28,044 research outputs found

    Optimal path planning for surveillance with temporal-logic constraints

    Full text link
    In this paper we present a method for automatically generating optimal robot paths satisfying high-level mission specifications. The motion of the robot in the environment is modeled as a weighted transition system. The mission is specified by an arbitrary linear temporal-logic (LTL) formula over propositions satisfied at the regions of a partitioned environment. The mission specification contains an optimizing proposition, which must be repeatedly satisfied. The cost function that we seek to minimize is the maximum time between satisfying instances of the optimizing proposition. For every environment model, and for every formula, our method computes a robot path that minimizes the cost function. The problem is motivated by applications in robotic monitoring and data-gathering. In this setting, the optimizing proposition is satisfied at all locations where data can be uploaded, and the LTL formula specifies a complex data-collection mission. Our method utilizes Büchi automata to produce an automaton (which can be thought of as a graph) whose runs satisfy the temporal-logic specification. We then present a graph algorithm that computes a run corresponding to the optimal robot path. We present an implementation for a robot performing data collection in a road-network platform.This material is based upon work supported in part by ONR-MURI (award N00014-09-1-1051), ARO (award W911NF-09-1-0088), and Masaryk University (grant numbers LH11065 and GD102/09/H042), and other funding sources (AFOSR YIP FA9550-09-1-0209, NSF CNS-1035588, NSF CNS-0834260). (N00014-09-1-1051 - ONR-MURI; W911NF-09-1-0088 - ARO; LH11065 - Masaryk University; GD102/09/H042 - Masaryk University; FA9550-09-1-0209 - AFOSR YIP; CNS-1035588 - NSF; CNS-0834260 - NSF

    Control of Probabilistic Systems under Dynamic, Partially Known Environments with Temporal Logic Specifications

    Get PDF
    We consider the synthesis of control policies for probabilistic systems, modeled by Markov decision processes, operating in partially known environments with temporal logic specifications. The environment is modeled by a set of Markov chains. Each Markov chain describes the behavior of the environment in each mode. The mode of the environment, however, is not known to the system. Two control objectives are considered: maximizing the expected probability and maximizing the worst-case probability that the system satisfies a given specification

    On the Minimal Revision Problem of Specification Automata

    Full text link
    As robots are being integrated into our daily lives, it becomes necessary to provide guarantees on the safe and provably correct operation. Such guarantees can be provided using automata theoretic task and mission planning where the requirements are expressed as temporal logic specifications. However, in real-life scenarios, it is to be expected that not all user task requirements can be realized by the robot. In such cases, the robot must provide feedback to the user on why it cannot accomplish a given task. Moreover, the robot should indicate what tasks it can accomplish which are as "close" as possible to the initial user intent. This paper establishes that the latter problem, which is referred to as the minimal specification revision problem, is NP complete. A heuristic algorithm is presented that can compute good approximations to the Minimal Revision Problem (MRP) in polynomial time. The experimental study of the algorithm demonstrates that in most problem instances the heuristic algorithm actually returns the optimal solution. Finally, some cases where the algorithm does not return the optimal solution are presented.Comment: 23 pages, 16 figures, 2 tables, International Joural of Robotics Research 2014 Major Revision (submitted

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules
    • …
    corecore