4,212 research outputs found

    Design and evaluation of an observer-based disturbance rejection controller for electric power steering systems

    Get PDF
    Mehrabi, N., McPhee, J., & Azad, N. L. Design and evaluation of an observer-based disturbance rejection controller for electric power steering systems. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(7), 867–884. Copyright © 2015 SAGE. Reprinted by permission of SAGE Publications. http://dx.doi.org/10.1177/0954407015596275The goal of this paper is to develop an observer-based disturbance rejection electric power steering (EPS) controller to provide steering assistance and improve the driver’s steering feel. For the purpose of control design, a control-oriented model of a vehicle with a column-assist EPS system is developed and verified against a high-fidelity multibody dynamics model of the vehicle. The high-fidelity model is used to mimic vehicle dynamics to study controller performance in realistic driving conditions. Then, a linear quadratic Gaussian approach is used to design an EPS optimal controller, in which a Kalman filter estimates the unmeasured steering system’s states and external disturbance. A new formulation for the linear quadratic regulator objective function is proposed to take advantages of the known information about the system dynamics to attenuate the disturbance and magnify the driver’s torque., Finally, the EPS controller is applied to the high-fidelity vehicle model in a software-in-the-loop simulation to evaluate its robustness and performance under realistic conditions. The results show that the proposed controller can effectively reduce the disturbance induced in the steering rack, and simultaneously magnify the driver’s steering torque by use of a bi-linear EPS characteristic curve. Then, to show the disturbance rejection properties of this EPS controller, its performance is compared with H2/H∞ and PID control designs using time and frequency domain analysis.Ontario Centres of Excellence (OCE)Natural Sciences and Engineering Research Council of Canada (NSERC)ToyotaMaplesof

    Improved performance of motor-drive systems by SAW shaft torque feedback

    Get PDF
    The paper describes the application of a non-contact, high bandwidth, low cost, SAW-based torque measuring system for improving the dynamic performance of industrial process motor-drive systems. Background to the SAW technology and its motor integration is discussed and a resonance ratio control (RRC) technique for the coordinated motion control of multi-inertia mechanical systems, based on the measurement of shaft torque via a SAW-based torque sensor is proposed. Furthermore, a new controller structure, RRC plus disturbance feedback is proposed, which enables the controller to be designed to independently satisfy tracking and regulation performance. A tuning method for the RRC structure is given based on the ITAE index, normalized as a function of the mechanical parameters enabling a direct performance comparison between a basic proportional and integral (PI) controller. The use of a reduced-order state observer is presented to provide a dynamic estimate of the load-side disturbance torque for a multi-inertia mechanical system, with an appraisal of the composite closed-loop dynamics. The control structures are experimentally validated and demonstrate significant improvement in dynamic tracking performance, whilst additionally rejecting periodic load side disturbances, a feature previously unrealisable except by other, high-gain control schemes that impose small stability margins

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Fuzzy logic control for energy saving in autonomous electric vehicles

    Get PDF
    Limited battery capacity and excessive battery dimensions have been two major limiting factors in the rapid advancement of electric vehicles. An alternative to increasing battery capacities is to use better: intelligent control techniques which save energy on-board while preserving the performance that will extend the range with the same or even smaller battery capacity and dimensions. In this paper, we present a Type-2 Fuzzy Logic Controller (Type-2 FLC) as the speed controller, acting as the Driver Model Controller (DMC) in Autonomous Electric Vehicles (AEV). The DMC is implemented using realtime control hardware and tested on a scaled down version of a back to back connected brushless DC motor setup where the actual vehicle dynamics are modelled with a Hardware-In-the-Loop (HIL) system. Using the minimization of the Integral Absolute Error (IAE) has been the control design criteria and the performance is compared against Type-1 Fuzzy Logic and Proportional Integral Derivative DMCs. Particle swarm optimization is used in the control design. Comparisons on energy consumption and maximum power demand have been carried out using HIL system for NEDC and ARTEMIS drive cycles. Experimental results show that Type-2 FLC saves energy by a substantial amount while simultaneously achieving the best IAE of the control strategies tested

    Cooperative lateral vehicle guidance control for automated vehicles with Steer-by-Wire systems

    Get PDF
    With the global trend towards automated driving, fault-tolerant onboard power supply systems are introduced into modern vehicles and the level of driving automation is continuously increasing. These advancements contribute to the applicability of Steer-by-Wire systems and the development of automated lateral vehicle guidance control functions. For the market acceptance of automated driving, the lateral vehicle guidance control function must hereby be cooperative, that is it must accept driver interventions. Existing approaches for automated lateral vehicle guidance commonly do not consider driver interventions. If unconsidered in the control loop, the driver intervention is interpreted as an external disturbance that is actively compensated by feedback. This thesis addresses the development of a cooperative lateral vehicle guidance control concept, which enables a true coexistence between manual steering control by the driver and automated steering control. To this end, the subordinate controls of the Steer-by-Wire system for the manual and automated driving mode are initially presented. These include the steering feel generation and steering torque control of the Steer-by-Wire Handwheel Actuator for the manual driving mode, which is structurally extended to a cascade steering position control for the automated driving mode. Subsequently, a superposition control is introduced, which fuses steering torque and position control. The resulting cooperative Handwheel Actuator control achieves precise tracking of the reference steering position in automated driving mode but accepts driver interventions. Thus, the driver can override the active control and experiences a natural steering feel. The transitions hereby are seamless as no blending, gain scheduling or controller output saturation is required. Subsequently, the superimposed lateral vehicle guidance controller for the automated driving mode is described, which computes the reference steering position for the respective Steer-by-Wire controls. In contrast to existing approaches, the plant model equations are rearranged to isolate the vehicle speed dependent dynamics. Thereafter, the concept of inverse nonlinearity control is employed, using a virtual control loop and feedback linearization for an online inversion of the nonlinear plant dynamics. The remaining plant is fully linear and independent of vehicle speed. Consequently, one controller can be synthesized that is valid for all vehicle speeds. The closed and open loop system thereby have the same dynamics independent of vehicle speed, which significantly simplifies control synthesis, analysis, and performance tuning in the vehicle. For considering the future reference path information and constraints on the maximum steering position within the control law, a linear Model Predictive Controller synthesis is selected. The combination of inverse nonlinearity control and linear Model Predictive Controller thus results in a Nonlinear Adaptive Model Predictive Control concept, which makes commonly applied gain scheduling fully obsolete. The controller is structurally extended by a cooperative dynamic feedforward control for considering driver interventions within the control loop. Consequently, the driver can override the active control and seamlessly modify the lateral vehicle motion. A variety of nonlinear simulation analyses and real vehicle tests demonstrate the effectiveness of the proposed control concept

    Hardware in the Loop Simulation of Active Front Wheel Steering control for yaw disturbance rejection

    Get PDF
    This paper introduces an Active Front Wheel Steering (AFWS) control for the purpose of reducing unwanted yaw motion. Side wind forces are considered to be the sources of yaw disturbance in this study. The proposed control strategy for the AFWS is a lateral directional control with yaw rate feedback. The AFWS controller was implemented on Hardware in the Loop Simulation (HiLS) using an AFWS test rig. From the simulation and experimental results, AFWS control is able to perform the task of yaw disturbance attenuation by providing additional steering correction for maintaining the original direction of the vehicle. Keywords: active front wheel steering; side wind force; yaw cancellation; HiLS; vehicle safety

    Dynamics and Model-Based Control of Electric Power Steering Systems

    Get PDF
    Many automobile manufacturers are switching to Electric Power Steering (EPS) systems for their better performance and cost advantages over traditional Hydraulic Power Steering (HPS) systems. EPS compared to HPS offer lower energy consumption, lower total weight, and package flexibility at no cost penalty. Furthermore, since EPS systems can provide assistance to drivers independent of the vehicle driving conditions, new technologies can be implemented to improve the steering feel and safety, simultaneously. In this thesis, a neuromusculoskeletal driver and a high-fidelity vehicle model are developed in MapleSim to provide realistic simulations to study the driver-vehicle interactions and EPS systems. The vehicle model consists of MacPherson and multilink suspensions at front and rear equipped with a column-type EPS system. The driver model is a fully neuromusculoskeletal model of a driver arm holding the steering wheel, controlled by the driver's central nervous system. A hierarchical approach is used to capture the complexity of the neuromuscular dynamics and the central nervous system in the coordination of the driver's upper extremity activities. The proposed motor control framework has three layers: the first layer, or the path-planning layer, plans a desired vehicle trajectory and the required steering angles to perform the desired trajectory, the second layer (or the force distribution controller) actuates the musculoskeletal arm, and the final layer is added to ensure the precision control and disturbance rejection of the motor control units. The overall goal of this thesis is to study vehicle-driver interactions and to design a model-based EPS controller that considers the driver's characteristics. To design such an EPS controller, the high-fidelity driver-vehicle model is simplified to reduce the computational burden associated with the multibody and biomechanical systems. Then, four driver types are introduced based on the physical characteristics of drivers such as age and gender, and the corresponding parameters are incorporated in the model. Last but not least, a new model-based EPS controller is developed to provide appropriate assistance to each of the predefined driver types. To do this, the characteristic curves are tuned using a systematic optimization procedure to provide appropriate assistance to drivers with different physical strength, in order to have a similar road and steering feel. In this thesis, it is recommended that muscle fatigue be used as a measure of steering feel. Then, based on the tuned EPS characteristic curves, an observer-based optimal disturbance rejection controller, consisting of a linear quadratic regulator controller and a Kalman filter observer augmented with a shaping filter, is developed to deliver the assistance while attenuating external disturbances. The results show that it is possible to develop a model-based EPS controller that is optimized for a given driver population

    Model-based powertrain design and control system development for the ideal all-wheel drive electric vehicle

    Get PDF
    The transfer case based all-wheel drive electric vehicle (TCAWDEV) and dual-axle AWDEV have been investigated to balance concerns about energy consumption, drivability and stability of vehicles. However, the mentioned powertrain architectures have the torque windup issue or the wheel skidding issue. The torque windup is an inherent issue of mechanical linked all-wheel drive systems. The hydraulic motor-based or the electric motor-based ideal all-wheel drive powertrain can provide feasible solutions to the mentioned issues. An ideal AWDEV (IAWDEV) powertrain architecture and its control schemes were proposed by this research; the architecture has four independent driving motors in powertrain. The IAWDEV gives more control freedoms to implement active torque controls and traction mode controls. In essence, this research came up with the distributed powertrain concept, and developed control schemes of the distributed powertrain to replace the transfer case and differential devices. The study investigated the dual-loop motor control, the hybrid sliding mode control (HSMC) and the neural network predictive control to reduce energy consumption and achieve better drivability and stability by optimizing the torque allocation of each dependent wheel. The mentioned control schemes were respectively developed for the anti-slip, differential and yaw stability functionalities of the IAWDEV powertrain. This study also investigated the sizing method that the battery capacity was estimated by using cruise performance at 3% road grade. In addition, the model-based verification was employed to evaluate the proposed powertrain design and control schemes. The verification shows that the design and controls can fulfill drivability requirements and minimize the existing issues, including torque windup and chattering of the slipping wheel. In addition, the verification shows that the IAWDEV can harvest around two times more energy while the vehicle is running on slippery roads than the TCAWDEV and the dual-axle AWDEV; the traction control can achieve better drivability and lower energy consumption than mentioned powertrains; the mode control can reduce 3% of battery charge depleting during the highway driving test. It also provides compelling evidences that the functionalities achieved by complicated and costly mechanical devices can be carried out by control schemes of the IAWDEV; the active torque controls can solve the inherent issues of mechanical linked powertrains; the sizing method is credible to estimate the operation envelop of powertrain components, even though there is some controllable over-sizing

    Linear motor motion control using a learning feedforward controller

    Get PDF
    The design and realization of an online learning motion controller for a linear motor is presented, and its usefulness is evaluated. The controller consists of two components: (1) a model-based feedback component, and (2) a learning feedforward component. The feedback component is designed on the basis of a simple second-order linear model, which is known to have structural errors. In the design, an emphasis is placed on robustness. The learning feedforward component is a neural-network-based controller, comprised of a one-hidden-layer structure with second-order B-spline basis functions. Simulations and experimental evaluations show that, with little effort, a high-performance motion system can be obtained with this approach

    Control Performance Analysis of Power Steering System Electromechanical Dynamics

    Full text link
    Modern power steering systems employ an electric motor drive system to provide torque assistance to the driver. The closed-loop mechanical system dynamics that impact stability, performance and steering feel are significantly impacted by the electrical dynamics of the actuator depending on the structure and tuning of the motor torque controller. This paper presents an integrated approach to the analysis of this electromechanical dynamic control interaction through mathematical modeling which is confirmed with simulations
    • 

    corecore