4 research outputs found

    An efficient 2D router architecture for extending the performance of inhomogeneous 3D NoC-based multi-core architectures

    Get PDF
    To meet the performance and scalability demands of the fast-paced technological growth towards exascale and Big-Data processing with the performance bottleneck of conventional metal based interconnects, alternative interconnect fabrics such as inhomogeneous three dimensional integrated Network-on-Chip (3D NoC) has emanated as a cost-effective solution for emerging multi-core design. However, these interconnects trade-off optimized performance for cost by restricting the number of area and power hungry 3D routers. Consequently, in this paper, we propose a low-latency adaptive router with a low-complexity single-cycle bypassing mechanism to alleviate the performance degradation due to the slow 2D routers in inhomogeneous 3D NoCs. By combining the low-complexity bypassing technique with adaptive routing, the proposed router is able to balance the traffic in the network to reduce the average packet latency under various traffic loads. Simulation shows that, the proposed router can reduce the average packet delay by an average of 45% in 3D NoCs

    Energy and performance-aware application mapping for inhomogeneous 3D networks-on-chip

    Get PDF
    Three dimensional Networks-on-Chip (3D NoCs) have evolved as an ideal solution to the communication demands and complexity of future high density many core architectures. However, the design practicality of 3D NoCs faces several challenges such as thermal issues, high power consumption and area overhead of 3D routers as well as high complexity and cost of vertical link implementation. To mitigate the performance and manufacturing cost of 3D NoCs, inhomogeneous architectures have emerged to combine 2D and 3D routers in 3D NoCs producing lower area and energy consumption while maintaining the performance of homogeneous 3D NoCs. Due to the limited number of vertical links, application mapping on inhomogeneous 3D NoCs can be complex. However, application mapping has a great impact on the performance and energy consumption of NoCs. This paper presents an energy and performance aware application mapping algorithm for inhomogeneous 3D NoCs. The algorithm has been evaluated with various realistic traffic patterns and compared with existing mapping algorithms. Experimental results show NoCs mapped with the proposed algorithm have lower energy consumption and significant reduction in packet delays compared to the existing algorithms and comparable average packet latency with Branch-and-Bound

    Turku Centre for Computer Science – Annual Report 2013

    Get PDF
    Due to a major reform of organization and responsibilities of TUCS, its role, activities, and even structures have been under reconsideration in 2013. The traditional pillar of collaboration at TUCS, doctoral training, was reorganized due to changes at both universities according to the renewed national system for doctoral education. Computer Science and Engineering and Information Systems Science are now accompanied by Mathematics and Statistics in newly established doctoral programs at both University of Turku and &Aring;bo Akademi University. Moreover, both universities granted sufficient resources to their respective programmes for doctoral training in these fields, so that joint activities at TUCS can continue. The outcome of this reorganization has the potential of proving out to be a success in terms of scientific profile as well as the quality and quantity of scientific and educational results.&nbsp; International activities that have been characteristic to TUCS since its inception continue strong. TUCS&rsquo; participation in European collaboration through EIT ICT Labs Master&rsquo;s and Doctoral School is now more active than ever. The new double degree programs at MSc and PhD level between University of Turku and Fudan University in Shaghai, P.R.China were succesfully set up and are&nbsp; now running for their first year. The joint students will add to the already international athmosphere of the ICT House.&nbsp; The four new thematic reseach programmes set up acccording to the decision by the TUCS Board have now established themselves, and a number of events and other activities saw the light in 2013. The TUCS Distinguished Lecture Series managed to gather a large audience with its several prominent speakers. The development of these and other research centre activities continue, and&nbsp; new practices and structures will be initiated to support the tradition of close academic collaboration.&nbsp; The TUCS&rsquo; slogan Where Academic Tradition Meets the Exciting Future has proven true throughout these changes. Despite of the dark clouds on the national and European economic sky, science and higher education in the field have managed to retain all the key ingredients for success. Indeed, the future of ICT and Mathematics in Turku seems exciting.</p

    Cross-layer fault tolerance in networks-on-chip

    Get PDF
    The design of Networks-on-Chip follows the Open Systems Interconnection (OSI) reference model. The OSI model defines strictly separated network abstraction layers and specifies their functionality. Each layer has layer-specific information about the network that can be exclusively accessed by the methods of the layer. Adhering to the strict layer boundaries, however, leads to methods of the individual layers working in isolation from each other. This lack of interaction between methods is disadvantageous for fault diagnosis and fault tolerance in Networks-on-Chip as it results in solutions that have a high effort in terms of the time and implementation costs required to deal with faults. For Networks-on-Chip cross-layer design is considered as a promising method to remedy these shortcomings. It removes the strict layer boundaries by the exchange of information between layers. This interaction enables methods of different layers to cooperate, and thus, deal with faults more efficiently. Furthermore, providing lower layer information to the software allows hardware methods to be implemented as software tasks resulting in a reduction of the hardware complexity. The goal of this dissertation is the investigation of cross-layer design for fault diagnosis and fault tolerance in Networks-on-Chip. For fault diagnosis a scheme is proposed that allows the interaction of protocol-based diagnosis of the transport layer with functional diagnosis of the network layer and structural diagnosis of the physical layer by exchanging diagnostic information. The techniques use this information for optimizing their own diagnosis process. For protocol-based diagnosis on the transport layer, a diagnosis protocol is proposed that is able to locate faulty links, switches, and crossbar connections. For this purpose, the technique utilizes available information of lower layers. As proof of concept for the proposed interaction scheme, the diagnosis protocol is combined with a functional and a structural diagnosis approach and the performance and diagnosis quality of the resulting combinations is investigated. The results show that the combinations of the diagnosis protocol with one of the lower layer techniques have a considerably reduced fault localization latency compared to the functional and the structural standalone techniques. This reduction, however, comes at the expense of a reduced diagnosis quality. In terms of fault tolerance, the focus of this dissertation is on the design and implementation of cross-layer approaches utilizing software methods to provide fault tolerance for network layer routings. Two approaches for different routings are presented. The requirements to provide information of lower layers to the software using the available Network-on-Chip resources and interfaces for data communication are discussed. The concepts of two mechanisms of the data link layer are presented for converting status information into communicable units and for preventing communication resources from being blocked. In the first approach, software-based packet rerouting is proposed. By incorporating information from different layers, this approach provides fault tolerance for deterministic network layer routings. As specialization of software-based rerouting, dimension-order XY rerouting is presented. In the second approach, a reconfigurable routing for Networks-on-Chip with logical hierarchy is proposed in which cross-layer interaction is used to enable hierarchical units to manage themselves autonomously and to reconfigure the routing. Both approaches are evaluated regarding their performance as well as their implementation costs. In a final study, the cross-layer diagnosis technique and cross-layer fault tolerance approaches are combined. The information obtained by the diagnosis technique is used by the fault tolerance approaches for packet rerouting or for routing reconfiguration. The combinations are evaluated regarding their impact on Networks-on-Chip performance. The results show that the crosslayer information exchange with software has a considerable impact on performance when the amount of information becomes too large. In case of crosslayer diagnosis, however, the impact on Networks-on-Chip performance is significantly lower compared to functional and structural diagnosis
    corecore