41,649 research outputs found

    Optimal estimation for discrete time jump processes

    Get PDF
    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems

    Mixing it up: A general framework for Markovian statistics

    Full text link
    Up to now, the nonparametric analysis of multidimensional continuous-time Markov processes has focussed strongly on specific model choices, mostly related to symmetry of the semigroup. While this approach allows to study the performance of estimators for the characteristics of the process in the minimax sense, it restricts the applicability of results to a rather constrained set of stochastic processes and in particular hardly allows incorporating jump structures. As a consequence, for many models of applied and theoretical interest, no statement can be made about the robustness of typical statistical procedures beyond the beautiful, but limited framework available in the literature. To close this gap, we identify β\beta-mixing of the process and heat kernel bounds on the transition density as a suitable combination to obtain sup\sup-norm and L2L^2 kernel invariant density estimation rates matching the case of reversible multidimenisonal diffusion processes and outperforming density estimation based on discrete i.i.d. or weakly dependent data. Moreover, we demonstrate how up to log\log-terms, optimal sup\sup-norm adaptive invariant density estimation can be achieved within our general framework based on tight uniform moment bounds and deviation inequalities for empirical processes associated to additive functionals of Markov processes. The underlying assumptions are verifiable with classical tools from stability theory of continuous time Markov processes and PDE techniques, which opens the door to evaluate statistical performance for a vast amount of Markov models. We highlight this point by showing how multidimensional jump SDEs with L\'evy driven jump part under different coefficient assumptions can be seamlessly integrated into our framework, thus establishing novel adaptive sup\sup-norm estimation rates for this class of processes

    Extension and calibration of a Hawkes-based optimal execution model

    Full text link
    We provide some theoretical extensions and a calibration protocol for our former dynamic optimal execution model. The Hawkes parameters and the propagator are estimated independently on financial data from stocks of the CAC40. Interestingly, the propagator exhibits a smoothly decaying form with one or two dominant time scales, but only so after a few seconds that the market needs to adjust after a large trade. Motivated by our estimation results, we derive the optimal execution strategy for a multi-exponential Hawkes kernel and backtest it on the data for round trips. We find that the strategy is profitable on average when trading at the midprice, which is in accordance with violated martingale conditions. However, in most cases, these profits vanish when we take bid-ask costs into account
    corecore