It is well known that Shannon's rate-distortion function (RDF) in the colored
quadratic Gaussian (QG) case can be parametrized via a single Lagrangian
variable (the "water level" in the reverse water filling solution). In this
work, we show that the symmetric colored QG multiple-description (MD) RDF in
the case of two descriptions can be parametrized in the spectral domain via two
Lagrangian variables, which control the trade-off between the side distortion,
the central distortion, and the coding rate. This spectral-domain analysis is
complemented by a time-domain scheme-design approach: we show that the
symmetric colored QG MD RDF can be achieved by combining ideas of delta-sigma
modulation and differential pulse-code modulation. Specifically, two source
prediction loops, one for each description, are embedded within a common noise
shaping loop, whose parameters are explicitly found from the spectral-domain
characterization.Comment: Accepted for publications in the IEEE Transactions on Information
Theory. Title have been shortened, abstract clarified, and paper
significantly restructure