35,008 research outputs found

    Colored-Gaussian Multiple Descriptions: Spectral and Time-Domain Forms

    Get PDF
    It is well known that Shannon's rate-distortion function (RDF) in the colored quadratic Gaussian (QG) case can be parametrized via a single Lagrangian variable (the "water level" in the reverse water filling solution). In this work, we show that the symmetric colored QG multiple-description (MD) RDF in the case of two descriptions can be parametrized in the spectral domain via two Lagrangian variables, which control the trade-off between the side distortion, the central distortion, and the coding rate. This spectral-domain analysis is complemented by a time-domain scheme-design approach: we show that the symmetric colored QG MD RDF can be achieved by combining ideas of delta-sigma modulation and differential pulse-code modulation. Specifically, two source prediction loops, one for each description, are embedded within a common noise shaping loop, whose parameters are explicitly found from the spectral-domain characterization.Comment: Accepted for publications in the IEEE Transactions on Information Theory. Title have been shortened, abstract clarified, and paper significantly restructure

    Improved Upper Bounds to the Causal Quadratic Rate-Distortion Function for Gaussian Stationary Sources

    Get PDF
    We improve the existing achievable rate regions for causal and for zero-delay source coding of stationary Gaussian sources under an average mean squared error (MSE) distortion measure. To begin with, we find a closed-form expression for the information-theoretic causal rate-distortion function (RDF) under such distortion measure, denoted by Rcit(D)R_{c}^{it}(D), for first-order Gauss-Markov processes. Rc^{it}(D) is a lower bound to the optimal performance theoretically attainable (OPTA) by any causal source code, namely Rc^{op}(D). We show that, for Gaussian sources, the latter can also be upper bounded as Rc^{op}(D)\leq Rc^{it}(D) + 0.5 log_{2}(2\pi e) bits/sample. In order to analyze Rcit(D)R_{c}^{it}(D) for arbitrary zero-mean Gaussian stationary sources, we introduce \bar{Rc^{it}}(D), the information-theoretic causal RDF when the reconstruction error is jointly stationary with the source. Based upon \bar{Rc^{it}}(D), we derive three closed-form upper bounds to the additive rate loss defined as \bar{Rc^{it}}(D) - R(D), where R(D) denotes Shannon's RDF. Two of these bounds are strictly smaller than 0.5 bits/sample at all rates. These bounds differ from one another in their tightness and ease of evaluation; the tighter the bound, the more involved its evaluation. We then show that, for any source spectral density and any positive distortion D\leq \sigma_{x}^{2}, \bar{Rc^{it}}(D) can be realized by an AWGN channel surrounded by a unique set of causal pre-, post-, and feedback filters. We show that finding such filters constitutes a convex optimization problem. In order to solve the latter, we propose an iterative optimization procedure that yields the optimal filters and is guaranteed to converge to \bar{Rc^{it}}(D). Finally, by establishing a connection to feedback quantization we design a causal and a zero-delay coding scheme which, for Gaussian sources, achieves...Comment: 47 pages, revised version submitted to IEEE Trans. Information Theor

    Online Reinforcement Learning for Dynamic Multimedia Systems

    Full text link
    In our previous work, we proposed a systematic cross-layer framework for dynamic multimedia systems, which allows each layer to make autonomous and foresighted decisions that maximize the system's long-term performance, while meeting the application's real-time delay constraints. The proposed solution solved the cross-layer optimization offline, under the assumption that the multimedia system's probabilistic dynamics were known a priori. In practice, however, these dynamics are unknown a priori and therefore must be learned online. In this paper, we address this problem by allowing the multimedia system layers to learn, through repeated interactions with each other, to autonomously optimize the system's long-term performance at run-time. We propose two reinforcement learning algorithms for optimizing the system under different design constraints: the first algorithm solves the cross-layer optimization in a centralized manner, and the second solves it in a decentralized manner. We analyze both algorithms in terms of their required computation, memory, and inter-layer communication overheads. After noting that the proposed reinforcement learning algorithms learn too slowly, we introduce a complementary accelerated learning algorithm that exploits partial knowledge about the system's dynamics in order to dramatically improve the system's performance. In our experiments, we demonstrate that decentralized learning can perform as well as centralized learning, while enabling the layers to act autonomously. Additionally, we show that existing application-independent reinforcement learning algorithms, and existing myopic learning algorithms deployed in multimedia systems, perform significantly worse than our proposed application-aware and foresighted learning methods.Comment: 35 pages, 11 figures, 10 table
    • …
    corecore