7,265 research outputs found

    Vertex identifying codes for the n-dimensional lattice

    Full text link
    An rr-identifying code on a graph GG is a set CV(G)C\subset V(G) such that for every vertex in V(G)V(G), the intersection of the radius-rr closed neighborhood with CC is nonempty and different. Here, we provide an overview on codes for the nn-dimensional lattice, discussing the case of 1-identifying codes, constructing a sparse code for the 4-dimensional lattice as well as showing that for fixed nn, the minimum density of an rr-identifying code is Θ(1/rn1)\Theta(1/r^{n-1}).Comment: 10p

    On Identifying and Locating-Dominating Codes in the Infinite King Grid

    Get PDF
    Siirretty Doriast

    An improved lower bound for (1,<=2)-identifying codes in the king grid

    Full text link
    We call a subset CC of vertices of a graph GG a (1,)(1,\leq \ell)-identifying code if for all subsets XX of vertices with size at most \ell, the sets {cCuX,d(u,c)1}\{c\in C |\exists u \in X, d(u,c)\leq 1\} are distinct. The concept of identifying codes was introduced in 1998 by Karpovsky, Chakrabarty and Levitin. Identifying codes have been studied in various grids. In particular, it has been shown that there exists a (1,2)(1,\leq 2)-identifying code in the king grid with density 3/7 and that there are no such identifying codes with density smaller than 5/12. Using a suitable frame and a discharging procedure, we improve the lower bound by showing that any (1,2)(1,\leq 2)-identifying code of the king grid has density at least 47/111

    Optimal local identifying and local locating-dominating codes

    Full text link
    We introduce two new classes of covering codes in graphs for every positive integer rr. These new codes are called local rr-identifying and local rr-locating-dominating codes and they are derived from rr-identifying and rr-locating-dominating codes, respectively. We study the sizes of optimal local 1-identifying codes in binary hypercubes. We obtain lower and upper bounds that are asymptotically tight. Together the bounds show that the cost of changing covering codes into local 1-identifying codes is negligible. For some small nn optimal constructions are obtained. Moreover, the upper bound is obtained by a linear code construction. Also, we study the densities of optimal local 1-identifying codes and local 1-locating-dominating codes in the infinite square grid, the hexagonal grid, the triangular grid, and the king grid. We prove that seven out of eight of our constructions have optimal densities

    On Vertex Identifying Codes For Infinite Lattices

    Get PDF
    PhD Thesis--A compilation of the papers: "Lower Bounds for Identifying Codes in Some Infinite Grids", "Improved Bounds for r-identifying Codes of the Hex Grid", and "Vertex Identifying Codes for the n-dimensional Lattics" along with some other resultsComment: 91p

    Finding codes on infinite grids automatically

    Full text link
    We apply automata theory and Karp's minimum mean weight cycle algorithm to minimum density problems in coding theory. Using this method, we find the new upper bound 53/1260.420653/126 \approx 0.4206 for the minimum density of an identifying code on the infinite hexagonal grid, down from the previous record of 3/70.42863/7 \approx 0.4286.Comment: 18 pages, 5 figure

    Fault-Tolerant Detection Systems on the King's Grid

    Full text link
    A detection system, modeled in a graph, uses "detectors" on a subset of vertices to uniquely identify an "intruder" at any vertex. We consider two types of detection systems: open-locating-dominating (OLD) sets and identifying codes (ICs). An OLD set gives each vertex a unique, non-empty open neighborhood of detectors, while an IC provides a unique, non-empty closed neighborhood of detectors. We explore their fault-tolerant variants: redundant OLD (RED:OLD) sets and redundant ICs (RED:ICs), which ensure that removing/disabling at most one detector guarantees the properties of OLD sets and ICs, respectively. This paper focuses on constructing optimal RED:OLD sets and RED:ICs on the infinite king's grid, and presents the proof for the bounds on their minimum densities; [3/10, 1/3] for RED:OLD sets and [3/11, 1/3] for RED:ICs

    On location, domination and information retrieval

    Get PDF
    The thesis is divided into two main branches: identifying and locatingdominating codes, and information retrieval. The former topics are motivated by the aim to locate objects in sensor networks (or other similar applications) and the latter one by the need to retrieve information in memories such as DNA data storage systems. Albeit the underlying applications, the study on these topics mainly belongs to discrete mathematics; more specically, to the elds of coding and graph theory. The sensor networks are usually represented by graphs where vertices represent the monitored locations and edges the connections between the locations. Moreover, the locations of the sensors are determined by a code. Furthermore, the desired properties of the sensor network are deeply linked with the properties of the underlying code. The number of errors in reading the data is abundant in the DNA data storage systems. In particular, there can occur more errors than a reasonable error-correcting code can handle. However, this problem is somewhat oset by the possibility to obtain multiple approximations of the same information from the data storage. Hence, the information retrieval process can be modelled by the Levenshtein's channel model, where a message is sent through multiple noisy channels and multiple outputs are received. In the rst two papers of the thesis, we introduce and study the new concepts of self- and solid-locating-dominating codes as a natural analogy to self-identifying codes with respect to locating-dominating codes. The rst paper introduces these new codes and considers them in some graphs such as the Hamming graphs. Then, in the second paper, we broaden our view on the topic by considering graph theoretical questions. We give optimal codes in multiple dierent graph classes and some more general results using concepts such as the Dilworth number and graph complements. The third paper focuses on the q-ary Hamming spaces. In particular, we disprove a conjecture proposed by Goddard and Wash related to identifying codes. In the fourth paper, we return to self- and solid-locating-dominating codes and give optimal codes in some graph classes and consider their densities in innite graphs. In the fth paper, we consider information retrieval in memories; in particular, the Levenshtein's channel model. In the channel model, we transmit some codeword belonging to the binary Hamming space through multiple identical channels. With the help of multiple dierent outputs, we give a list of codewords which may have been sent. In the paper, we study the number of channels required to have a rather small (constant) list size when the properties of the channels, the code and the dimension of the Hamming space are xed. In particular, we give an exact relation between the number of channels and the asymptotic value of the maximum list size.Väitöskirja käsittelee kahta aihetta: identioivia ja paikantavia peittokoodeja sekä tiedon noutamista muistista. Ensimmäisen aiheen motivaationa on objektien paikantaminen sensoriverkoista (sekä muut samankaltaiset sovellukset) ja jälkimmäisen tiedonnouto DNA-muisteista. Näiden aiheiden tutkimus kuuluu diskreettiin matematiikkaan, täsmällisemmin koodaus- ja graa-teoriaan. Sensoriverkkoja kuvataan yleensä graafeilla, joissa solmut esittävät tarkkailtuja kohteita ja viivat yhteyksiä näiden kohteiden välillä. Edelleen sensorien paikat määräytyvät annetun koodin perusteella. Tästä johtuen sensoriverkon halutut ominaisuudet pohjautuvat vahvasti alla olevaan koodiin. Luettaessa tietoa DNA-muisteista tapahtuvien virheiden määrä saattaa olla erittäin suuri; erityisesti suurempi kuin kiinnitetyn virheitä korjaavan koodin korjauskyky. Toisaalta tilanne ei ole aivan näin ongelmallinen, sillä DNA-muisteista voidaan saada useita eri arvioita muistiin tallennetusta tiedosta. Näistä syistä johtuen tietojen noutamista DNA-muisteista voidaan mallintaa käyttäen Levenshteinin kanavamallia. Kanavamallissa yksi viesti lähetetään useiden häiriöisten kanavien kautta ja näin vastaanotetaan useita viestejä (yksi jokaisesta kanavasta). Väitöskirjan kahdessa ensimmäisessä julkaisussa esitellään ja tutkitaan uusia paikantavien peittokoodien luokkia, jotka pohjautuvat aiemmin tutkittuihin itse-identioiviin koodeihin. Ensimmäisessä julkaisussa on esitelty nämä koodiluokat sekä tutkittu niitä joissain graafeissa kuten Hammingin graafeissa. Tämän jälkeen toisessa julkaisussa käsitellään yleisiä graa-teoreettisia kysymyksiä. Julkaisussa esitetään optimaaliset koodit useille graaperheille sekä joitain yleisempiä tuloksia käyttäen mm. Dilworthin lukua sekä graakomplementteja. Kolmas julkaisu keskittyy q-arisiin Hammingin avaruuksiin. Erityisesti julkaisussa todistetaan vääräksi Goddardin ja Washin aiemmin esittämä identioivia koodeja koskeva otaksuma. Neljäs artikkeli käsittelee jo kahdessa ensimmäisessä artikkelissa esiteltyjä paikantavien peittokoodien luokkia. Artikkeli esittää optimaalisia koodeja useille graaperheille sekä käsittelee äärettömiä graafeja. Viides artikkeli käsittelee tiedonnoutoa ja erityisesti Levenshteinin kanavamallia. Kanavamallissa binääriseen Hammingin avaruuteen kuuluva koodisana lähetetään useiden identtisten kanavien läpi. Näistä kanavista vastaanotetaan useita eri arvioita lähetetystä koodisanasta ja rakennetaan lista mahdollisesti lähetetyistä sanoista. Artikkelissa tutkitaan kuinka monta kanavaa tarvitaan, jotta tämän listan koko on pieni (vakio), kun kanavien ominaisuudet, koodi ja Hammingin avaruuden dimensio on kiinnitetty. Erityisesti löydetään täsmällinen suhde kanavien lukumäärän ja asymptoottisesti maksimaalisen listan koon välille
    corecore