tube parameters for the 3-tube concentric tube robot.

prevent overfitting on the smaller amount of sensed, real world data.

We then trained our network on 8, 000 randomly sampled data points, and we evaluate the

network on 1, 000 different randomly sampled test data points (both sets generated via shape from

silhouette). We utilize a pointwise sum-of-squared-distances loss function and the ADAM [137]

optimizer during training.

8.2 Results

The specifications of the robot’s component tubes used in the experiments are shown in Table 8.2.

First, in order to evaluate how well the polynomial basis functions are able to approximate the

shape, we computed the optimal set of coefficients for the 100,000 pre-training data points using

ordinary least squares. We then evaluated how well the resulting shape representation approximated

the training data at 20 equally-spaced points along the backbone of the shape, as in the training

process. We then calculated the maximum L2 distance over the 20 points along the backbone of

the robot between the polynomial representation and the ground truth for each of the 100,000

configurations. Over the 100,000 configurations, the mean of the maximum L2 distance along the

backbone was 0.044± 0.037 mm. This demonstrates that the polynomial basis functions are capable

of representing the shape of a concentric tube robot with accuracy well into the sub-millimeter range.

Next, we evaluate how well our model is able to learn the shape of real-world concentric tube

101

10 20 30 40 50

Error (mm)

0

100

200

300

O
c
c
u
ra

n
c
e
s

Physics-Based
Learned

Figure 8.3: A histogram of the maximum error along the robot’s shaft for the learned model and the
physics-based model, for each of the 1, 000 test points. The distribution is shifted to the left in the
learned model, indicating that it is more likely to produce lower error values.

Physics-Based (mm) Learned (mm)
Minimum 1.11 0.49

Maximum 46.68 25.32

Mean 6.32± 3.95 3.16± 2.20

Table 8.3: Error value statistics for the physics-based model and our learned model across the 1000
test configurations.

102

robot configurations. Specifically, we compare our neural network’s shape computation to that of

the physics-based model presented in [9]. In Fig. 8.3 we plot a histogram of the errors across the

1, 000 test configurations. For each configuration of our 3-tube robot we evaluate the shape of the

physics-based model, the learned model, and the ground truth from the vision system at 20 evenly

spaced points along the robot’s shaft. We then present the maximum error—the L2 distance of the

point that deviates from the ground truth the most. This error value presents us with a maximum

deviation between the predicted shape and the ground truth, a useful metric when considering safety

related to anatomical obstacle avoidance. In Table 8.3, we present further statistics for the maximum

error values over the 1000 test configurations for both the physics-based model and our learned

model. In the histogram in Fig. 8.3, it can be seen that the error distribution of the learned model

is shifted to the left compared with that of the physics-based model, indicating that the learned

model is more likely to produce lower error values than the physics-based model. Additionally, the

learned model produces lower minimum, maximum, and mean error values.

8.3 Discussion

In this work we present a learned, neural network model that outputs an arc length parameterized

space curve. This allows us to take a data driven approach to modeling the shape of the concentric

tube robot and improve upon a physics-based model. This may allow for safer motion planning and

control of these devices in surgical settings that require avoiding anatomical obstacle, as a shape

that deviates less from the shape predicted in computation will be less likely to unintentionally

collide with the patient’s anatomy. The model is only trained on cases where the robot is operating

in free space. Accounting for interaction with tissue is the subject of future work. We also plan

to investigate using different network architectures, i.e., a different number of hidden nodes and

layers, as the architecture used in this work was chosen heuristically. We also intend to augment the

learned model to account for other sources of uncertainty in concentric tube robot shape modeling,

including hysteresis, and plan to integrate the learned model with a motion planner and evaluate its

use in automatic obstacle avoidance during tele-operation or automatic execution of surgical tasks.

103

CHAPTER 9

Conclusion

In order to deploy robots in human-centric environments, they must be able to move in these

environments safely. Robot motion planning allows for the computation of safe, efficient motions that

obey robot specific constraints while avoiding collision with obstacles in the robot’s environment,

be they anatomical obstacles in a surgical robotics setting or more traditional obstacles in a home

assistance setting. In this dissertation, we presented methods that improve upon the state-of-the-art

in robot motion planning in such settings.

Specifically, in this dissertation we addressed the following thesis statement:

For robots operating in human-centric environments, robot motion planning, via a combination of

sampling- and optimization-based methods, enables fast and high-quality kinematic design optimization

and motion computation while overcoming challenges associated with computationally expensive

kinematic models, hybrid and highly-constrained kinematics, and point-cloud obstacle representations.

To support this thesis, we presented novel motion planning methods that incorporate random

sampling as well as numerical optimization. We first presented a sampling-based robot motion

planning algorithm for the CRISP robot that accounts for its expensive shape computation. We

then leveraged this motion planning algorithm to demonstrate that an efficient motion planner can

be used to optimize the pre-procedure design parameters of this robot. Next, we presented a motion

planning algorithm for a three-stage transoral lung tumor biopsy robot that accounted for its hybrid

system kinematics and evaluated its efficacy in both simulated settings and ex vivo porcine tissue in

the real world. We then expanded our motion planning contributions beyond the surgical setting by

presenting a novel method that incorporates sampling and optimization in order to efficiently plan

motions for a serial-link manipulator robot in a home assistance setting with point cloud obstacle

representations. We expanded upon this motion planning concept and presented a parallel version of

this algorithm applied to concentric tube robots. Finally, we presented a machine-learning based

neural shape model for concentric tube robots that will enable more accurate shape computation

104

during motion planning.

In order to bring our work closer to real-world deployment, more evaluation in the real world is

required. For instance, while our evaluation of the three-stage lung tumor biopsy robot in ex vivo

tissue is a step in the right direction, this work must be evaluated in in vivo settings to move it

toward clinical deployment. Similarly, much or our work in this dissertation focusses on algorithmic

development and as such is primarily evaluated in simulation. Moving this evaluation into the real

world will help us to identify areas to improve upon in the future, such as accounting for sources of

uncertainty that we do not yet model.

Many natural extensions also exist that would allow for a broader impact of our methods. For

instance, expanding ISIMP and PSIMP in order to work with non-holonomic systems, such as

steerable needles, is a promising area for future work. Similarly, incorporating the learned, neural

shape model of concentric tube robots into a recurrent framework would allow the method to account

for hysteresis in the shape computation.

Broadly speaking, in the future we intend to take steps that both broaden the applicability of

the methods, expanding their impact to other domains, as well as improving the efficacy of our

methods in their current domain, by identifying and accounting for short-comings in our current

models through real-world evaluation.

105

REFERENCES

[1] A. W. Mahoney, P. L. Anderson, P. J. Swaney, F. Maldonaldo, and R. J. Webster III,
“Reconfigurable parallel continuum robots for incisionless surgery,” in IEEE Int. Conf. Intelligent
Robots and Systems (IROS), pp. 4330–4336, Oct. 2016.

[2] P. L. Anderson, A. W. Mahoney, and R. J. W. III, “Continuum reconfigurable parallel robots for
surgery: Shape sensing and state estimation with uncertainty,” IEEE Robotics and Automation
Letters, vol. 2, pp. 1617–1624, July 2017.

[3] H. B. Gilbert, D. C. Rucker, and R. J. Webster III, “Concentric tube robots: The state of the
art and future directions,” in Int. Symp. Robotics Research (ISRR), Dec. 2013.

[4] L. G. Torres, A. Kuntz, H. B. Gilbert, P. J. Swaney, R. J. Hendrick, R. J. Webster III,
and R. Alterovitz, “A motion planning approach to automatic obstacle avoidance during
concentric tube robot teleoperation,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pp. 2361–2367, May 2015.

[5] P. J. Swaney, A. W. Mahoney, A. A. Remirez, E. Lamers, B. I. Hartley, R. H. Feins, R. Alterovitz,
and R. J. Webster III, “Tendons, concentric tubes, and a bevel tip: three steerable robots
in one transoral lung access system,” in IEEE Int. Conf. Robotics and Automation (ICRA),
pp. 5378–5383, May 2015.

[6] Rethink Robotics, “Baxter research robot,” 2013.

[7] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots for medical applications:
A survey,” IEEE Trans. Robotics, vol. 31, no. 6, pp. 1261–1280, 2015.

[8] A. Kuntz, A. W. Mahoney, N. E. Peckman, P. L. Anderson, F. Maldonado, R. J. Webster,
and R. Alterovitz, “Motion planning for continuum reconfigurable incisionless surgical parallel
robots,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 6463–6469, Sept. 2017.

[9] D. C. Rucker, The mechanics of continuum robots: model-based sensing and control. PhD
thesis, Vanderbilt University, 2011.

[10] G. Fagogenis, C. Bergeles, and P. E. Dupont, “Adaptive nonparametric kinematic modeling
of concentric tube robots,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4324–4329, Oct. 2016.

[11] A. Kuntz, C. Bowen, C. Baykal, A. W. Mahoney, P. L. Anderson, F. Maldonado, R. J. Webster,
and R. Alterovitz, “Kinematic design optimization of a parallel surgical robot to maximize
anatomical visibility via motion planning,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pp. 926–933, IEEE, May 2018.

[12] A. Kuntz, L. G. Torres, R. H. Feins, R. J. Webster III, and R. Alterovitz, “Motion planning
for a three-stage multilumen transoral lung access system,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), pp. 3255–3261, Sept. 2015.

[13] A. Kuntz, P. J. Swaney, A. Mahoney, R. H. Feins, Y. Z. Lee, R. J. Webster III, and R. Alterovitz,
“Toward transoral peripheral lung access: Steering bronchoscope-deployed needles through
porcine lung tissue,” in Hamlyn Symposium on Medical Robotics, pp. 9–10, June 2016.

106

[14] A. Kuntz, C. Bowen, and R. Alterovitz, “Fast anytime motion planning in point clouds by
interleaving sampling and interior point optimization,” in Proc. International Symposium on
Robotics Research (ISRR), Dec. 2017.

[15] A. Kuntz, M. Fu, and R. Alterovitz, “Planning high-quality motions for concentric tube
robots in point clouds via parallel sampling and optimization,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), Nov 2019. to appear.

[16] R. Grassmann, V. Modes, and J. Burgner-Kahrs, “Learning the forward and inverse kinematics
of a 6-dof concentric tube continuum robot in se(3),” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), (Madrid, Spain), pp. 5125–5132, Oct. 2018.

[17] S. Baker and T. Kanade, “Shape-from-silhouette across time part I: Theory and algorithms,”
International Journal of Computer Vision, vol. 62, no. 3, pp. 221–247, 2005.

[18] A. Kuntz, A. Sethi, and R. Alterovitz, “Estimating the complete shape of concentric tube
robots via learning,” in Hamlyn Symposium on Medical Robotics, June 2019.

[19] G. Chirikjian, “Conformational modeling of continuum structures in robotics and structural
biology: A review,” Adv. Robot., vol. 29, no. 13, pp. 817–829, 2015.

[20] R. W. Light, Pleural Diseases. Lippincott Williams & Wilkins, 2007.

[21] M. Noppen, “The utility of thoracoscopy in the diagnosis and management of pleural disease,”
in Seminars in Respiratory and Critical Care Medicine, vol. 31, pp. 751–759, Thieme Medical
Publishers, 2010.

[22] R. J. Harris, M. S. Kavuru, A. C. Mehta, S. V. Medendorp, H. P. Wiedemann, T. J. Kirby,
and T. W. Bice, “The impact of thoracoscopy on the management of pleural disease,” Chest,
vol. 107, no. 3, pp. 845–852, 1995.

[23] A. W. Mahoney, H. B. Gilbert, and R. J. Webster III, “A review of concentric tube robots: Mod-
eling, control, design, planning, and sensing,” Encyclopedia of Medical Robotics, no. Minimally
Invasive Surgical Robotics, 2016.

[24] P. E. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and control of concentric-tube
robots,” IEEE Trans. Robotics, vol. 26, pp. 209–225, Apr. 2010.

[25] R. Xu, A. Asadian, A. S. Naidu, and R. V. Patel, “Position control of concentric-tube continuum
robots using a modified jacobian-based approach,” in IEEE Int. Conf. Robotics and Automation
(ICRA), pp. 5793–5798, May 2013.

[26] L. A. Lyons, R. J. Webster III, and R. Alterovitz, “Motion planning for active cannulas,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 801–806, Oct. 2009.

[27] N. J. Cowan, K. Goldberg, G. S. Chirikjian, G. Fichtinger, R. Alterovitz, K. B. Reed,
V. Kallem, W. Park, S. Misra, and A. M. Okamura, “Robotic needle steering: design, modeling,
planning, and image guidance,” in Surgical Robotics: System Applications and Visions (J. Rosen,
B. Hannaford, and R. M. Satava, eds.), ch. 23, pp. 557–582, Springer, 2011.

[28] K. Hauser, R. Alterovitz, N. Chentanez, A. M. Okamura, and K. Goldberg, “Feedback control
for steering needles through 3D deformable tissue using helical paths,” in Robotics: Science
and Systems (RSS), June 2009.

107

[29] M. C. Bernardes, B. V. Adorno, P. Poignet, and G. A. Borges, “Robot-assisted automatic
insertion of steerable needles with closed-loop imaging feedback and intraoperative trajectory
replanning,” Mechatronics, vol. 23, pp. 630–645, July 2013.

[30] K. M. Seiler, S. P. Singh, S. Sukkarieh, and H. Durrant-Whyte, “Using lie group symmetries
for fast corrective motion planning,” Int. J. Robotics Research, vol. 31, pp. 151–166, Dec. 2011.

[31] S. Patil, J. Burgner, R. J. Webster III, and R. Alterovitz, “Needle steering in 3-D via rapid
replanning,” IEEE Trans. Robotics, vol. 30, pp. 853–864, Aug. 2014.

[32] W. Sun, S. Patil, and R. Alterovitz, “High-frequency replanning under uncertainty using
parallel sampling-based motion planning,” IEEE Trans. Robotics, vol. 31, pp. 104–116, Feb.
2015.

[33] M. Christie, P. Olivier, and J.-M. Normand, “Camera control in computer graphics,” Computer
Graphics Forum, vol. 27, no. 8, pp. 2197–2218, 2008.

[34] J. Rosell, A. Perez, P. Cabras, and A. Rosell, “Motion planning for the virtual bronchoscopy,”
in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pp. 2932–2937, May 2012.

[35] D. Nieuwenhuisen and M. H. Overmars, “Motion planning for camera movements,” in IEEE
Int. Conf. Robotics and Automation (ICRA), pp. 3870–3876, 2004.

[36] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K. Kim, “Recovering 6d object pose
and predicting next-best-view in the crowd,” in IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3583–3592, 2016.

[37] P. Ammirato, P. Poirson, E. Park, J. Kosecka, and A. C. Berg, “A dataset for developing
and benchmarking active vision,” in IEEE Int. Conf. Robotics and Automation (ICRA),
pp. 1378–1385, May 2017.

[38] H. J. Johnson, M. McCormick, L. Ibáñez, and Insight Software Consortium, “The ITK software
guide.” Available: http://www.itk.org/ItkSoftwareGuide.pdf, Dec. 2013.

[39] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: Progress and prospects,”
in Algorithmic and Computational Robotics: New Directions, pp. 293–308, Natick, MA: AK
Peters, 2001.

[40] K. Shoemake, “Animating rotation with quaternion curves,” Computer Graphics (Proc. SIG-
GRAPH 1985), vol. 19, no. 3, pp. 245–254, 1985.

[41] M. B. Rubin, Cosserat Theories: Shells, Rods and Points. Springer Science & Business Media,
2000.

[42] S. S. Antman, Nonlinear Problems of Elasticity. Springer, 1995.

[43] L. Ingber, “Very fast simulated re-annealing,” Mathematical and Computer Modelling, vol. 12,
no. 8, pp. 967–973, 1989.

[44] C. Baykal and R. Alterovitz, “Asymptotically optimal design of piecewise cylindrical robots
using motion planning,” in Robotics: Science and Systems (RSS), Robotics: Science and
Systems Foundation, July 2017.

108

[45] C. Bergeles, A. H. Gosline, N. V. Vasilyev, P. Codd, P. J. del Nido, and P. E. Dupont,
“Concentric tube robot design and optimization based on task and anatomical constraints,”
IEEE Trans. Robotics, vol. 31, pp. 67–84, Feb. 2015.

[46] J. Burgner, H. B. Gilbert, and R. J. Webster III, “On the computational design of concentric
tube robots: Incorporating volume-based objectives,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), pp. 1185–1190, May 2013.

[47] J. Ha, F. C. Park, and P. E. Dupont, “Achieving elastic stability of concentric tube robots
through optimization of tube precurvature,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS), pp. 864–870, Sept. 2014.

[48] T. K. Morimoto, J. D. Greer, M. H. Hsieh, and A. M. Okamura, “Surgeon design interface for
patient-specific concentric tube robots,” in Proc. IEEE Int. Conf. Biomedical Robotics and
Biomechatronics (BioRob), pp. 41–48, 2016.

[49] L. G. Torres, R. J. Webster III, and R. Alterovitz, “Task-oriented design of concentric tube
robots using mechanics-based models,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems (IROS), pp. 4449–4455, Oct. 2012.

[50] C. Baykal, L. G. Torres, and R. Alterovitz, “Optimizing design parameters for sets of concentric
tube robots using sampling-based motion planning,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems (IROS), pp. 4381–4387, Sept. 2015.

[51] S. Niyaz, A. Kuntz, O. Salzman, R. Alterovitz, and S. S. Srinivasa, “Following surgical
trajectories with concentric tube robots via nearest-neighbor graphs,” in Proc. International
Symposium on Experimental Robotics (ISER), Nov. 2018.

[52] S. Niyaz, A. Kuntz, O. Salzman, R. Alterovitz, and S. S. Srinivasa, “Optimizing motion-planning
problem setup via bounded evaluation with application to following surgical trajectories,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Nov 2019. to appear.

[53] T. Liu and M. C. Cavusoglu, “Needle grasp and entry port selection for automatic execution
of suturing tasks in robotic minimally invasive surgery,” IEEE Transactions on Automation
Science and Engineering, vol. 13, pp. 552–563, Apr. 2016.

[54] Y. Hayashi, K. Misawa, and K. Mori, “Optimal port placement planning method for laparoscopic
gastrectomy,” International Journal of Computer Assisted Radiology and Surgery, pp. 1677–
1684, Mar. 2017.

[55] M. Feng, X. Jin, W. Tong, X. Guo, J. Zhao, and Y. Fu, “Pose optimization and port placement
for robot-assisted minimally invasive surgery in cholecystectomy,” The International Journal
of Medical Robotics and Computer Assisted Surgery, 2017.

[56] Y. Mulgaonkar, B. Araki, J.-s. Koh, L. Guerrero-Bonilla, D. M. Aukes, A. Makineni, M. T.
Tolley, D. Rus, R. J. Wood, and V. Kumar, “The flying monkey: a mesoscale robot that can
run, fly, and grasp,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pp. 4672–4679,
2016.

[57] C. Wright, A. Buchan, B. Brown, J. Geist, M. Schwerin, D. Rollinson, M. Tesch, and H. Choset,
“Design and architecture of the unified modular snake robot,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), pp. 4347–4354, May 2012.

109

[58] M. M. Plecnik, D. W. Haldane, J. K. Yim, and R. S. Fearing, “Design exploration and kinematic
tuning of a power modulating jumping monopod,” Journal of Mechanisms and Robotics, vol. 9,
no. 1, p. 11009, 2017.

[59] G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit, “An end-to-end system for accomplishing
tasks with modular robots.,” in Robotics: Science and Systems (RSS), 2016.

[60] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521,
no. 7553, pp. 467–475, 2015.

[61] L. Denarie, K. Molloy, M. Vaisset, T. Siméon, and J. Cortés, “Combining system design and
path planning,” in Workshop on the Algorithmic Foundations of Robotics (WAFR), Dec. 2016.

[62] J. Park, P. Chang, and J. Yang, “Task-oriented design of robot kinematics using the grid
method,” J. Advanced Robotics, vol. 17, no. 9, pp. 879–907, 2003.

[63] R. Vijaykumar, K. J. Waldron, and M. J. Tsai, “Geometric optimization of serial chain
manipulator structures for working volume and dexterity,” Int. J. Robotics Research, vol. 5,
no. 2, pp. 91–103, 1986.

[64] J.-P. Merlet, “Optimal design of robots,” in Robotics: Science and Systems (RSS), 2005.

[65] O. Chocron, “Evolutionary design of modular robotic arms,” Robotica, vol. 26, no. 3, pp. 323–330,
2008.

[66] L. K. Katragadda, A Language and Framework for Robotic Design. PhD thesis, Carnegie
Mellon University, 1997.

[67] C. Leger, Automated Synthesis and Optimization of Robot Configurations: An Evolutionary
Approach. PhD thesis, Carnegie Mellon University, 1999.

[68] D. Salle, P. Bidaud, and G. Morel, “Optimal design of high dexterity modular MIS instrument
for coronary artery bypass grafting,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pp. 1276–1281, Apr. 2004.

[69] O. Taylor and A. Rodriguez, “Optimal shape and motion planning for dynamic planar manipu-
lation,” in Robotics: Science and Systems (RSS), July 2017.

[70] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, “Joint optimization of robot design and
motion parameters using the implicit function theorem,” in Robotics: Science and Systems
(RSS), July 2017.

[71] M. Locatelli, “Simulated annealing algorithms for continuous global optimization,” in Handbook
of Global Optimization, pp. 179–229, Springer, 2002.

[72] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University Press, 2006.

[73] American Cancer Society, “Cancer facts & figures 2010,” tech. rep., American Cancer Society,
2010.

[74] G. Krishna and M. K. Gould, “Minimally invasive techniques for the diagnosis of peripheral
pulmonary nodules,” Current Opinion in Pulmonary Medicine, vol. 14, pp. 282–286, 2008.

110

[75] L. M. Perlmutt, W. W. Johnston, and N. R. Dunnick, “Percutaneous transthoracic needle
aspiration: a review,” American Journal of Roentgenology, vol. 152, pp. 451–455, 1989.

[76] R. S. Wiener, L. M. Schwartz, S. Woloshin, and H. Gilbert Welch, “Population-based risk for
complications after transthoracic needle lung biopsy of a pulmonary nodule: An analysis of
discharge records,” Annals of Internal Medicine, vol. 155, pp. 137–144, Aug. 2011.

[77] R. J. Hendrick, S. D. Herrell, and R. J. Webster III, “A multi-arm hand-held robotic system
for transurethral laser prostate surgery,” in IEEE Int. Conf. Robotics and Automation (ICRA),
pp. 2850–2855, May 2014.

[78] E. J. Butler, R. Hammond-Oakley, S. Chawarski, A. H. Gosline, P. Codd, T. Anor, J. R. Madsen,
P. E. Dupont, and J. Lock, “Robotic neuro-endoscope with concentric tube augmentation,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 2941–2946, Oct. 2012.

[79] R. J. Webster III, J. M. Romano, and N. J. Cowan, “Mechanics of precurved-tube continuum
robots,” IEEE Trans. Robotics, vol. 25, pp. 67–78, Feb. 2009.

[80] W. Park, J. S. Kim, Y. Zhou, N. J. Cowan, A. M. Okamura, and G. S. Chirikjian, “Diffusion-
based motion planning for a nonholonomic flexible needle model,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), pp. 4611–4616, Apr. 2005.

[81] R. J. Webster III, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic
modeling of needle steering,” Int. J. Robotics Research, vol. 25, pp. 509–525, May 2006.

[82] D. Minhas, J. A. Engh, M. M. Fenske, and C. Riviere, “Modeling of needle steering via
duty-cycled spinning,” in Proc. Int. Conf. IEEE Engineering in Medicine and Biology Society
(EMBS), pp. 2756–2759, Aug. 2007.

[83] K. B. Reed, A. Majewicz, V. Kallem, R. Alterovitz, K. Goldberg, N. J. Cowan, and A. M.
Okamura, “Robot-assisted needle steering,” IEEE Robotics and Automation Magazine, vol. 18,
pp. 35–46, Dec. 2011.

[84] N. Abolhassani, R. V. Patel, and M. Moallem, “Needle insertion into soft tissue: a survey,”
Medical Engineering & Physics, vol. 29, pp. 413–431, May 2007.

[85] W. Park, Y. Wang, and G. S. Chirikjian, “The path-of-probability algorithm for steering and
feedback control of flexible needles,” Int. J. Robotics Research, vol. 29, pp. 813–830, June 2010.

[86] D. C. Rucker, J. Das, H. B. Gilbert, P. J. Swaney, M. I. Miga, N. Sarkar, and R. J. Webster
III, “Sliding mode control of steerable needles,” IEEE Trans. Robotics, vol. 29, pp. 1289–1299,
July 2013.

[87] M. S. Branicky, M. M. Curtiss, J. A. Levine, and S. B. Morgan, “Rrts for nonlinear, discrete,
and hybrid planning and control,” in Proc. IEEE Conf. Decision and Control, pp. 657–663,
Dec. 2003.

[88] A. P. Kiraly, J. P. Helferty, E. A. Hoffman, G. Mclennan, and W. E. Higgins, “Three-dimensional
path planning for virtual bronchoscopy,” IEEE Trans. Medical Imaging, vol. 23, no. 9, pp. 1365–
1379, 2004.

[89] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library for collision and proximity
queries,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pp. 3859–3866, May
2012.

111

[90] P. J. Swaney, J. Burgner, H. B. Gilbert, and R. J. Webster III, “A flexure-based steerable
needle: high curvature with reduced tissue damage,” IEEE Trans. Biomedical Engineering,
vol. 60, pp. 906–909, Apr. 2013.

[91] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer,
D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and
R. Kikinis, “3d slicer as an image computing platform for the quantitative imaging network.,”
Magnetic Resonance Imaging, vol. 30, no. 9, pp. 1323–1341, 2012.

[92] M. Fu, A. Kuntz, R. J. Webster, and R. Alterovitz, “Safe motion planning for steerable needles
using cost maps automatically extracted from pulmonary images,” in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems (IROS), pp. 4942–4949, IEEE, Oct. 2018.

[93] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J.
Robotics Research, vol. 30, pp. 846–894, June 2011.

[94] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching trees: a fast marching
sampling-based method for optimal motion planning in many dimensions,” Int. J. Robotics
Research, 2015.

[95] N. D. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient optimization
techniques for efficient motion planning,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pp. 489–494, May 2009.

[96] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding locally optimal,
collision-free trajectories with sequential convex optimization,” in Robotics: Science and
Systems (RSS), June 2013.

[97] C. Park, J. Pan, and D. Manocha, “ITOMP: Incremental trajectory optimization for real-
time replanning in dynamic environments,” in Int. Conf. Automated Planning and Scheduling
(ICAPS), June 2012.

[98] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “STOMP: Stochastic
trajectory optimization for motion planning,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pp. 4569–4574, May 2011.

[99] S. Wright and J. Nocedal, Numerical Optimization. Springer Science, 1999.

[100] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, no. 1,
pp. 25–57, 2006.

[101] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic roadmaps for path
planning in high-dimensional configuration spaces,” IEEE Trans. Robotics and Automation,
vol. 12, pp. 566–580, Aug. 1996.

[102] R. Luna, I. A. Şucan, M. Moll, and L. E. Kavraki, “Anytime solution optimization for
sampling-based motion planning,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
pp. 5068–5074, May 2013.

[103] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” Int. J. Robotics Research,
vol. 20, pp. 378–400, May 2001.

112

[104] J. Denny and N. M. Amato, “Toggle PRM: Simultaneous mapping of C-free and C-obstacle
- a study in 2D,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
pp. 2632–2639, Sept. 2011.

[105] H. Kurniawati and D. Hsu, “Workspace importance sampling for probabilistic roadmap plan-
ning,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), vol. 2,
pp. 1618–1623, Sept. 2004.

[106] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based algorithms for
optimal motion planning,” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA),
pp. 2421–2428, May 2013.

[107] M. Kobilarov, “Cross-entropy motion planning,” International Journal of Robotics Research,
vol. 31, no. 7, pp. 855–871, 2012.

[108] K. Hauser, “Lazy collision checking in asymptotically-optimal motion planning,” in Proc. IEEE
Int. Conf. on Robotics and Automation (ICRA), pp. 2951–2957, May 2015.

[109] O. Salzman and D. Halperin, “Asymptotically near-optimal RRT for fast, high-quality motion
planning,” IEEE Trans. on Robotics, vol. 32, pp. 473–483, June 2016.

[110] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymptotically near-optimal motion
planning,” Int. J. Robotics Research, vol. 33, no. 1, pp. 18–47, 2014.

[111] W. Carriker, P. Khosla, and B. Krogh, “The use of simulated annealing to solve the mobile
manipulator path planning problem,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pp. 204–209, May 1990.

[112] R. Geraerts and M. Overmars, “Creating high-quality paths for motion planning,” in Int. J.
Robotics Research, vol. 26, pp. 845–863, 2007.

[113] D. Berenson, T. Siméon, and S. S. Srinivasa, “Addressing cost-space chasms in manipulation
planning,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pp. 4561–4568, May
2011.

[114] S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and S. Scherer, “Regionally
accelerated batch informed trees (rabit*): A framework to integrate local information into
optimal path planning,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), (Stockholm,
Sweden), pp. 4207–4214, May 2016.

[115] L. Li, X. Long, and M. A. Gennert, “BiRRTOpt: A combined sampling and optimizing motion
planner for humanoid robots,” in IEEE-RAS 16th Int. Conf. on Humanoid Robots (Humanoids),
pp. 469–476, Nov. 2016.

[116] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning library,” IEEE Robotics
and Automation Magazine, vol. 19, pp. 72–82, Dec. 2012.

[117] C. Bergeles and P. E. Dupont, “Planning stable paths for concentric tube robots,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 3077–3082, Nov. 2013.

[118] L. G. Torres, C. Baykal, and R. Alterovitz, “Interactive-rate motion planning for concentric
tube robots,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pp. 1915–1921, May
2014.

113

[119] M. Hayashibe, N. Suzuki, and Y. Nakamura, “Laser-scan endoscope system for intraoperative
geometry acquisition and surgical robot safety management,” Medical Image Analysis, vol. 10,
no. 4, pp. 509–519, 2006.

[120] C. Schmalz, F. Forster, A. Schick, and E. Angelopoulou, “An endoscopic 3d scanner based on
structured light,” Medical Image Analysis, vol. 16, no. 5, pp. 1063–1072, 2012.

[121] S. Leonard, A. Reiter, A. Sinha, M. Ishii, R. H. Taylor, and G. D. Hager, “Image-based
navigation for functional endoscopic sinus surgery using structure from motion,” in Medical
Imaging 2016: Image Processing, vol. 9784, p. 97840V, International Society for Optics and
Photonics, 2016.

[122] R. Wang, T. Price, Q. Zhao, J.-M. Frahm, J. Rosenman, and S. Pizer, “Improving 3d surface
reconstruction from endoscopic video via fusion and refined reflectance modeling,” in Medical
Imaging 2017: Image Processing, vol. 10133, p. 101330B, International Society for Optics and
Photonics, 2017.

[123] Q. Zhao, T. Price, S. Pizer, M. Niethammer, R. Alterovitz, and J. Rosenman, “The en-
doscopogram: A 3d model reconstructed from endoscopic video frames,” in Medical Image
Computing and Computer Assisted Intervention (MICCAI), Lecture Notes in Computer Science,
pp. 439–447, Oct. 2016.

[124] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” in Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[125] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise view selection for
unstructured multi-view stereo,” in European Conference on Computer Vision (ECCV), Oct.
2016.

[126] P. K. Agarwal, K. Fox, and O. Salzman, “An efficient algorithm for computing high-quality
paths amid polygonal obstacles,” ACM Transactions on Algorithms (TALG), vol. 14, no. 4,
p. 46, 2018.

[127] T. Yamamoto, N. Abolhassani, S. Jung, A. M. Okamura, and T. N. Judkins, “Augmented
reality and haptic interfaces for robot-assisted surgery,” The International Journal of Medical
Robotics and Computer Assisted Surgery, vol. 8, no. 1, pp. 45–56, 2012.

[128] T. Yamamoto, B. Vagvolgyi, K. Balaji, L. L. Whitcomb, and A. M. Okamura, “Tissue property
estimation and graphical display for teleoperated robot-assisted surgery,” in IEEE Int. Conf.
Robotics and Automation (ICRA), pp. 4239–4245, May 2009.

[129] A. Shademan, R. S. Decker, J. D. Opfermann, S. Leonard, A. Krieger, and P. C. W. Kim,
“Supervised autonomous robotic soft tissue surgery,” Science Translational Medicine, vol. 8,
no. 337, pp. 337ra64—-337ra64, 2016.

[130] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees (BIT*): Sampling-
based optimal planning via the heuristically guided search of implicit random geometric graphs,”
in IEEE Int. Conf. Robotics and Automation (ICRA), pp. 3067–3074, May 2015.

[131] K. Trovato and A. Popovic, “Collision-free 6d non-holonomic planning for nested cannulas,” in
Proc. SPIE Medical Imaging, vol. 7261, Mar. 2009.

114

[132] L. G. Torres and R. Alterovitz, “Motion planning for concentric tube robots using mechanics-
based models,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 5153–
5159, Sept. 2011.

[133] K. Leibrandt, C. Bergeles, and G.-Z. Yang, “Concentric tube robots: Rapid, stable path-
planning and guidance for surgical use,” IEEE Robotics & Automation Magazine, vol. 24, no. 2,
pp. 42–53, 2017.

[134] S. R. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse and
damped least squares methods,” IEEE Journal of Robotics and Automation, vol. 17, pp. 1–19,
2004.

[135] C. W. Wampler, “Manipulator inverse kinematic solutions based on vector formulations and
damped least-squares methods,” IEEE Trans. Systems, Man and Cybernetics, vol. 16, no. 1,
pp. 93–101, 1986.

[136] C. Bergeles, F. Y. Lin, and G. Z. Yang, “Concentric tube robot kinematics using neural
networks,” in Hamlyn Symposium on Medical Robotics, pp. 1–2, June 2015.

[137] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

115

