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Optimal Joint Source and Relay Beamforming for
MIMO Relays with Direct Link

Yue Rong, Member, IEEE

Abstract—In this letter, we investigate the optimal structure
of the source precoding matrix and the relay amplifying matrix
for non-regenerative multiple-input multiple-output (MIMO)
relay communication systems with the direct source-destination
link. We show that both the optimal source precoding matrix
and the optimal relay amplifying matrix have a beamforming
structure. Based on this structure, an iterative joint source
and relay beamforming algorithm is developed to minimize the
mean-squared error (MSE) of the signal waveform estimation.
Numerical example demonstrates an improved performance of
the proposed algorithm.

Index Terms—Beamforming, direct link, MIMO relay, linear
non-regenerative relay.

I. INTRODUCTION

RECENTLY, non-regenerative multiple-input multiple-
output (MIMO) relay communications have attracted

much research interest. For a MIMO relay system, there are
two independent links between the source and the destination
nodes: the source-relay-destination link and the direct source-
destination link. Many works studied the optimal relay ampli-
fying matrix for the source-relay-destination channel. In [1]
and [2], the optimal relay amplifying matrix which maximizes
the source-destination mutual information (MI) was derived.
In [3] and [4], the relay amplifying matrix was designed
to minimize the mean-squared error (MSE) of the signal
waveform estimation at the destination. A unified framework
was developed in [5] to jointly optimize the source precoding
matrix and the relay amplifying matrix for a broad class of
objective functions. All these works did not consider the direct
source-destination link.

In practice, the direct source-destination link provides valu-
able spatial diversity to the MIMO relay system and should not
be ignored. Obviously, the relay amplifying matrix designed
for the source-relay-destination link only [1]-[4] is not optimal
when the direct link is included. Recently, it was shown in [6]
that with the direct link, the optimal relay amplifying matrix
has a general beamforming structure. In [7], an alternating
algorithm was proposed to optimize both the source and relay
matrices. However, the algorithm in [7] is strictly suboptimal
and has a high computational complexity, since the optimal
beamforming structure of the relay amplifying matrix was
not exploited. Moreover, the structure of the optimal source
precoding matrix with the direct link was not investigated in
[6] and [7].
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In this letter, we derive the optimal structure of the source
precoding matrix when the direct link is included. Interest-
ingly, we prove that the source precoding matrix has a transmit
beamforming structure. By exploiting the optimal structure
of the source and relay matrices, we develop an iterative
joint source and relay beamforming algorithm to minimize
the MSE of the signal waveform estimation at the destination
node. Numerical example demonstrates the effectiveness of
our algorithm.

II. SYSTEM MODEL

We consider a three-node MIMO communication system
where the source node transmits information to the destination
node with the aid of one relay node. The source, relay, and
destination nodes are equipped with 𝑁𝑠, 𝑁𝑟, and 𝑁𝑑 antennas,
respectively. Due to its merit of simplicity, a non-regenerative
strategy is applied at the relay node to amplify and forward the
received signals. The signal vector received at the destination
node over two consecutive time slots is

y(𝑡)≜
[
y𝑑(𝑡+ 1)
y𝑑(𝑡)

]

=

[
H𝑟𝑑FH𝑠𝑟

H𝑠𝑑

]
Bs(𝑡) +

[
H𝑟𝑑Fv𝑟(𝑡) + v𝑑(𝑡+ 1)

v𝑑(𝑡)

]
(1)

where y𝑑(𝑡+1) and y𝑑(𝑡) are 𝑁𝑑× 1 signal vectors received
at the destination through the source-relay-destination link
and the direct source-destination link, respectively, H𝑠𝑑, H𝑟𝑑,
H𝑠𝑟 are the channel matrices for the source-destination, relay-
destination, and source-relay links with dimension 𝑁𝑑 ×𝑁𝑠,
𝑁𝑑 × 𝑁𝑟, 𝑁𝑟 × 𝑁𝑠, respectively, s(𝑡) is the 𝑁𝑏 × 1 source
signal vector, F is the 𝑁𝑟 ×𝑁𝑟 relay amplifying matrix, B is
the 𝑁𝑠×𝑁𝑏 source precoding matrix, v𝑟(𝑡) is the 𝑁𝑟×1 noise
vector at the relay, v𝑑(𝑡+ 1) and v𝑑(𝑡) are the 𝑁𝑑 × 1 noise
vectors at the destination at time 𝑡+ 1 and 𝑡, respectively.

We assume that the source signal vector satisfies
E[s(𝑡)(s(𝑡))𝐻 ] = I𝑁𝑏

and all noises are independent and
identically distributed (i.i.d.) additive white Gaussian noise
(AWGN) with zero mean and unit variance. Here E[⋅] stands
for the statistical expectation, I𝑛 is an 𝑛× 𝑛 identity matrix,
and (⋅)𝐻 denotes the Hermitian transpose.

When a linear receiver is used at the destination node, the
estimated signal waveform is given by

ŝ(𝑡) = W𝐻y(𝑡) (2)

where W is a 2𝑁𝑑 ×𝑁𝑏 weight matrix. The receiver weight
matrix which minimizes the signal waveform estimation error
is the Wiener filter given by [8]

W =
(
H̄H̄𝐻 + C̄

)−1
H̄ (3)
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where

H̄≜
[
H𝑟𝑑FH𝑠𝑟

H𝑠𝑑

]
B, C̄≜

[
H𝑟𝑑FF

𝐻H𝐻
𝑟𝑑 + I𝑁𝑑

0𝑁𝑑×𝑁𝑑

0𝑁𝑑×𝑁𝑑
I𝑁𝑑

]
.

Here 0𝑚×𝑛 denotes an 𝑚 × 𝑛 matrix with all zeros entries,
and (⋅)−1 denotes the matrix inversion. Using (1)-(3), the MSE
matrix E of the signal waveform estimation is given by

E = E
[
(ŝ(𝑡)− s(𝑡))(ŝ(𝑡)− s(𝑡))𝐻

]
=

[
I𝑁𝑏

+B𝐻H𝐻
𝑠𝑑H𝑠𝑑B+B𝐻H𝐻

𝑠𝑟F
𝐻H𝐻

𝑟𝑑

×(H𝑟𝑑FF
𝐻H𝐻

𝑟𝑑 + I𝑁𝑑
)−1H𝑟𝑑FH𝑠𝑟B

]−1
. (4)

III. OPTIMAL JOINT SOURCE AND RELAY BEAMFORMING

With the direct link, the relay amplifying matrix and source
precoding matrix optimization problem is written as

min
F,B

tr(E) (5)

s.t. tr
(
F(H𝑠𝑟BB𝐻H𝐻

𝑠𝑟 + I𝑁𝑟 )F
𝐻
) ≤ 𝑃𝑟 (6)

tr
(
BB𝐻

) ≤ 𝑃𝑠 (7)

where tr(⋅) denotes the trace of a matrix, (6) and (7) is
the power constraint at the relay node and the source node,
respectively, and 𝑃𝑟 > 0, 𝑃𝑠 > 0 is the power budget available
at the relay and source node, respectively. The problem (5)-
(7) is highly nonconvex and a closed-form expression of the
optimal F and B is intractable. In this letter, we develop an
iterative algorithm to optimize F and B.

First we derive the optimal structure of F and B. For a given
B, the relay matrix F is optimized by solving the following
problem

min
F

tr(E) (8)

s.t. tr
(
F(H𝑠𝑟BB𝐻H𝐻

𝑠𝑟 + I𝑁𝑟)F
𝐻
) ≤ 𝑃𝑟 . (9)

Let us introduce the following singular value decomposition

H𝑠𝑟B = U𝑠Λ𝑠V
𝐻
𝑠 , H𝑟𝑑 = U𝑟Λ𝑟V

𝐻
𝑟

where Λ𝑠 and Λ𝑟 are 𝑅𝑠 ×𝑅𝑠 and 𝑅𝑟 ×𝑅𝑟 square diagonal
matrices (i.e., zero singularvalues are excluded). Here 𝑅𝑠 ≜
rank(H𝑠𝑟B), 𝑅𝑟 ≜ rank(H𝑟𝑑), rank(⋅) denotes the rank of
a matrix. Based on the theorem in [6], the optimal F is given
by

F = V𝑟AU𝐻
𝑠 . (10)

It can be seen from (10) that F has a generalized beamforming
structure. The relay first performs receive beamforming using
the Hermitian transpose of the left singular matrix of the
effective source-relay channel H𝑠𝑟B. Then the relay conducts
a linear precoding operation using A. Finally, a transmit
beamforming is performed by the relay using the right singular
matrix of the relay-destination channel H𝑟𝑑.

Substituting (10) back into (8) and (9), the optimal A can
be obtained by solving the following optimization problem

min
A

tr
([
I𝑁𝑏

+B𝐻(H𝐻
𝑠𝑑H𝑠𝑑 +H𝐻

𝑠𝑟H𝑠𝑟)B

−V𝑠Λ𝑠

(
A𝐻Λ2

𝑟A+ I𝑅𝑠

)−1
Λ𝑠V

𝐻
𝑠

]−1
)

(11)

s.t. tr
(
A(Λ2

𝑠 + I𝑅𝑠)A
𝐻
) ≤ 𝑃𝑟 (12)

where the matrix inversion lemma is applied to obtain the
objective function in (11) from (4). For 𝑁𝑏 ≥ 2, the problem
(11)-(12) does not have a closed-form solution for general
H𝑠𝑑. We should resort to numerical methods, such as the
projected gradient method [9] to solve (11)-(12).

For a fixed F, the source precoding matrix B is optimized
by solving the following problem

min
B

tr
(
[I𝑁𝑏

+B𝐻Ψ1B]−1
)

(13)

s.t. tr(B𝐻Ψ2B) ≤ 𝑃𝑟 (14)

tr(B𝐻B) ≤ 𝑃𝑠 (15)

where Ψ1 ≜ H𝐻
𝑠𝑑H𝑠𝑑 + H𝐻

𝑠𝑟F
𝐻H𝐻

𝑟𝑑(H𝑟𝑑FF
𝐻H𝐻

𝑟𝑑 +
I𝑁𝑑

)−1H𝑟𝑑FH𝑠𝑟, Ψ2 ≜ H𝐻
𝑠𝑟F

𝐻FH𝑠𝑟, 𝑃𝑟 ≜ 𝑃𝑟− tr(FF𝐻).
The following Theorem establishes the structure of the optimal
B.

THEOREM 1: The optimal B as the solution to the problem
(13)-(15) is given by

B = M−𝐻V1D (16)

where MM𝐻 = 𝜇1I𝑁𝑠 + 𝜇2Ψ2, D is an 𝑁𝑏 × 𝑁𝑏 diagonal
matrix, M−1Ψ1M

−𝐻 = VΣV𝐻 , and V1 contains 𝑁𝑏

columns of V associated with eigenvalues that are greater than
one. Here Σ is the diagonal eigenvalue matrix, and 𝜇1 ≥ 0,
𝜇2 ≥ 0 are the Lagrange multipliers.

PROOF: The Lagrangian function associated with the prob-
lem (13)-(15) is given by

ℒ = tr([I𝑁𝑏
+B𝐻Ψ1B]−1) + 𝜇1(tr(B

𝐻B)− 𝑃𝑠)

+𝜇2(tr(B
𝐻Ψ2B)− 𝑃𝑟)

= tr([I𝑁𝑏
+B𝐻Ψ1B]−1) + tr(B𝐻MM𝐻B)

−𝜇1𝑃𝑠 − 𝜇2𝑃𝑟. (17)

Making the derivative of ℒ with respect to B be zero, we
obtain

∂ℒ
∂B

= −[
I𝑁𝑏

+B𝐻Ψ1B
]−2

B𝐻Ψ1 +B𝐻MM𝐻 = 0 (18)

where the derivatives of ∂tr(ΘX−1)/∂X = −(X−1ΘX−1)𝑇

and ∂tr(ΘX)/∂X = Θ𝑇 are used. Since M is non-singular,
(18) can be equivalently written as

−[
I𝑁𝑏

+B𝐻MM−1Ψ1M
−𝐻M𝐻B

]−2

×B𝐻MM−1Ψ1M
−𝐻 +B𝐻M = 0. (19)

Substituting M−1Ψ1M
−𝐻 = VΣV𝐻 back into (19) and

assuming M𝐻B = V1T, where T is non-singular, we have

−[
I𝑁𝑏

+T𝐻Σ1T
]−2

T𝐻Σ1V
𝐻
1 +T𝐻V𝐻

1 = 0 (20)

where Σ1 contains the 𝑁𝑏 eigenvalues that are greater than 1.
Applying the matrix identity of (I𝑚 +XX𝐻)−1X = X(I𝑛 +
X𝐻X)−1 for any 𝑚× 𝑛 matrix X, we have

[
I𝑁𝑏

+T𝐻Σ1T
]−2

T𝐻Σ
1
2
1 = T𝐻Σ

1
2
1

[
I𝑁𝑏

+Σ
1
2
1 TT𝐻Σ

1
2
1

]−2

.

(21)
Using (21), (20) is equivalent to

−T𝐻Σ
1
2
1

[
I𝑁𝑏

+Σ
1
2
1 TT𝐻Σ

1
2
1

]−2

Σ
1
2 +T𝐻 = 0. (22)
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Fig. 1. BER versus SNRsr. 𝑁𝑠 = 𝑁𝑑 = 2, 𝑁𝑟 = 6, SNRrd = 20dB,
SNRsd = SNRsr − 10dB.

Solving (22) for T, we obtain TT𝐻 = Σ
− 1

2
1 −Σ−1

1 , which
is valid since the diagonal elements of Σ1 are greater than

1. Consequently, we have T = (Σ
− 1

2
1 − Σ−1

1 )
1
2 , and B =

M−𝐻V1(Σ
− 1

2
1 − Σ−1

1 )
1
2 . Thus, we prove Theorem 1 with

D = (Σ
− 1

2
1 −Σ−1

1 )
1
2 . □

From (16) we see that B has a transmit beamforming struc-
ture, where the directions of the beams are given by M−𝐻V1,
while D represents the power allocation at each beam. The un-
known Lagrange multipliers 𝜇1 and 𝜇2 in (16) can be obtained
by solving the dual optimization problem associated with the
problem (13)-(15) as explained in the following. Substituting
(16) into (17) we have ℒ = tr(2Σ

− 1
2

1 −Σ−1
1 )−𝜇1𝑃𝑠−𝜇2𝑃𝑟.

The dual optimization problem of the original problem (13)-
(15) is given by

max
𝜇1≥0,𝜇2≥0

tr(2Σ
− 1

2
1 −Σ−1

1 )− 𝜇1𝑃𝑠 − 𝜇2𝑃𝑟. (23)

Since the dual problem is convex, the problem (23) can be
efficiently solved by the interior-point method [10].

We have proved that in order to jointly minimize tr(E),
both the optimal B and F have a general beamforming
structure as given in (10) and (16), respectively. Exploiting
this optimal structure, the problem (5)-(7) can be solved by
an iterative algorithm. This algorithm is first initialized at
B =

√
𝑃𝑠/𝑁𝑠I𝑁𝑠 . Then F is updated by solving the problem

(11)-(12) with a fixed B, and B is updated by solving the
problem (13)-(15) with a given F. The updating of F and B
is operated in an alternating fashion. Note that the conditional
updates of F and B may either decrease or maintain but cannot
increase the objective function tr(E). Monotonic convergence
of F and B follows directly from this observation.

IV. NUMERICAL EXAMPLE

We simulate a MIMO relay system with 𝑁𝑠 = 𝑁𝑑 = 2
and 𝑁𝑟 = 6. All channel matrices have Gaussian entries
with zero-mean and variances 𝜎2

𝑠/𝑁𝑠, 𝜎2
𝑟/𝑁𝑟, 𝜎2

𝑑/𝑁𝑠 for
H𝑠𝑟, H𝑟𝑑, and H𝑠𝑑, respectively. Consequently, the signal-
to-noise ratios (SNRs) are defined as SNRsr ≜ 𝜎2

𝑠𝑃𝑠/𝑁𝑠,

SNRrd ≜ 𝜎2
𝑟𝑃𝑟/𝑁𝑟, SNRsd ≜ 𝜎2

𝑑𝑃𝑠/𝑁𝑠 for the source-
relay, relay-destination, and source-destination links, respec-
tively. We simulate a scenario where the distance between the
relay and destination nodes is fixed, while the source-relay
distance (and thus also the source-destination distance) are
varying. In particular, we set SNRrd = 20dB and SNRsd =
SNRsr − 10dB. All simulation results are averaged over 1000
independent channel realizations.

We compare the performance of the proposed iterative joint
beamforming (JointBF) algorithm with the suboptimal (Sub-
Opt) algorithm in [5] which optimizes only the source-relay-
destination link, and the relay-only beamforming (RelayBF)
algorithm in [6]. For both the JointBF and RelayBF algo-
rithms, the projected gradient method is applied to optimize
A in the relay amplifying matrix.

Fig. 1 shows the performance of three algorithms in terms
of bit-error-rate (BER) versus SNRsr using the QPSK con-
stellation. It can be seen that the SubOpt algorithm has the
worst performance, since it does not consider the direct link.
The JointBF algorithm outperforms the other two algorithms
in the whole SNRsr range, since it jointly optimizes the source
and relay matrices. In fact, it achieves a higher diversity order
than the other algorithms.

V. CONCLUSION

In this letter, we have proved the optimal beamforming
structure of the source precoding matrix for non-regenerative
MIMO relay systems with the direct source-destination link.
An iterative joint source and relay beamforming algorithm
is developed to minimize the MSE of the signal waveform
estimation.
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