5 research outputs found

    Optimal Joint Source and Relay Beamforming for MIMO Relays with Direct Link

    Get PDF
    In this letter, we investigate the optimal structure of the source precoding matrix and the relay amplifying matrix for non-regenerative multiple-input multiple-output (MIMO) relay communication systems with the direct source-destination link. We show that both the optimal source precoding matrix and the optimal relay amplifying matrix have a beamforming structure. Based on this structure, an iterative joint source and relay beamforming algorithm is developed to minimize the mean-squared error (MSE) of the signal waveform estimation. Numerical example demonstrates an improved performance of the proposed algorithm

    Precoding Method Interference Management for Quasi-EVD Channel

    Get PDF
    The Cholesky decomposition-block diagonalization (CD-BD) interference alignment (IA) for a multiuser multiple input multiple output (MU-MIMO) relay system is proposed, which designs precoders for the multiple access channel (MAC) by employing the singular value decomposition (SVD) as well as the mean square error (MSE) detector for the broadcast Hermitian channel (BHC) taken advantage of in our design. Also, in our proposed CD-BD IA algorithm, the relaying function is made use to restructure the quasieigenvalue decomposition (quasi-EVD) equivalent channel. This approach used for the design of BD precoding matrix can significantly reduce the computational complexity and proposed algorithm can address several optimization criteria, which is achieved by designing the precoding matrices in two steps. In the first step, we use Cholesky decomposition to maximize the sum-of-rate (SR) with the minimum mean square error (MMSE) detection. In the next step, we optimize the system BER performance with the overlap of the row spaces spanned by the effective channel matrices of different users. By iterating the closed form of the solution, we are able not only to maximize the achievable sum-of-rate (ASR), but also to minimize the BER performance at a high signal-to-noise ratio (SNR) region

    Joint source and relay optimization for two-way linear non-regenerative MIMO relay communications

    Get PDF
    In this paper, we investigate the challenging problem of joint source and relay optimization for two-way linear non-regenerative multiple-input multiple-output (MIMO) relay communication systems. We derive the optimal structure of the source and relay precoding matrices when linear minimal mean-squared error (MMSE) receivers are used at both destinations in the relay system. We show that for a broad class of frequently used objective functions for MIMO communications such as the MMSE, the maximal mutual information (MMI), and the minimax MSE, the optimal relay and source matrices have a general beamforming structure. This result includes existing works as special cases. Based on this optimal structure, a new iterative algorithm is developed to jointly optimize the relay and source matrices. We also propose a novel suboptimal relay precoding matrix design which significantly reduces the computational complexity of the optimal design with only a marginal performance degradation. Interestingly, we show that this suboptimal relay matrix is indeed optimal for some special cases. The performance of the proposed algorithms are demonstrated by numerical simulations. It is shown that the novel minimax MSE-based two-way relay system has a better bit-error-rate (BER) performance compared with existing two-way relay systems using the MMSE and the MMI criteria
    corecore