3 research outputs found

    Optimal low-complexity detection for space division multiple access wireless systems

    Get PDF
    A symbol detector for wireless systems using space division multiple access (SDMA) and orthogonal frequency division multiplexing (OFDM) is derived. The detector uses a sphere decoder (SD) and has much less computational complexity than the naive maximum likelihood (ML) detector. We also show how to detect non-constant modulus signals with constrained least squares (CLS) receiver, which is designed for constant modulus (unitary) signals. The new detector outperforms existing suboptimal detectors for both uncoded and coded systems

    Optimal low-complexity detection for space division multiple access wireless systems

    Full text link

    Low-Power Embedded Design Solutions and Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design

    Get PDF
    This dissertation presents three design solutions to support several key system-on-chip (SoC) issues to achieve low-power and high performance. These are: 1) joint source and channel decoding (JSCD) schemes for low-power SoCs used in portable multimedia systems, 2) efficient on-chip interconnect architecture for massive multimedia data streaming on multiprocessor SoCs (MPSoCs), and 3) data processing architecture for low-power SoCs in distributed sensor network (DSS) systems and its implementation. The first part includes a low-power embedded low density parity check code (LDPC) - H.264 joint decoding architecture to lower the baseband energy consumption of a channel decoder using joint source decoding and dynamic voltage and frequency scaling (DVFS). A low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder design that minimizes energy for portable, wireless embedded systems is also designed. In the second part, a link-level quality of service (QoS) scheme using unequal error protection (UEP) for low-power network-on-chip (NoC) and low latency on-chip network designs for MPSoCs is proposed. This part contains WaveSync, a low-latency focused network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) designs and a simultaneous dual-path routing (SDPR) scheme utilizing path diversity present in typical mesh topology network-on-chips. SDPR is akin to having a higher link width but without the significant hardware overhead associated with simple bus width scaling. The last part shows data processing unit designs for embedded SoCs. We propose a data processing and control logic design for a new radiation detection sensor system generating data at or above Peta-bits-per-second level. Implementation results show that the intended clock rate is achieved within the power target of less than 200mW. We also present a digital signal processing (DSP) accelerator supporting configurable MAC, FFT, FIR, and 3-D cross product operations for embedded SoCs. It consumes 12.35mW along with 0.167mm2 area at 333MHz
    corecore