3 research outputs found

    Optimal design of phosphorylation-based insulation devices

    Get PDF
    We seek to minimize both the retroactivity to the output and the retroactivity to the input of a phosphorylation-based insulation device by finding an optimal substrate concentration. Characterizing and improving the performance of insulation devices brings us a step closer to their successful implementation in biological circuits, and thus to modularity. Previous works have mainly focused on attenuating retroactivity effects to the output using high substrate concentrations. This, however, worsens the retroactivity to the input, creating an error that propagates back to the output. Employing singular perturbation and contraction theory tools, this work provides a framework to determine an optimal substrate concentration to reach a tradeoff between the retroactivity to the input and the retroactivity to the output.Grant FA9550-12-1-021

    An N-stage Cascade of Phosphorylation Cycles as an Insulation Device for Synthetic Biological Circuits

    Get PDF
    Single phosphorylation cycles have been found to have insulation device abilities, that is, they attenuate the effect of retroactivity applied by downstream systems and hence facilitate modular design in synthetic biology. It was recently discovered that this retroactivity attenuation property comes at the expense of an increased retroactivity to the input of the insulation device, wherein the device slows down the signal it receives from its upstream system. In this paper, we demonstrate that insulation devices built of cascaded phosphorylation cycles can break this tradeoff allowing to attenuate the retroactivity applied by downstream systems while keeping a small retroactivity to the input. In particular, we show that there is an optimal number of cycles that maximally extends the linear operating region of the insulation device while keeping the desired retroactivity properties, when a common phosphatase is used. These findings provide optimal design strategies of insulation devices for synthetic biology applications.NIH P50 GMO98792 gran

    Signaling architectures that transmit unidirectional information

    Get PDF
    Submitted for review.A signaling pathway transmits information from an upstream system to downstream systems, ideally unidirectionally. A key bottleneck to unidirectional transmission is retroactivity, which is the additional reaction flux that affects a system once its species interact with those of downstream systems. This raises the question of whether signaling pathways have developed specialized architectures that overcome retroactivity and transmit unidirectional signals. Here, we propose a general mathematical framework that provides an answer to this question. Using this framework, we analyze the ability of a variety of signaling architectures to transmit signals unidirectionally as key biological parameters are tuned. In particular, we find that single stage phosphorylation and phosphotransfer systems that transmit signals from a kinase show the following trade-off: either they impart a large retroactivity to their upstream system or they are significantly impacted by the retroactivity due to their downstream system. However, cascades of these architectures, which are highly represented in nature, can overcome this trade-off and thus enable unidirectional information transmission. By contrast, single and double phosphorylation cycles that transmit signals from a substrate impart a large retroactivity to their upstream system and are also unable to attenuate retroactivity due to their downstream system. Our findings identify signaling architectures that ensure unidirectional signal transmission and minimize crosstalk among multiple targets. Our results thus establish a way to decompose a signal transduction network into architectures that transmit information unidirectionally, while also providing a library of devices that can be used in synthetic biology to facilitate modular circuit design.NSF Expedition award number 1521925, NIGMS grant P50 GMO9879
    corecore