81 research outputs found

    Asymptotically Optimal Anomaly Detection via Sequential Testing

    Full text link
    Sequential detection of independent anomalous processes among K processes is considered. At each time, only M processes can be observed, and the observations from each chosen process follow two different distributions, depending on whether the process is normal or abnormal. Each anomalous process incurs a cost per unit time until its anomaly is identified and fixed. Switching across processes and state declarations are allowed at all times, while decisions are based on all past observations and actions. The objective is a sequential search strategy that minimizes the total expected cost incurred by all the processes during the detection process under reliability constraints. Low-complexity algorithms are established to achieve asymptotically optimal performance as the error constraints approach zero. Simulation results demonstrate strong performance in the finite regime.Comment: 28 pages, 5 figures, part of this work will be presented at the 52nd Annual Allerton Conference on Communication, Control, and Computing, 201

    Quickest anomaly detection: A case of active hypothesis testing

    Full text link
    Abstract — The problem of quickest detection of an anomalous process among M processes is considered. At each time, a subset of the processes can be observed, and the observations follow two different distributions, depending on whether the process is normal or abnormal. The objective is a sequential search strategy that minimizes the expected detection time subject to an error probability constraint. This problem can be considered as a special case of active hypothesis testing first considered by Chernoff in 1959, where a randomized test was proposed and shown to be asymptotically optimal. For the special case considered in this paper, we show that a simple deterministic test achieves asymptotic optimality and offers better performance in the finite regime. Index Terms—Sequential detection, hypothesis testing, dy-namic search. I

    Active Anomaly Detection in Heterogeneous Processes

    Full text link
    An active inference problem of detecting anomalies among heterogeneous processes is considered. At each time, a subset of processes can be probed. The objective is to design a sequential probing strategy that dynamically determines which processes to observe at each time and when to terminate the search so that the expected detection time is minimized under a constraint on the probability of misclassifying any process. This problem falls into the general setting of sequential design of experiments pioneered by Chernoff in 1959, in which a randomized strategy, referred to as the Chernoff test, was proposed and shown to be asymptotically optimal as the error probability approaches zero. For the problem considered in this paper, a low-complexity deterministic test is shown to enjoy the same asymptotic optimality while offering significantly better performance in the finite regime and faster convergence to the optimal rate function, especially when the number of processes is large. The computational complexity of the proposed test is also of a significantly lower order.Comment: This work has been accepted for publication on IEEE Transactions on Information Theor

    Dynamic Intrusion Detection in Resource-Constrained Cyber Networks

    Full text link
    We consider a large-scale cyber network with N components (e.g., paths, servers, subnets). Each component is either in a healthy state (0) or an abnormal state (1). Due to random intrusions, the state of each component transits from 0 to 1 over time according to certain stochastic process. At each time, a subset of K (K < N) components are checked and those observed in abnormal states are fixed. The objective is to design the optimal scheduling for intrusion detection such that the long-term network cost incurred by all abnormal components is minimized. We formulate the problem as a special class of Restless Multi-Armed Bandit (RMAB) process. A general RMAB suffers from the curse of dimensionality (PSPACE-hard) and numerical methods are often inapplicable. We show that, for this class of RMAB, Whittle index exists and can be obtained in closed form, leading to a low-complexity implementation of Whittle index policy with a strong performance. For homogeneous components, Whittle index policy is shown to have a simple structure that does not require any prior knowledge on the intrusion processes. Based on this structure, Whittle index policy is further shown to be optimal over a finite time horizon with an arbitrary length. Beyond intrusion detection, these results also find applications in queuing networks with finite-size buffers.Comment: 9 pages, 5 figure
    • …
    corecore