Signaling architectures that transmit unidirectional information

Rushina Shah ${ }^{1 *}$, Domitilla Del Vecchio ${ }^{1}$
1 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
* rushina@mit.edu

Abstract

A signaling pathway transmits information from an upstream system to downstream systems, ideally unidirectionally. A key bottleneck to unidirectional transmission is retroactivity, which is the additional reaction flux that affects a system once its species interact with those of downstream systems. This raises the question of whether signaling pathways have developed specialized architectures that overcome retroactivity and transmit unidirectional signals. Here, we propose a general mathematical framework that provides an answer to this question. Using this framework, we analyze the ability of a variety of signaling architectures to transmit signals unidirectionally as key biological parameters are tuned. In particular, we find that single stage phosphorylation and phosphotransfer systems that transmit signals from a kinase show the following trade-off: either they impart a large retroactivity to their upstream system or they are significantly impacted by the retroactivity due to their downstream system. However, cascades of these architectures, which are highly represented in nature, can overcome this trade-off and thus enable unidirectional information transmission. By contrast, single and double phosphorylation cycles that transmit signals from a substrate impart a large retroactivity to their upstream system and are also unable to attenuate retroactivity due to their downstream system. Our findings identify signaling architectures that ensure unidirectional signal transmission and minimize crosstalk among multiple targets. Our results thus establish a way to decompose a signal transduction network into architectures that transmit information unidirectionally, while also providing a library of devices that can be used in synthetic biology to facilitate modular circuit design.

Author Summary

Although signaling pathways in cells are typically viewed as transmitting information unidirectionally between an upstream and downstream system, such a viewpoint is not accurate in general due to retroactivity. Retroactivity in the added reaction flux that changes the behavior of the upstream system because of the reactions its species participate in to transmit information to downstream processes. Large retroactivity effects are therefore a major bottleneck to unidirectional signal transmission. Thus, a framework that can identify signaling architectures that overcome retroactivity and transmit unidirectional signals (and those that do not) is required to accurately simplify and analyze signal transduction networks. In this work, we develop such a framework and analyze several signaling architectures to test for their ability to transmit unidirectional signals. We find that cascades of signaling cycles that transmit information via kinases are well-suited to unidirectional transmission. In contrast, signaling systems that transmit information via substrates are highly susceptible to effects of retroactivity. They are thus not well-suited to unidirectional signal transmission, which may explain their low frequency of occurrence in natural systems. Our results thus provide key insights into cellular signal transduction, as well as provide a library of devices for synthetic biology that could be used for unidirectional signaling.

1 Introduction

Cellular signal transduction is typically viewed as a unidirectional transmission of information via biochemical reactions from an upstream system to multiple downstream systems through signaling pathways [1]- 7]. However, without the
presence of specialized mechanisms, signal transmission via chemical reactions is not in general unidirectional. In fact, the chemical reactions that allow a signal to be transmitted from an upstream to downstream systems also affect the upstream system due to the resulting reaction flux. This flux is called retroactivity, which is one of the chief hurdles to one-way transmission of information [8]- 13]. Signaling pathways, typically composed of phosphorylation, dephosphorylation and phosphotransfer reactions, are highly conserved evolutionarily, such as the MAPK cascade 14] and two-component signaling systems [15]. Thus, the same pathways act between different upstream and downstream systems in different scenarios and organisms, facing different effects of retroactivity in different contexts. What then may allow signal transmission to be unidirectional in these different contexts? We hypothesize that, for ideal unidirectional signal transmission, signaling pathways must have specific architectures that overcome retroactivity. In particular, these architectures should impart a small retroactivity to the upstream system (called retroactivity to the input) and should not be affected by the retroactivity imparted to them by the downstream systems (retroactivity to the output).

Phosphorylation-dephosphorylation cycles, phosphotransfer reactions, and cascades of these are ubiquitous in both prokaryotic and eukaryotic signaling pathways, playing a major role in cell cycle progression, survival, growth, differentiation and apoptosis [1]-[7], [16]- [19]. Numerous studies have been conducted to analyze such systems, starting with milestone works by Stadtman and Chock [20], [21, , [22] and Goldbeter et al. [23], [24], 25], which theoretically and experimentally analyzed phosphorylation cycles and cascades. These systems were further investigated by Kholdenko et al. 26, 27, 28 and Gomez-Uribe et al. 29, 30. However, these studies considered signaling cycles in isolation, and thus did not investigate the effect of retroactivity. The effect of retroactivity on such systems was theoretically analyzed in the work by Ventura et al. [31], where retroactivity is treated as a "hidden feedback" to the upstream system. Experimental studies then confirmed the effects of retroactivity in signaling systems through in vivo experiments on the MAPK cascade [12], [13] and in vitro experiments on reconstituted covalent modification cycles [9], 11]. These studies clearly demonstrated that the effects of retroactivity on a signaling system manifest themselves in two ways. They cause a slow down of the temporal response of the signaling system's output to its input and lead to a change of the output's steady state.

In 2008, Del Vecchio et al. demonstrated theoretically that a single phosphorylation-dephosphorylation (PD) cycle with a slow input kinase can attenuate the effect of retroactivity to the output when the total substrate and phosphatase concentrations of the cycle are increased together [8]. Essentially, a sufficiently large phosphatase concentration along with relatively large kinetic rates of modification adjusts the cycle's internal dynamics very quickly with respect to a relatively slower input, making any retroactivity-induced delays negligible on the time scale of the signal being transmitted 32. A similarly large concentration of total cycle's substrate ensures that the output signal is not attenuated with respect to the input signal and that the output's steady state is not significantly affected by the presence of downstream sites. These theoretical findings were later verified experimentally both in vitro [11] and in vivo [33. Although a single PD cycle can attenuate the effect of retroactivity to the output, it is unfortunately unsuitable for unidirectional signal transmission. In fact, as the substrate concentration is increased, the PD cycle applies a large retroactivity to the input, causing the input signal to slow down. This was experimentally observed in 33 . The results of 34 further suggest that a cascade composed of two PD cycles and a phosphotransfer reaction could overcome both retroactivity to the input and retroactivity to the output. In [35], it was theoretically found that, for certain parameter conditions, a cascade of PD cycles could attenuate the upward (from downstream to upstream) propagation of disturbances applied downstream of the cascade. These results suggest that PD cycles, phosphotransfer reactions, and their combinations may be able to counteract retroactivity. Thus, signaling architectures composed of PD cycles and phosphotransfer reactions may be ideal candidates for allowing signal transmission to be unidirectional. However, to the best of the authors' knowledge, no attempt has been made to systematically characterize signaling architectures with respect to their ability to overcome the effects of retroactivity and therefore enable unidirectional signal transmission.

This work presents a generalized mathematical framework to identify and characterize signaling architectures that can transmit unidirectional signals. This framework is based on a reaction-rate ordinary differential equation (ODE) model for a general signaling system that operates on a fast timescale relative to its input. Such a model is valid for many signaling systems that transmit relatively slower signals, such as those from slowly varying "clock" proteins that operate on the timescale of the circadian rhythm [36], from proteins signaling nutrient deficiency [37], or from proteins whose concentration is regulated by transcriptional networks which operate on the slow timescale of gene expression 38. Our framework provides expressions for retroactivity to the input and to the output as well as the input-output relationship of the signaling system. These expressions are given in terms of the reaction-rate parameters and protein concentrations. Based on these expressions, we analyze a number of signaling architectures composed of PD cycles and phosphotransfer
systems. For these architectures, we determine whether their total (modified and unmodified) protein concentrations can be tuned to simultaneously minimize retroactivity to the input and attenuate retroactivity to the output. We focus on total protein concentrations as a design parameter because these appear to be highly variable in natural systems and through the course of evolution, where they may have been optimized to improve systems' performance [39], 40]. Protein concentration is also an easily tunable quantity in synthetic genetic circuits. We thus identify signaling architectures where we can tune total protein concentrations to both minimize retroactivity to the input and attenuate retroactivity to the output, thus ensuring unidirectional signal transmission.

2 Results

(A)

(B)

(C)

Fig 1. Interconnections between a signaling system S and its upstream and downstream systems, along with input, output and retroactivity signals. (A) Full system showing all interconnection signals: $U(t)$ is the input from the upstream system to the signaling system, with state variable vector $\underline{X} . Y(t)$ is the output of the signaling system, sent to the downstream system, whose state variable is $v . \mathcal{R}$ is the retroactivity signal from the signaling system to the upstream system (retroactivity to the input of \mathbf{S}), and \mathcal{S} is the retroactivity signal from the downstream system to the signaling system (retroactivity to the output of \mathbf{S}). (B) Ideal input $U_{\text {ideal }}$: output of the upstream system in the absence of the signaling system $(\mathcal{R}=0)$. (C) Isolated output $Y_{\text {is }}$: output of the signaling system in the absence of the downstream system $(\mathcal{S}=0)$. $\underline{X}_{\text {is }}$ denotes the corresponding state of \mathbf{S}.

In this section, we consider a general signaling system \mathbf{S} with state-variable vector of protein concentrations \underline{X} as shown in Fig. 11A. Each component of \underline{X} represents the concentration of a species composing system \mathbf{S}. This system \mathbf{S} is connected between an upstream system from which it receives an input in the form of a protein with concentration U, and a downstream system to which it sends an output in the form of a protein with concentration Y. When the output protein reacts with the species of the downstream system, whose normalized concentrations are represented by state variable v, the resulting reaction flux changes the behavior of the upstream system. We represent this reaction flux as an additional input, \mathcal{S}, to the signaling system. Similarly, when the input protein from the upstream system reacts with the species of the signaling system, the resulting reaction flux changes the behavior of the upstream system. We represent this as an input, \mathcal{R}, to the upstream system. We call \mathcal{R} the retroactivity to the input of \mathbf{S} and \mathcal{S} the retroactivity to the output of \mathbf{S}, using the notation proposed in [8]. For system \mathbf{S} to transmit a unidirectional signal, the effects of \mathcal{R} on the upstream system and of \mathcal{S} on the downstream system must be small. Retroactivity to the input \mathcal{R} changes the input from
$U_{\text {ideal }}$ to U, where $U_{\text {ideal }}$ is shown in Fig. 1 B . Thus, for the effect of \mathcal{R} to be small, the difference between U and $U_{\text {ideal }}$ must be small. Retroactivity to the output \mathcal{S} changes the output from $Y_{\text {is }}$ to Y, where $Y_{\text {is }}$ is shown in Fig 1C, and for the effect of retroactivity to the output to be small, the difference between $Y_{\text {is }}$ and Y must be small. An ideal unidirectional signaling system is therefore a system where the input $U_{\text {ideal }}$ is transmitted from the upstream system to the signaling system without any change imparted by the latter, and the output $Y_{\text {is }}$ of the signaling system is also transmitted to the downstream system without any change imparted to it by the downstream system. Based on this concept of ideal unidirectional signaling system, we then present the following definition of a signaling system that can transmit information unidirectionally. In order to give the following definition, we assume that the proteins (besides the input species) that compose signaling system \mathbf{S} are constitutively produced and therefore their total concentrations (modified and unmodified) are constant. The vector of these total protein concentrations is denoted by $\underline{\Theta}$.

Definition 1. We will say that system \mathbf{S} is a signaling system that can transmit unidirectional signals for all inputs $U \in\left[0, U_{b}\right]$, if $\underline{\Theta}$ can be chosen such that the following properties are satisfied:
(i) \mathcal{R} is small: this is mathematically characterized by requiring that $\left|U_{\text {ideal }}(t)-U(t)\right|$ be small for all $U \in\left[0, U_{b}\right]$.
(ii) System \mathbf{S} attenuates the effect of \mathcal{S} on Y : this is mathematically characterized by requiring that $\left|Y_{\text {is }}(t)-Y(t)\right|$ be small for all $U \in\left[0, U_{b}\right]$.
(iii) Input-output relationship: $Y_{\text {is }}(t) \approx K U_{\text {is }}(t)^{m}$, for some $m \geq 1$, for some $K>0$ and for all $U \in\left[0, U_{b}\right]$.

Note that Def. 1 specifies that the signaling system must impart a small retroactivity to its input (i) and attenuate retroactivity to its output (ii). In particular, it specifies that these properties should be satisfied for a full range of inputs and outputs, implying that these properties must be guaranteed by the features of the signaling system and cannot be enforced by tuning the amplitudes of inputs and/or outputs.

As an illustrative example of the effects of \mathcal{R} and \mathcal{S} on a signaling architecture, we consider a signaling system \mathbf{S} composed of a single PD cycle [8], [11], [33]. The system is shown in Fig. 2A. It receives a slowly varying input signal U in the form of kinase concentration Z generated by an upstream system, and has as the output signal Y the concentration of X^{*}, which in this example is a transcription factor that binds to promoter sites in the downstream system. Kinase Z phosphorylates protein X to form X^{*}, which is dephosphorylated by phosphatase M back to X . The state variables \underline{X} of \mathbf{S} are the concentrations of the species in the cycle, that is, $X, M, X^{*}, C_{1}, C_{2}$, where C_{1} and C_{2} are the complexes formed by X and Z during phosphorylation, and by X^{*} and M during dephosphorylation, respectively. The state variable v of the downstream system is the normalized concentration of C , the complex formed by X^{*} and p (i.e., $v=\frac{C}{p_{T}}$ where p_{T} is the total concentration of the downstream promoters). This configuration, where a signaling system has as downstream system(s) gene expression processes, is common in many organisms as it is often the case that a transcription factor goes through some form of covalent modification before activating or repressing gene expression 41]. However, the
downstream system could be any other system, such as another covalent modification process, which interacts with the output through a binding-unbinding reaction. We denote the total amount of cycle substrate by $X_{T}=X+X^{*}+C_{1}+C_{2}+C$ and the total amount of phosphatase by $M_{T}=M+C_{2}$.

According to Def. 1, we vary the total protein concentrations of the cycle, $\underline{\Theta}=\left[X_{T}, M_{T}\right]$, to investigate the ability of this system to transmit unidirectional signals. To this end, we consider two extreme cases: first, when the total substrate concentration X_{T} is low (simulation results in Figs. $2 \mathrm{~B}, 2 \mathrm{C}$); second, when it is high (simulation results in Figs. $2 \mathrm{D}, 2 \mathrm{E}$). For both these cases, we change M_{T} proportionally to X_{T}. This is because, for large Michaelis-Menten constants, we have an input-output relationship with $m=1$ and $K \approx \frac{k_{1} K_{m 2} X_{T}}{k_{2} K_{m 1}} M_{T}$ (details in SI Section 5.2 eqn. 23) as defined in Def. 1(iii). To maintain the same K for fair comparison between the two cases, we vary M_{T} proportionally with X_{T}. Here, $K_{m 1}$ and k_{1} are the Michaelis-Menten constant and catalytic rate constant for the phosphorylation reaction, and $K_{m 2}$ and k_{2} are the Michaelis-Menten constant and catalytic rate constant for the dephosphorylation reaction. These reactions are shown in eqns. (18) in SI Section 5.2. For the simulation results, we consider a sinusoidal input to see the dynamic response of the system to a time-varying signal. For these two cases then, we see from Fig. 2 B that when $X_{T}\left(\operatorname{and} M_{T}\right)$ is low, \mathcal{R} is small, i.e., $\left|U_{\text {ideal }}(t)-U(t)\right|$ is small (satisfying requirement (i) of Def. 11). This is because kinase Z must phosphorylate very little substrate X , and thus, the reaction flux due to phosphorylation to the upstream system is small. However, as seen in Fig. 2 C , for low X_{T}, the signaling system is unable to attenuate \mathcal{S}. The difference $\left|X_{\text {is }}^{*}-X^{*}\right|$ is large, and requirement (ii) of Def. 1 is not satisfied for low X_{T}. This large retroactivity to the output is due to the reduction in the total substrate available for the cycle because of the sequestration of X^{*} by the promoter sites in the downstream system.

Fig 2. Tradeoff between small retroactivity to the input and attenuation of retroactivity to the output in a single phosphorylation cycle. (A) Single phosphorylation cycle, with input Z as the kinase: X is phosphorylated by Z to X^{*}, and dephosphorylated by the phosphatase M. X^{*} is the output and acts on sites p in the downstream system, which is depicted as a gene expression system here. (B)-(E) Simulation results for ODE model shown in SI Section 5.2 eqn. 19). Common simulation parameters $k(t)=0.01(1+\sin (0.05 t)), \delta=0.01 s^{-1}, k_{1}=k_{2}=600 s^{-1}, a_{1}=a_{2}=18 n M^{-1} s^{-1}, d_{1}=d_{2}=2400 \mathrm{~s}^{-1}$, $k_{\text {on }}=10 n M^{-1} s^{-1}, k_{\text {off }}=10 \mathrm{~s}^{-1}$. (B) Effect of retroactivity to the input with low substrate concentration X_{T} : for ideal input $Z_{\text {ideal }}$, system is simulated with $X_{T}=M_{T}=p_{T}=0$; for actual input Z, system is simulated with $X_{T}=M_{T}=10 \mathrm{nM}$, $p_{T}=100 \mathrm{nM}$. (C) Effect of retroactivity to the output with low substrate concentration X_{T} : for isolated output $X_{\text {is }}^{*}$, system is simulated with $X_{T}=M_{T}=10 n M, p_{T}=0$; for actual output X^{*}, system is simulated with $X_{T}=M_{T}=10 n M, p_{T}=100 \mathrm{nM}$. (D) Effect of retroactivity to the input with high substrate concentration X_{T} : for ideal input $Z_{\text {ideal }}$, system is simulated with $X_{T}=M_{T}=p_{T}=0$; for actual input Z, system is simulated with $X_{T}=M_{T}=1000 n M, p_{T}=100 n M$. (E) Effect of retroactivity to the output with high substrate concentration X_{T} : for isolated output X_{is}^{*}, system is simulated with $X_{T}=M_{T}=1000 \mathrm{nM}$, $p_{T}=0$; for actual output X^{*}, system is simulated with $X_{T}=M_{T}=1000 \mathrm{nM}, p_{T}=100 \mathrm{nM}$.

Since X_{T} is low, this sequestration results in a large relative change in the amount of total substrate available for the cycle, and thus interconnection to the downstream system has a large effect on the behavior of the cycle. For the case when X_{T} (and M_{T}) is high, the system shows exactly the opposite behavior. From Fig. 2 D , we see that \mathcal{R} is high (thus not satisfying requirement (i) of Def. 11, since the kinase must phosphorylate a large amount of substrate, but \mathcal{S} is attenuated (satisfying requirement (ii)) since there is enough total substrate available for the cycle even once X^{*} is sequestered. Thus, this system shows a trade-off: by increasing X_{T} (and M_{T}) we attenuate retroactivity to the output but to the cost of increasing retroactivity to the input. Similarly, by decreasing X_{T} (and M_{T}), we make retroactivity to the input smaller, but to the cost of being unable to attenuate retroactivity to the output. Therefore, requirements (i) and (ii) cannot be independently obtained by tuning X_{T} and M_{T}.

We note that because the signaling reactions, i.e., phosphorylation and dephosphorylation, act on a faster timescale than the input, the signaling system operates at quasi-steady state and the output is able to quickly catch up to changes in the input. It has been demonstrated in 32,34 that this fast timescale of operation of the signaling system attenuates the temporal effects of retroactivity to the output, which would otherwise result in the output slowing down in the presence of the downstream system. Thus, while the high substrate concentration X_{T} is required to reduce the effect of retroactivity to the output due to permanent sequestration, timescale separation is necessary for attenuating the temporal effects of the binding-unbinding reaction flux 32 .

[^0]
2.1 General mathematical model and main theorems

The single phosphorylation cycle, while showing some ability to attenuate retroactivity, is not able to transmit unidirectional signals due to the trade-off seen above. We therefore study, with respect to unidirectional signal transmission, different architectures of signaling systems, composed of phosphorylation cycles and phosphotransfer systems which are ubiquitous in natural signal transduction [1]- [7], [14]- 19]. To this end, we first layout the following general ODE model, using reaction-rate equations, that describes any signaling system architecture in the interconnection topology of Fig. 1A:

$$
\begin{align*}
& \frac{d U}{d t}=f_{0}\left(U, R \underline{X}, S_{1} v, t\right)+G_{1} A \underline{r}\left(U, \underline{X}, S_{2} v\right), \\
& \frac{d \underline{X}}{d t}=G_{1} B \underline{r}\left(U, \underline{X}, S_{2} v\right)+G_{1} f_{1}\left(U, \underline{X}, S_{3} v\right)+G_{2} C s(\underline{X}, v), \tag{1}\\
& \frac{d v}{d t}=G_{2} D s(\underline{X}, v), \\
& Y=I \underline{X} .
\end{align*}
$$

Here, the variable t represents time, U is the input signal (the concentration of the input species), \underline{X} is a vector of concentrations of the species of the signaling system, Y is the output signal (the concentration of the output species) and v is the state variable of the downstream system. In the cases that follow, v is the normalized concentration of the complex formed by the output species Y and its target binding sites p in the downstream system. The positive scalar G_{1} captures the timescale separation between the reactions of the signaling system and the dynamics of the input. Since we consider relatively slow inputs, we have that $G_{1} \gg 1$. The positive scalar G_{2} captures the timescale separation between the binding-unbinding rates between the output Y and its target sites p in the downstream system and the dynamics of the input. Since binding-unbinding reactions also operate on a fast timescale, we have that $G_{2} \gg 1$. We define $\epsilon=\max \left(\frac{1}{G_{1}}, \frac{1}{G_{2}}\right)$ and thus, $\epsilon \ll 1$. Further, the matrices A, B, C and D are constant stoichiometric matrices 42 , and f_{0} and f_{1} are reaction-rate vectors. The SI Section 5.1 contains a formal treatment of this multi-timescale system.

The retroactivity to the input \mathcal{R} indicated in Fig. 1 A equals $\left(R, \underline{r}, S_{1}\right)$. Here, the parameter R accounts for decay/degradation of complexes formed by the input species with species of the signaling system, thus leading to an additional channel for removal of the input species through their interaction with the signaling system. Similarly, scalar S_{1} represents decay of complexes formed by the input species with species of the downstream system. This additional decay leads to an effective increase in decay of the input, thus affecting its steady-state. The reaction-rate vector \underline{r} is the reaction flux resulting from the reactions between species of the upstream system and those of the signaling system. This additional reaction flux affects the temporal behavior of the input, often slowing it down, as demonstrated previously [11]. The retroactivity to the output \mathcal{S} of Fig. 11A equals $\left(S_{1}, S_{2}, S_{3}, s\right)$. As species of the signaling system are sequestered by the downstream system, their free concentration changes. This is accounted for by the vectors S_{2} and S_{3}. The reaction rate vector s represents the additional reaction flux due to the binding-unbinding of the output protein with the target sites in the downstream system. For ideal unidirectional signal transmission, the effects of \mathcal{R} and \mathcal{S} must be small. The ideal input of Fig. $1 \mathrm{~B}, U_{\text {ideal }}$, is the input when retroactivity to the input \mathcal{R} is zero, i.e., when $R=S_{1}=\underline{r}=0$. The isolated output of Fig. $1 \mathrm{C}, Y_{\text {is }}$, is the output when retroactivity to the output \mathcal{S} is zero, i.e., when $S_{1}=S_{2}=S_{3}=s=0$.

In order to provide the main theoretical result of this paper, which provides conditions for which system (1) satisfies Def. 1, it is useful to introduce some definitions. We let $v=\phi(\underline{X})$ denote the solution to $s(\underline{X}, v)=0$. Since $G_{2} \gg 1$, this captures the quasi-steady state concentration of v. Similarly, we let $\underline{X}=\underline{\Psi}(U, v)$ denote the solution to
$\operatorname{Br}\left(U, \underline{X}, S_{2} v\right)+f_{1}\left(U, \underline{X}, S_{3} v\right)=0$. Since $G_{1} \gg 1$, this captures the quasi-steady state concentration of the species of the signaling system \underline{X}. Finally, we let $\underline{X}=\underline{\Gamma}(U)$ denote the solution to $B \underline{r}\left(U, \underline{X}, S_{2} \phi(\underline{X})\right)+f_{1}\left(U, \underline{X}, S_{3} \phi(\underline{X})\right)=0$. For the isolated system as shown in Fig. 1 C , we let $\underline{X}=\underline{\Gamma}_{\text {is }}\left(U_{\text {is }}\right)$ denote the solution to $B \underline{r}\left(U_{\text {is }}, \underline{X}, 0\right)+f_{1}\left(U_{i s}, \underline{X}, 0\right)=0$. Further, it can be shown that there exists a function $g\left(S_{2}, S_{3}\right)$, such that $g\left(S_{2}, S_{3}\right)$ decreases as $\left|S_{2}\right|$ and $\left|S_{3}\right|$ decrease, and is zero when $S_{2}=S_{3}=0$ (details in SI Section 5.1). This function captures the dependence of the difference $\left|\underline{\Gamma}(U)-\underline{\Gamma}_{\text {is }}(U)\right|$ on S_{2} and S_{3}. We further assume that there exist invertible matrices T and Q, and matrices M and P such that
$T A+M B=0, M f_{1}=0$ and $Q C+P D=0$. The assumptions and lemmas that use singular perturbation and
contraction theory to arrive at the results that follow are given in SI Section 5.1 . For system (1), for some fixed positive constants $L_{0}, L_{\Psi}, L_{\Gamma}$ (definitions in SI Section 5.1), we then have the following results.

The first theorem provides an upper-bound on the effect of the retroactivity to the input for system (11).

Theorem 1. The effect of retroactivity to the input is given by:

$$
\left|U_{\text {ideal }}(t)-U(t)\right| \leq \frac{h_{1}+h_{2}+h_{3}}{\lambda}+\mathcal{O}(\epsilon), \quad \text { for } t \in\left[t_{b}, t_{f}\right]
$$

where $h_{1}=\sup _{U} L_{0}|R \underline{\Gamma}(U)|, \quad h_{2}=\sup _{U} L_{0}\left|S_{1} \phi(\underline{\Gamma}(U))\right|$,
$h_{3}=\sup _{U, t \in\left[t_{b}, t_{f}\right]}|\underbrace{\left(T^{-1} M \frac{\partial \underline{\Gamma}(U)}{\partial U}+\left.T^{-1} M Q^{-1} P \frac{\partial \phi}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}(U)} \frac{\partial \underline{\Gamma}(U)}{\partial U}\right)}_{a} \frac{d U}{d t}|$.

Theorem 2. The effect of retroactivity to the output is given by:

$$
\left|Y_{i s}(t)-Y(t)\right| \leq\|I\| \bar{h}_{1}+\|I\| L_{\Gamma} \frac{h_{2}+\bar{h}_{3}}{\lambda}+\mathcal{O}(\epsilon), \quad \text { for } t \in\left[t_{f}, t_{b}\right]
$$

where $\bar{h}_{1}=\sup _{U} L_{\Psi}\left|g\left(S_{2}, S_{3}\right) \phi(\underline{\Gamma}(U))\right|, \quad h_{2}=\sup _{U} L_{0}\left|S_{1} \phi(\underline{\Gamma}(U))\right|$,
$\bar{h}_{3}=\sup _{U, t \in\left[t_{b}, t_{f}\right]}|\underbrace{\left(\left.T^{-1} M Q^{-1} P \frac{\partial \phi(\underline{X})}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}(U)} \frac{\partial \underline{\Gamma}(U)}{\partial U}\right)}_{b} \frac{d U}{d t}|$.

Theorem 3. The relationship between $Y_{i s}(t)$ and $U_{i s}(t)$ is given by:

$$
Y_{i s}(t)=I \underline{\Gamma}_{i s}\left(U_{i s}(t)\right)+\mathcal{O}(\epsilon), \text { for } t \in\left[t_{b}, t_{f}\right]
$$

Theorem 1 provides an upper-bound on $\left|U_{\text {ideal }}(t)-U(t)\right|$ in terms of expressions h_{1}, h_{2} and h_{3}. These terms can be made small making $|R \underline{\Gamma}|, S_{1}$ and a small. We will seek to make these terms small by tuning the total protein concentrations. For example, for the single phosphorylation cycle of Fig. 2 A where the input U equals Z,

$$
|R \underline{\Gamma(U)}|=\frac{X_{T}}{K_{m 1}} Z, S_{1}=0 \text { and } a=\frac{X_{T}}{K_{m 1}}
$$

when $K_{m 1}, K_{m 2} \gg Z$; where $K_{m 1}$ is the Michaelis-Menten constant of the phosphorylation reaction and $K_{m 2}$ is the Michaelis-Menten constant of the dephosphorylation reaction (details in result (i) of SI Section 5.2). Thus, using Theorem 1. we find that as X_{T} is made small, $\left|U_{\text {ideal }}(t)-U(t)\right|$ is made small, thus satisfying requirement (i) of Def. 1.

Similarly, Theorem 2 provides an upper-bound on $\left|Y_{\text {is }}(t)-Y(t)\right|$ in terms of $\bar{h}_{1}, h_{2}, \bar{h}_{3}$, which can be made small by making S_{1}, S_{2}, S_{3} and b small. For the single phosphorylation cycle, where output Y equals X^{*}, we find that (details in result (ii) of SI Section 5.2

$$
S_{1}=0, S_{2}=\frac{p_{T}}{X_{T}}, S_{3}=\frac{\delta p_{T}}{a_{2} M_{T}} \text { and } b=0
$$

where δ is the rate of dilution and a_{2} is the rate of association of X^{*} and M . Thus, using Theorem 2, we find that as X_{T} and M_{T} are made large, $\left|Y_{\text {is }}(t)-Y(t)\right|$ is made small, thus satisfying requirement (ii) of Def. 1. Finally, condition (iii) of Definition 1 can be analyzed using Theorem 3, which provides an expression for the output, $I \underline{\Gamma}_{\text {is }}\left(U_{\text {is }}\right)$. For the single phosphorylation cycle, this evaluates to (from eqn. 23) in SI Section 5.2:

$$
X_{\mathrm{is}}^{*}(t) \approx \underline{\Gamma}\left(Z_{\mathrm{is}}(t)\right) \approx \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}} \frac{X_{T}}{M_{T}} Z_{\mathrm{is}}(t)
$$

when $K_{m 1}, K_{m 2} \gg Z$. Using this expression, M_{T} can be tuned in proportion to X_{T} to satisfy requirement (iii) of Def. 1 with $m=1$ for some desired input-output gain K.

This way, the above theorems can be used to identify ways to tune the total protein concentration of a signaling system such that it satisfies Def. 1. Thus, based on Theorems 1, 2 and 3, we analyze the following signaling architectures: a double phosphorylation cycle with kinase as input, a phosphotransfer system where the phosphate donor is phosphorylated by the input kinase, a cascade of single phosphorylation cycles, a phosphotransfer system where the input is the phosphate donor that undergoes autophosphorylation, a single phosphorylation cycle with a substrate as input, and a double phosphorylation cycle with a substrate as input.

2.2 Double phosphorylation cycle with input as kinase

Fig 3. Tradeoff between small retroactivity to the input and attenuation of retroactivity to the output in a double phosphorylation cycle. (A) Double phosphorylation cycle, with input Z as the kinase: X is phosphorylated by Z to X^{*}, and further on to $\mathrm{X}^{* *}$. Both these are dephosphorylated by the phosphatase $\mathrm{M} . \mathrm{X}^{* *}$ is the output and acts on sites p in the downstream system, which is depicted as a gene expression system here. (B)-(E) Simulation results for ODE model (31) shown in SI Section 5.3 Common simulation parameters $k(t)=0.1(1+\sin (0.05 t)), \delta=0.01 \mathrm{~s}^{-1}, k_{1}=k_{2}=$
$k_{3}=k_{4}=600 \mathrm{~s}^{-1}, a_{1}=a_{2}=a_{3}=a_{4}=18 n M^{-1} \mathrm{~s}^{-1}, d_{1}=d_{2}=d_{3}=d_{4}=2400 \mathrm{~s}^{-1}, k_{\mathrm{on}}=10 \mathrm{nM} M^{-1} \mathrm{~s}^{-1}, k_{\text {off }}=10 \mathrm{~s}^{-1}$. (B) Effect of retroactivity to the input with low substrate concentration X_{T} : ideal input $Z_{\text {ideal }}$ is simulated with $X_{T}=M_{T}=p_{T}=0$, actual input Z is simulated with $X_{T}=100 n M, M_{T}=10 n M, p_{T}=100 \mathrm{nM}$. (C) Effect of retroactivity to the output with low substrate concentration X_{T} : for isolated output $X_{\text {is }}^{* *}$, system is simulated with $X_{T}=10 n M, M_{T}=3 n M, p_{T}=0$, for actual output $X^{* *}$, system is simulated with $X_{T}=10 n M, M_{T}=3 n M, p_{T}=100 n M$. (D) Effect of retroactivity to the input with high substrate concentration X_{T} : for ideal input $Z_{\text {ideal }}$, system is simulated with $X_{T}=M_{T}=p_{T}=0$, for actual input Z, system is simulated with $X_{T}=1200 n M, M_{T}=39 n M, p_{T}=100 n M$. (E) Effect of retroactivity to the output with high substrate concentration X_{T} : for isolated output $X_{\text {is }}^{* *}$, system is simulated with $X_{T}=1200 n M, M_{T}=39 n M, p_{T}=0$, for actual output $X^{* *}$, system is simulated with $X_{T}=1200 \mathrm{nM}, M_{T}=39 \mathrm{nM}, p_{T}=100 \mathrm{nM}$.

Here, we consider a double phosphorylation cycle with a common kinase Z for both phosphorylation cycles as the input and the doubly phosphorylated substrate $\mathrm{X}^{* *}$ as the output. This architecture is found in the second and third stages of the MAPK cascade, where the kinase phosphorylates both the threonine and tyrosine sites in a distributive process [43]. This configuration is shown in Fig. 3A. Referring to Fig. 11A, the input signal U is the concentration Z of the kinase and the output signal Y is the concentration $X^{* *}$ of the doubly phosphorylated substrate X .

The input kinase is produced at a time-varying rate $k(t)$. All species dilute with a rate constant δ, and the total promoter concentration in the downstream system is p_{T}. The total substrate and phosphatase concentrations are X_{T} and M_{T}, respectively. The Michaelis-Menten constants for the two phosphorylation and the two dephosphorylation reactions are $K_{m 1}, K_{m 3}, K_{m 2}$ and $K_{m 4}$, respectively. The catalytic reaction rate constants of these reactions are k_{1}, k_{3}, k_{2} and k_{4}, respectively. The system's chemical reactions are shown in SI Section 5.3 eqns. (30). As explained before, the parameters
that we tune to investigate retroactivity effects are the total protein concentrations of the phosphorylation cycle, that is, X_{T} and M_{T}. Specifically, using Theorems 1, 2 and 3, we tune X_{T} and M_{T} to verify if this system can transmit a unidirectional signal, according to Definition 1 . We therefore find what follows.
(i) Retroactivity to the input: In Theorem 1 , we provided an upper bound, $\frac{h_{1}+h_{2}+h_{3}}{\lambda}$, on $\left|U_{\text {ideal }}(t)-U(t)\right|$, which is the term that must be small to satisfy requirement (i) of Def. 1. i.e., to have a small retroactivity to the input. For this system, λ does not depend on X_{T} and M_{T}. Further, we find that $h_{2}=0$, and that to make h_{1} and h_{3} small, we must have small $\frac{X_{T}}{K_{m 1}}$ and small $\frac{X_{T}}{M_{T} K_{m 3}} \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}$. Thus, to have small retroactivity to the input, the parameter X_{T} must be small. (Mathematical details to derive these expressions are in result (i) of SI Section 5.3).
(ii) Retroactivity to the output: In Theorem 2, we provided an upper bound on $\left|Y_{\text {is }}(t)-Y(t)\right|$. To satisfy requirement (ii) of Def. 1, i.e., to attenuate retroactivity to the output, this upper bound, $\frac{\bar{h}_{1}+h_{2}+\bar{h}_{3}}{\lambda}$, must be made small. For this system, we find that $h_{2}=0$ and $\bar{h}_{3}=0$. Further, to make \bar{h}_{1} small, we must have a small $\frac{p_{T}}{X_{T}}$. Thus, to attenuate retroactivity to the output, we must have a large X_{T}. (Mathematical details to derive these expressions are in result (ii) of SI Section 5.3.
(iii) Input-output relationship: In Theorem 3, we found an approximate expression for the input-output relationship, i.e., $Y_{\text {is }} \approx I \underline{\Gamma}_{\mathrm{is}}\left(U_{\mathrm{is}}\right)$. We use this to find that the $X_{\mathrm{is}}^{* *} \approx \frac{k_{1} k_{3} K_{m 2} K_{m 4}}{k_{2} k_{4} K_{m 1} K_{m 3}} \frac{X_{T}}{M_{T}^{2}} Z_{\text {is }}^{2}$, when $K_{m 1}, K_{m 2}, K_{m 3}, K_{m 4} \gg Z_{\text {is }}$, $K_{m 2} \gg X_{\text {is }}^{*}, K_{m 4} \gg X_{\text {is }}^{* *}$ and $M_{T} \gg Z_{\text {is }}$. Under these assumptions, this system satisfies requirement (iii) of Def. 1 by tuning the ratio $\frac{X_{T}}{M_{T}^{2}}$ to achieve a desired K with $m=2$. (Mathematical details to derive these expressions are in result (iii) of SI Section 5.3, eqn. (41).

This system shows a similar trade-off between properties (i) and (ii) as the single phosphorylation cycle. Retroactivity to the input is large when substrate concentration X_{T} (and M_{T}) increases, because the input Z must phosphorylate a large amount of substrate thus leading to a large reaction flux to Z due to the phosphorylation reaction. However, if X_{T} (and M_{T}) is made small, the system cannot attenuate the retroactivity to the input, since as the output $\mathrm{X}^{* *}$ is sequestered by the downstream system, there is not enough substrate available for the signaling system. Therefore, requirements (i) and (ii) cannot be independently satisfied.

These mathematical predictions can be appreciated from the numerical simulations of Figs. $3 \mathrm{~B}-3 \mathrm{E}$ and this result is summarized in Fig. 9B.

2.3 Phosphotransfer with phosphate donor phosphorylated by the input kinase

We now consider a signaling system composed of a phosphotransfer system, whose phosphate donor receives the phosphate group via phosphorylation through a kinase Z. Instances of phosphotransfer systems include the reaction between YPD1 and SKN7 [44], which is a central component of the osmotic stress response of yeast. Such a system was also implemented as a synthetic insulation device in 34], where kinase JH1 phosphorylates STAT5-HKRR, which then transfers the phosphate group to YPD1 through phosphotransfer. This architecture is shown in Fig. 44. In this case, the input signal U of Fig. 11A is Z, which is the concentration of kinase Z that phosphorylates the phosphate donor X_{1}, which then transfers the phosphate group to protein X_{2}. The output signal Y in Fig. 11A is then X_{2}^{*}, which is the concentration of the phosphorylated substrate X_{2}^{*}. Protein X_{2}^{*} is dephosphorylated by phosphatase M. Total concentrations of proteins $\mathrm{X}_{1}, \mathrm{X}_{2}$ and M are $X_{T 1}, X_{T 2}$ and M_{T}, respectively. The Michaelis-Menten constants for the phosphorylation of X_{1} by Z and dephosphorylation of X_{2}^{*} by M are $K_{m 1}$ and $K_{m 3}$, and the catalytic rate constants of these are k_{1} and k_{3}, respectively. The association rate constant of complex formation by X_{2}^{*} and X_{1} is a_{3}. These reactions are shown in eqns. (46) in SI Section 5.4 The total concentration of promoter sites in the downstream system is p_{T}. The input Z is produced at a time-varying rate $k(t)$. As before, the parameters we change to analyze the system for unidirectional signal transmission are its total protein concentrations, $X_{T 1}, X_{T 2}$ and M_{T}. Using Theorems 1,2 and 3 , we analyze the system's ability to transmit unidirectional signals as per Definition 1 as $X_{T 1}, X_{T 2}$ and M_{T} are varied. This is done as follows.

Fig 4. Tradeoff between small retroactivity to the input and attenuation of retroactivity to the output in a phosphotransfer system. (A) System with phosphorylation followed by phosphotransfer, with input Z as the kinase: Z phosphorylates X_{1} to X_{1}^{*}. The phosphate group is transferred from X_{1}^{*} to X_{2} by a phosphotransfer reaction, forming X_{2}^{*}, which is in turn dephosphorylated by the phosphatase $\mathrm{M} . \mathrm{X}_{2}^{*}$ is the output and acts on sites p in the downstream system, which is depicted as a gene expression system here. (B)-(E) Simulation results for ODE 47) in SI Section 5.4 Common parameters 1 . $k(t)=$ $0.01(1+\sin (0.05 t)), \delta=0.01 s^{-1}, k_{1}=k_{2}=k_{4}=15 s^{-1}, a_{1}=a_{2}=a_{3}=a_{4}=18 n M^{-1} s^{-1}, d_{1}=$
$d_{2}=d_{3}=d_{4}=2400 \mathrm{~s}^{-1}, k_{\mathrm{on}}=10 \mathrm{nM}^{-1} \mathrm{~s}^{-1}, k_{\text {off }}=10 \mathrm{~s}^{-1}$. (B) Effect of retroactivity to the input with low substrate concentration $X_{T 1}$: for ideal input $Z_{\text {ideal }}$, system is simulated with $X_{T 1}=X_{T 2}=M_{T}=p_{T}=0$; for actual input Z, system is simulated with $X_{T 1}=M_{T}=3 n M, X_{T 2}=1200 n M, p_{T}=100 \mathrm{nM}$. (C) Effect of retroactivity to the output with low substrate concentration $X_{T 1}$: for isolated output $X_{2, \text { is }}^{*}$, system is simulated with $X_{T 1}=M_{T}=3 n M, X_{T 2}=1200 n M, p_{T}=0$; for actual output X_{2}^{*}, system is simulated with $X_{T 1}=M_{T}=3 n M, X_{T 2}=1200 n M, p_{T}=100 n M$. (D) Effect of retroactivity to the input with high substrate concentration $X_{T 1}$: for ideal input $Z_{\text {ideal }}$, system is simulated with $X_{T 1}=X_{T 2}=M_{T}=p_{T}=0$; for actual input Z, system is simulated with $X_{T 1}=M_{T}=300 n M, X_{T 2}=1200 n M, p_{T}=100 \mathrm{nM}$. (E) Effect of retroactivity to the output with high substrate concentration $X_{T 1}$: for isolated output $X_{2, \text { is }}^{*}$, system is simulated with $X_{T 1}=M_{T}=300 n M, X_{T 2}=1200 n M, p_{T}=0$; for actual output X_{2}^{*}, system is simulated with $X_{T 1}=M_{T}=300 \mathrm{nM}, X_{T 2}=1200 \mathrm{nM}, p_{T}=100 \mathrm{nM}$.
(i) Retroactivity to the input: As before, we minimize the terms h_{1}, h_{2} and h_{3} as described in Theorem 1 to have a small retroactivity to the input and satisfy requirement (i) of Def. 1. We find that $h_{2}=0$ and that for small h_{1} and h_{3}, we must have small $\frac{X_{T 1}}{K_{m 1}}$. Thus, for small retroactivity to the input, we must have small $X_{T 1}$. (Mathematical details to derive these expressions are in result (i) of SI Section 5.4.
(ii) Retroactivity to the output: To satisfy requirement (ii) of Def. 1. i.e., to attenuate retroactivity to the output, we must have small \bar{h}_{1}, h_{2} and \bar{h}_{3} as defined in Theorem 2 . We find that for this system $h_{2}=0$ and $\bar{h}_{3}=0$. Further, for \bar{h}_{1} to be small, $\frac{p_{T}}{X_{T 2}}$ and $\frac{\delta p_{T}}{a_{3} X_{T 1}}$ must be small. Thus, for a small retroactivity to the output, we must have large $X_{T 1}$ and $X_{T 2}$. (Mathematical details to derive these expressions are in result (ii) of SI Section 5.4).
(iii) Input-output relationship: Using the expression for the input-output relationship given by Theorem 3 we find that $X_{2}^{*} \approx \frac{k_{1} K_{m 3}}{k_{23} K_{m 1}} \frac{X_{T 1}}{M_{T}} Z$ when $K_{m 1} \gg Z_{\text {is }}$ and $K_{m 4} \gg X_{2, \text { is }}^{*}$. Under these assumptions, this system satisfies requirement (iii) of Def. 1 by tuning the ration $\frac{X_{T 1}}{M_{T}}$ with $m=1$. (Mathematical details to derive these expressions are in result (iii) of SI Section 5.4 , eqn. (51)).

In light of (i) and (ii), we note that the system shows a trade-off in attenuating retroactivity to the input and output. Retroactivity to the input can be made small, by making $X_{T 1}$ (and M_{T}) small, since kinase Z must phosphorylate less substrate. However, the system with low $X_{T 1}$ is unable to attenuate retroactivity to the output, which requires that $X_{T 1}$ be large. This is because, as the output X_{2}^{*} is sequestered by the downstream system and undergoes decay as a complex, this acts as an additional channel of removal for the phosphate group from the system, which was received from X_{1}^{*}. If $X_{T 1}\left(\right.$ and $\left.M_{T}\right)$ is small, this removal of the phosphate group affects the amount of X_{1}^{*} in the system to a larger extent that when $X_{T 1}$ is large. Thus, there exists a trade-off between requirements (i) and (ii) of Def. 1. Further, in these two
cases (large $X_{T 1}$ and small $X_{T 1}$), we vary M_{T} in proportion to $X_{T 1}$ to satisfy requirement (iii) of Def. 1.
This mathematical analysis is demonstrated in the simulation results shown in Figs. $4 \mathrm{~B}-4 \mathrm{E}$ and the discussion is summarized in Fig. 9B.

2.4 Cascade of single phosphorylation cycles

Fig 5. Tradeoff between small retroactivity to the input and attenuation of retroactivity to the output is overcome by a cascade of single phosphorylation cycles. (A) Cascade of 2 phosphorylation cycles that with kinase Z as the input: Z phosphorylates X_{1} to $\mathrm{X}_{1}^{*}, \mathrm{X}_{1}^{*}$ acts as the kinase for X_{2}, phosphorylating it to X_{2}^{*}, which is the output, acting on sites p in the downstream system, which is depicted as a gene expression system here. Both X_{1}^{*} and X_{2}^{*} are phosphorylated by phosphatase M. (B), (C) Simulation results for ODEs 61-78) in SI Section 5.5 with $\mathrm{N}=2$. Simulation parameters 1 l $k(t)=$ $0.01(1+\sin (0.05 t)) n M . s^{-1}, \delta=0.01 s^{-1}, a_{1}=a_{2}=18(n M . s)^{-1}, d_{1}=d_{2}=2400 s^{-1}, k_{1}=k_{2}=600 s^{-1}$. (B) Effect of retroactivity to the input: for the ideal input $Z_{\text {ideal }}$, system is simulated with $X_{T 1}=X_{T 2}=M_{T}=p_{T}=0$; for actual input Z, system is simulated with $X_{T 1}=3 n M, X_{T 2}=1000 n M, M_{T}=54 n M, p_{T}=100 n M$. (C) Effect of retroactivity to the output: for the isolated output Y_{is}, system is simulated with $X_{T 1}=3 n M, X_{T 2}=1000 \mathrm{nM}, M_{T}=54 n M, p_{T}=0$; for the actual output, system is simulated with $X_{T 1}=3 n M, X_{T 2}=1000 n M, M_{T}=54 n M, p_{T}=100 \mathrm{nM}$.

We have now seen three systems that show a trade-off between attenuating retroactivity to the output and imparting a small retroactivity to the input: the single phosphorylation cycle, the double phosphorylation cycle and the phosphotransfer system, all with a kinase as input. In all three cases, the trade-off is due to the fact that, as the total substrate concentration is increased to attenuate the effect of retroactivity on the output, the system applies a large retroactivity to the input. Thus, the requirements (i) and (ii) of Def. 1 cannot be independently achieved. In [34], a cascade of phosphotransfer systems was found to apply a small retroactivity to the input and to attenuate retroactivity to the output. Further, cascades of single and double PD cycles are ubiquitous in cellular signaling, such as in the MAPK cascade [14], 45. Motivated by this, here we consider a cascade of PD cycles to determine how a cascaded architecture can overcome this trade-off. We have found that single and double PD cycles, and the phosphotransfer system, show similar properties with respect to unidirectional signal transmission. Thus, our findings are applicable to all systems composed of cascades of single stage systems, such as the single PD cycle, the double PD cycle and the phosphotransfer system analyzed in Section 2.3 (simulation results for cascades of different systems are in SI 5.5 Fig. 11 and Fig. 122.

We consider a cascade of two single phosphorylation cycles, shown in Fig. 5A. The input signal is Z, the concentration of kinase Z. Z phosphorylates substrate X_{1} to X_{1}^{*}, which acts as a kinase for substrate X_{2}, phosphorylating it to X_{2}^{*}. Both X_{1}^{*} and X_{2}^{*} are dephosphorylated by a common phosphatase M . The output signal is X_{2}^{*}, the concentration of X_{2}^{*}.

The input Z is produced at a time-varying rate $k(t)$, and all species dilute with rate constant δ. The substrate of the cycles are produced at constant rates $k_{X 1}$ and $k_{X 2}$, respectively, and the phosphatase is produced at a constant rate k_{M}. We then define $X_{T 1}=\frac{k_{X 1}}{\delta}, X_{T 2}=\frac{k_{X 2}}{\delta}$ and $M_{T}=\frac{k_{M}}{\delta}$. The concentration of promoter sites in the downstream system is p_{T}. The Michaelis-Menten constants for the phosphorylation and dephosphorylation reactions are $K_{m 1}$ and $K_{m 2}$, respectively (assuming identical reaction-rate parameters for both cycles), and catalytic rate constants are k_{1} and k_{2}. The chemical reactions for this system are shown in eqns. (54)- 60 in SI Section 5.5. As before, the parameters we vary to
analyze this system's ability to transmit unidirectional signals are $X_{T 1}, X_{T 2}$ and M_{T}. Using Theorems 1,2 and 3 , we seek to tune these to satisfy the requirements of Def. 1. We find what follows.
(i) Retroactivity to the input: To satisfy requirement (i) of Def. 11, we must have small h_{1}, h_{2} and h_{3} as defined in Theorem 1 . For this system, we find that $h_{1}=h_{2}=0$. We further find that to make d_{3} small, $\frac{X_{T 1}}{K_{m 1}}$ must be small. Thus, to have a small retroactivity to the input, $X_{T 1}$ must be small. (Mathematical details to derive these expressions are in result (i) of SI Section 5.5).
(ii) Retroactivity to the output: As before, we minimize \bar{h}_{1}, h_{2} and \bar{h}_{3} from Theorem 2 to satisfy requirement (ii) of Def. 1, i.e., attenuating retroactivity to the output. We find that $h_{2}=0$ and $\bar{h}_{3}=0$. Further, to make \bar{h}_{1}, we must have a small $\frac{p_{T}}{X_{T 2}}$. Thus, to attenuate retroactivity to the output, $X_{T 2}$ must be large. (Mathematical details to derive these expressions are in result (ii) of SI Section 5.5).
(iii) Input-output relationship: Using the expression found in Theorem 3 we find that the input-output relationship is $X_{2, \text { is }}^{*} \approx\left(\frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}\right)^{2} \frac{X_{T 1} X_{T 2}}{M_{T}^{2}} Z_{\text {is }}$ when $K_{m 1}, K_{m 2} \gg Z_{\text {is }}$. The ratio $\frac{X_{T 1} X_{T 2}}{M_{T}^{2}}$ can thus be tuned such that the system satisfies (iii) of Def. 1 with $m=1$. However, as $\frac{X_{T 2}}{X_{T 1}}$ increases beyond a point, the second stage of the cascade affects the first stage, and the output begins to saturate with respect to the input, thus not satisfying requirement (iii). In SI 5.5 , we have shown that this non-linearity can be reduced by additional cycles, between the first and second cycle, in the cascade up to a certain number of cycles. That is, there exists an optimal number of cycles in the cascade for which the term leading to a non-linear input-output response (shown in eqn. 82 in SI Section 5.5) is minimized. This is because, each downstream cycle affects the response of the cycle directly upstream to it, making it non-linear. For each cycle, these non-linearities add up, and thus the number of terms contributing to the total non-linearity increase with the number of cycles. However, additional cycles reduce the non-linear effect of each individual stage. These two opposing effects make it so that the net non-linearity in the output of the final stage has an optimum. (Mathematical details to derive these expressions are in result (iii) of SI Section 5.5. eqn. (81)).

We thus note that the trade-off between attenuating retroactivity to the output and imparting small retroactivity to the input, found in single-stage systems is broken by having a cascade of two cycles. This is because the input kinase Z only directly interacts with the first cycle, and thus when $X_{T 1}$ is made small, the upstream system faces a small reaction flux due to the phosphorylation reaction, making retroactivity to the input small. The downstream system sequesters the species X_{2}^{*}, and when $X_{T 2}$ is made high, there is enough substrate X_{2} available for the signaling system to be nearly unaffected, thus attenuating retroactivity to the output. This is verified in Figs. 5B5C. The trade-off found in the single cycle in Figs. $2 \mathrm{~B}-2 \mathrm{E}$ is overcome by the cascade, where we have tuned M_{T} to satisfy requirement (iii) of Def. 1. When the total substrate concentration for a single cycle is low, the retroactivity to the input is small (Fig. 2B) but the retroactivity to the output is not attenuated (Fig. 2 C). When the total substrate concentration of this cycle is increased, the retroactivity to the output is attenuated (Fig. 2D) but the input, and therefore the output, are highly changed due to an increase in the retroactivity to the input (Figs. $2 \mathrm{D}, 2 \mathrm{E}$). When the same two cycles are cascaded, with the low substrate concentration cycle being the first and the high substrate concentration cycle being the second (and M_{T} tuned to maintain the same gain K as the single cycles), retroactivity to the input is small and retroactivity to the output is attenuated (Figs. $5 \mathrm{~B}, 5 \mathrm{C}$). Thus, cascading two cycles overcomes the trade-off found in a single cycle.

These results are summarized in Fig. 9E. While the system demonstrated here is a cascade of single phosphorylation cycles, the same decoupling is true for cascaded systems composed of double phosphorylation cycles and phosphorylation cycles followed by phosphotransfer, which as we saw in the previous subsections, show a similar kind of trade-off. Cascades of such systems, with the first system with a low substrate concentration and the last system with a high substrate concentration thus both, impart a small retroactivity to the input, and attenuate retroactivity to the output and are therefore able to transmit unidirectional signals. This can be seen via simulation results in SI Section 5.5 , where a cascade of a phosphotransfer system and a single PD cycle is seen in Fig. 11 and a cascade of a single PD cycle and a double PD cycle is seen in Fig. 12

2.5 Phosphotransfer with the phosphate donor undergoing autophosphorylation as input

Here, we consider a signaling system composed of a protein X_{1} that undergoes autophosphorylation and then transfers the phosphate group to a substrate X_{2}, shown in Fig. 6 A . An instance of this system is found in the bacterial chemotaxis system, where the protein CheY acquires a phosphate group through a phosphotransfer reaction with CheA, which is a histidine kinase that first undergoes autophosphorylation 46]. The input signal U of Fig. 11A is X_{1}, the concentration of
protein X_{1} which undergoes autophosphorylation, and the output signal Y of Fig. 11A is X_{2}^{*}, the concentration of phosphorylated protein X_{2}^{*}. The total protein concentrations of substrate X_{2} and phosphatase M are $X_{T 2}$ and M_{T}, respectively. The total concentration of promoters in the downstream system is p_{T}. Autophosphorylation of a protein typically follows a conformational change that either allows the protein to dimerize and phosphorylate itself, or the conformational change stimulates the phosphorylation of the monomer [47. Here, we model the latter mechanism for autophosphorylation as a single step with rate constant π_{1}. The Michaelis-Menten constant for the dephosphorylation of X_{2}^{*} by M is $K_{m 3}$ and the association, dissociation and catalytic rate constants for this reaction are a_{3}, d_{3} and k_{3}. The association and dissociation rate constants for the complex formed by X_{1}^{*} and X_{2} are a_{1} and d_{1}, the dissociation rate constant of this complex into X_{1} and X_{2}^{*} is d_{2}, and the corresponding reverse association rate constant is a_{2}. The input protein X_{1} is produced at a time-varying rate $k(t)$. Details of the chemical reactions of this system are shown in SI Section 5.6 eqn. (88). We use Theorems 1.3 to analyze this system as per Def. 1 by varying the total protein concentrations $X_{T 2}$ and M_{T}. This is done as follows.

Fig 6. Attenuation of retroactivity to the output by a phosphotransfer system. (A) System with autophosphorylation followed by phosphotransfer, with input as protein X_{1} which autophosphorylates to X_{1}^{*}. The phosphate group is transferred from X_{1}^{*} to X_{2} by a phosphotransfer reaction, forming X_{2}^{*}, which is in turn dephosphorylated by the phosphatase M. X_{2}^{*} is the output and acts on sites p in the downstream system, which is depicted as a gene expression system here. (B)-(E) Simulation results for ODE 89 in SI Section 5.6. Common simulation parameters? $k(t)=0.01(1+\sin (0.05 t)), \delta=0.01 s^{-1}, k_{3}=600 s^{-1}, a_{1}=a_{2}=$ $a_{3}=18 n M^{-1} s^{-1}, d_{1}=d_{2}=d_{3}=2400 s^{-1}, k_{\mathrm{on}}=10 n M^{-1} s^{-1}, k_{\text {off }}=10 s^{-1}, X_{T 2}=1200 \mathrm{nM}$. (B) Effect of retroactivity to the input with low autophosphorylation rate constant π_{1} : for ideal input $X_{1, \text { ideal }}$, system is simulated with $\pi_{1}=M_{T}=p_{T}=0$; for actual input X_{1}, system is simulated with $\pi_{1}=30 n M, M_{T}=9 n M, p_{T}=100 n M$. (C) Effect of retroactivity to the output with low autophosphorylation rate constant π_{1} : for isolated output $X_{2, \text { is }}^{*}$, system is simulated with $\pi_{1}=30 n M, M_{T}=9 n M, p_{T}=0$; actual output X_{2}^{*} is simulated with $\pi_{1}=30 n M, M_{T}=9 n M, p_{T}=100 n M$. (D) Effect of retroactivity to the input with high autophosphorylation rate constant π_{1} : for ideal input $X_{1, \text { ideal }}$, system is simulated with $\pi_{1}=M_{T}=p_{T}=0$; for actual input X_{1}, system is simulated with $\pi_{1}=1500 n M, M_{T}=420 n M, p_{T}=100 n M$. (E) Effect of retroactivity to the output with high autophosphorylation rate constant π_{1} : for isolated output $X_{2, \text { is }}^{*}$, system is simulated with $\pi_{1}=1500 n M, M_{T}=420 n M$, $p_{T}=0$; for actual output $X_{2, \text { is }}^{*}$, system is simulated with $\pi_{1}=1500 \mathrm{nM}, M_{T}=420 \mathrm{nM}, p_{T}=100 \mathrm{nM}$.
(i) Retroactivity to input: We make terms h_{1}, h_{2} and h_{3} from Theorem 1 small to satisfy requirement (i) of Def. 1 and have small retroactivity to the input. We find that $h_{2}=0$. Further, we find that to make h_{1} and h_{3} small, $\frac{2 d_{1} a_{2} L^{2}}{a_{1} d_{2} X_{T 2}}$, $\frac{\pi_{1}\left(d_{1}+d_{2}\right)}{a_{1} d_{2} X_{T 2}}, \frac{2 a_{2} K}{d_{2}}$ and $\frac{\pi_{1}}{d_{2}}$ must be small, where $K=\frac{\pi_{1} K_{m 3}}{k_{3} M_{T}}$. However, not all these terms can be made smaller by varying $X_{T 2}$ and M_{T} alone. Thus, the retroactivity to the input, and whether or not requirement (i) is satisfied, depends on the reaction rate constants of the system, and it is not possible to tune it using total protein concentrations alone. (Mathematical details to derive these expressions are in result (i) of SI Section 5.6).
(ii) Retroactivity to output: To attenuate retroactivity to the output (requirement (ii) of Def. 11, we make \bar{h}_{1}, h_{2} and \bar{h}_{3} from Theorem 2 small. We find that $h_{2}=0$ and $\bar{h}_{3}=0$. Further we find that, to make \bar{h}_{1} small, we must have a small
$\frac{p_{T}}{X_{T 2}}$ and $\frac{p_{T} \delta}{a_{3} M_{T}}$. Thus, to attenuate retroactivity to the output, $X_{T 2}$ and M_{T} must be large. (Mathematical details to derive these expressions are in result (ii) of SI Section 5.6.
(iii) Input-output relationship: Using Theorem 3. we find that the input-output relationship is $X_{2, \text { is }}^{*} \approx \frac{\pi_{1} K_{m 3}}{k_{3} M_{T}} X_{1, \text { is }}$ when $K_{m 3} \gg X_{2, \text { is }}^{*}$ and thus, this system can satisty Def. 1 (iii) by tuning M_{T} to achieve a desired K with $m=1$. (Mathematical details to derive these expressions are in result (i) of SI Section 5.6, eqn. (93)).

Thus, we find that the retroactivity to the input cannot be made small by changing concentrations alone. The retroactivity to the output can be attenuated by having a large $X_{T 2}$ and M_{T}, since these can compensate for the
 unidirectional signal transmission. While satisfying these requirements does not increase the retroactivity to the input, thus making it possible for it to satisfy requirement (i) as well, retroactivity to the input depends on the reaction-rate parameters, in particular, on the forward reaction rate constant π_{1} of autophosphorylation of X_{1}. If this is large, the autophosphorylation reaction applies a large reaction flux to the upstream system, thus resulting in a large retroactivity to the input. If π_{1} is small, this flux is small, and thus retroactivity to the input is small. By the way we have defined cascades (as signals between stages transmitted through a kinase), any cascade containing this system would have it as a first stage. Therefore, even cascading this system with different architectures would not overcome the above limitation. These mathematical predictions can be appreciated in the simulation results shown in Figs. 6B-6E. The result is summarized in Fig. 9C.

2.6 Single cycle with substrate input

Fig 7. Inability to attenuate retroactivity to the output or impart small retroactivity to the input by single phosphorylation cycle with substrate as input. (A) Single phosphorylation cycle, with input X as the substrate: X is phosphorylated by the kinase Z to X^{*}, which is dephosphorylated by the phosphatase M back to X . X^{*} is the output and acts as a transcription factor for the promoter sites p in the downstream system. (B)-(E) Simulation results for ODE (98) in SI Section 5.7 Common simulation parameters $\frac{1}{}$. $k(t)=0.01(1+\sin (0.05 t)), \delta=0.01 s^{-1}, k_{1}=k_{2}=600 s^{-1}, a_{1}=a_{2}=18 n M^{-1} s^{-1}, d_{1}=d_{2}=$ $2400 \mathrm{~s}^{-1}, k_{\mathrm{on}}=10 n M^{-1} s^{-1}, k_{\text {off }}=10 \mathrm{~s}^{-1}$. (B) Effect of retroactivity to the input with low kinase concentration Z_{T} : for ideal input $X_{\text {ideal }}$, system is simulated with $Z_{T}=M_{T}=p_{T}=0$; for actual input X, system is simulated with $Z_{T}=M_{T}=p_{T}=100 \mathrm{nM}$. (C) Effect of retroactivity to the output with low kinase concentration Z_{T} : for isolated output X_{is}^{*}, system is simulated with $Z_{T}=M_{T}=100 n M, p_{T}=0$; for actual output X^{*}, system is simulated with $Z_{T}=M_{T}=p_{T}=100 \mathrm{nM}$. (D) Effect of retroactivity to the input with high kinase concentration Z_{T} : for ideal for ideal input $X_{\text {ideal }}$, system is simulated with $Z_{T}=M_{T}=p_{T}=0$; for actual input X, system is simulated with $Z_{T}=M_{T}=1000 \mathrm{nM}, p_{T}=100 \mathrm{nM}$. (E) Effect of retroactivity to the output with high kinase concentration Z_{T} : for isolated output $X_{\text {is }}^{*}$, system is simulated with $Z_{T}=M_{T}=1000 n M, p_{T}=0$; for actual output X^{*}, system is simulated with $Z_{T}=M_{T}=1000 \mathrm{nM}, p_{T}=100 \mathrm{nM}$.

Here, we consider a single phosphorylation cycle where the input signal U of Fig. 14 is X, the concentration of the substrate X, and the output signal Y is X^{*}, the concentration of the phosphorylated substrate. We consider this system motivated by the various transcription factors that undergo phosphorylation before activating or repressing their targets, such as the transcriptional activator NRI in the E. Coli nitrogen assimilation system [48]. However, to the best of our knowledge, based on our literature review, signals are more commonly transmitted through kinases, as opposed to being transmitted by the substrates of phosphorylations. Since these are less represented than the others in natural systems, we ask whether they have any disadvantage for unidirectional transmission, and in fact they do. Note that the system analyzed in Section 2.5 is a system that takes as input a kinase that undergoes autophosphorylation before donating the phosphate group, and is not the same as the system considered here, where the input is a substrate of enzymatic phosphorylation.

The signaling system we consider, along with the upstream and downstream systems, is shown in Fig. 74. The input protein X is produced at a time-varying rate $k(t)$. It is phosphorylated by kinase Z to the output protein X^{*}, which is in turn dephosphorylated by phosphatase M. X^{*} then acts as a transcription factor for the promoter sites in the downstream system. All the species in the system decay with rate constant δ. The total concentration of promoters in the downstream system is p_{T}. The total kinase and phosphatase concentrations are Z_{T} and M_{T}, respectively, which are the parameters of the system we vary. The Michaelis-Menten constants of the phosphorylation and dephosphorylation reactions are $K_{m 1}$ and $K_{m 2}$, and the catalytic rate constants are k_{1} and k_{2}. The chemical reactions of this system are shown in eqn. (97) in SI Section 5.7. Using Theorems 1, 2 and 3, we analyze if this system can transmit a unidirectional signal according to Definition 1 by varying Z_{T} and M_{T}. This is done as follows.
(i) Retroactivity to the input: As before, we seek to minimize retroactivity to the input to satisfy requirement (i) of Def. 11 using Theorem 1. However, we find that the terms h_{1}, h_{2} and h_{3} cannot be made small by changing Z_{T} and M_{T}, and therefore, retroactivity to the input cannot be made small by tuning these parameters. (Mathematical details to derive these expressions are in result (i) of SI Section 5.7.
(ii) Retroactivity to the output: Similarly, we seek to attenuate retroactivity to the output and satisfy requirement (ii) of Def. 11 using Theorem 2. However, we find that \bar{h}_{1} and h_{2} cannot be made small by varying Z_{T} and M_{T}. Thus, retroactivity to the output cannot be attenuated by tuning these parameters. (Mathematical details to derive these expressions are in result (ii) of SI Section 5.7).
(iii) Input-output relationship: Using the expression in Theorem 3, we find that the input-output relationship is linear with gain $K=\left(\frac{\frac{k_{1} Z_{T}}{K_{m 1}}}{\frac{k_{2} M_{T}}{K_{m 2}}+\delta}\right)$ when $K_{m 1}, K_{m 2} \gg X$, that is:

$$
\begin{equation*}
X_{i s}^{*}(t) \approx K X_{i s}(t) \tag{2}
\end{equation*}
$$

The input-output relationship is thus linear, i.e., $m=1$, and K can be tuned by varying Z_{T} and M_{T}. The system thus satisfies requirement (iii) of Def. 1. (Mathematical details to derive these expressions are in result (iii) of SI Section 5.7 , eqn. 105).

Thus, we find that a signaling system composed of a single phosphorylation cycle with substrate as input cannot transmit a unidirectional signal, since it can neither make retroactivity to the input small nor attenuate retroactivity to the output. This is because, the same protein X is the input (when unmodified) and the output (when phosphorylated). Thus, when X undergoes phosphorylation, the concentration of input X is reduced by conversion to X^{*}, thus applying a large retroactivity to the input. Now, when X^{*} is sequestered by the downstream system, this results in a large flux to both X and X^{*}, and thus the retroactivity to the output is also large. Cascading such a system would also not enhance its ability to transmit unidirectional signals: if the system were used as the first stage to a cascade, it would apply a large retroactivity to the input for the aforementioned reasons. The way we have defined cascades above, with non-initial stages receiving their input via a kinase, this system cannot be the second stage of a cascade since it takes its input in the form of the substrate. These results are demonstrated in the simulation results shown in Fig. $7 \mathrm{~B}-7 \mathrm{E}$ and summarized in Fig. 9F.

2.7 Double cycle with substrate input

Fig 8. Inability to attenuate retroactivity to the output or impart small retroactivity to the input by double phosphorylation cycle with substrate as input. (A) Double phosphorylation cycle, with input X as the substrate: X is phosphorylated twice by the kinase K to X^{*} and $\mathrm{X}^{* *}$, which are in turn dephosphorylated by the phosphatase M . $\mathrm{X}^{* *}$ is the output and acts on sites p in the downstream system, which is depicted as a gene expression system here. (B)-(E) Simulation results for ODE (98) in SI Section 5.8. Common simulation parameters ${ }^{11}$. $k(t)=0.01(1+\sin (0.05 t)), \delta=0.01 s^{-1}, k_{1}=k_{2}=$ $k_{3}=k_{4}=600 s^{-1}, a_{1}=a_{2}=a_{3}=a_{4}=18 n M^{-1} s^{-1}, d_{1}=d_{2}=d_{3}=d_{4}=2400 s^{-1}, k_{\mathrm{on}}=10 \mathrm{nM}^{-1} \mathrm{~s}^{-1}, k_{\mathrm{off}}=10 \mathrm{~s}^{-1}$. (B) Effect of retroactivity to the input with low kinase concentration: for ideal input $X_{\text {ideal }}$, system is simulated with $Z_{T}=M_{T}=p_{T}=0$; for actual input X, system is simulated with $Z_{T}=M_{T}=150 n M, p_{T}=100 \mathrm{nM}$. (C) Effect of retroactivity to the output with low kinase concentration: for isolated output $X_{\mathrm{is}}^{* *}$, system is simulated with $Z_{T}=M_{T}=100 \mathrm{n} M, p_{T}=0$; for actual output $X^{* *}$, system is simulated with $Z_{T}=M_{T}=150 n M, p_{T}=100 n M$. (D) Effect of retroactivity to the input with high kinase concentration: for ideal for ideal input $X_{\text {ideal }}$, system is simulated with $Z_{T}=M_{T}=p_{T}=0$; for actual input X, system is simulated with $Z_{T}=M_{T}=1000 n M, p_{T}=100 n M$. (E) Effect of retroactivity to the output with high kinase concentration: for isolated output $X_{\mathrm{is}}^{* *}$, system is simulated with $Z_{T}=M_{T}=1000 \mathrm{n} M, p_{T}=0$; for actual output $X^{* *}$, system is simulated with $Z_{T}=M_{T}=1000 n M, p_{T}=100 n M$.

Finally, we consider a double phosphorylation cycle with input signal U of Fig. 11A as the concentration of the substrate, X, and the output signal Y as the concentration of the doubly phosphorylated substrate, $X^{* *}$. Similar to the single phosphorylation cycle, we consider this system to model cases where the input species undergoes double phosphorylation before acting on its downstream targets, such as transcription factor FKHRL1, which is phosphorylated by Akt at its T23 and S 253 sites 49. In this system, the signal is transmitted by the kinase Akt and not the substrate. Based on our literature review, we have not found systems where the signal is transmitted by the substrate in such an architecture. We therefore consider this architecture to test whether it has a disadvantage for unidirectional signal transmission. The arrangement is shown in Fig. 8A. All species dilute with rate constant δ. The total concentration of promoters in the downstream system is p_{T}. The total concentration of kinase Z and total concentration of phosphatase M are Z_{T} and M_{T}, respectively. The input X is produced at a time-varying rate $k(t)$. Using Theorems 1, 2 and 3, we vary Z_{T} and M_{T} to investigate if this system can transmit unidirectional signals according to Def. 1. This is done as follows:
(i) Retroactivity to the input: Evaluating the terms in Theorem 1. h_{1} and h_{2} cannot be made small by tuning Z_{T} and M_{T}, and thus, requirement (i) of Def. 1 is not satisfied. (Mathematical details to derive these expressions are in result (i) of SI Section 5.8).
(ii) Retroactivity to the output: Evaluating the terms in Theorem 2 we find that \bar{h}_{1} and h_{2} cannot be made small by tuning Z_{T} and M_{T}. Thus, requirement (ii) of Def. 1 is not satisfied. (Mathematical details to derive these expressions are in result (ii) of SI Section 5.8.
(iii) Input-output relationship: Using Theorem 3, we find that $X_{i s}^{* *}(t) \approx K X_{i s}(t)$ for $t \in\left[t_{b}, t_{f}\right]$ for large Michaelis-Menten constants, where K can be tuned by tuning the total kinase and phosphatase concentrations Z_{T} and
M_{T}. Thus, the system satisfies requirement (iii) of Def. 1 with $m=1$ and a desired K. (Mathematical details to derive these expressions are in result (iii) of SI Section 5.8, eqn. 119).

Thus, similar to the single cycle with substrate as input, the double cycle with substrate as input provides a linear input-output relationship but is not able to impart a small retroactivity to the input, nor is it able to attenuate retroactivity to the output, even upon cascading with other systems. These properties are shown in Fig. $88 \mathrm{~B}-8 \mathrm{E}$, and the results are summarized in Fig. 9G.

signaling cascade in the mature Xenopus Oocyte, where the first stage is a phosphorylation cycle with substrate concentration $3 n M$ and the last two stages are double phosphorylation cycles with substrate concentration $1200 n M$ [25]. This low-high pattern indicates an ability to overcome retroactivity and transmit unidirectional signals, and while this structure may serve other purposes as well, it is possible that the substrate concentration pattern has evolved to more efficiently transmit unidirectional signals.

We have thus analyzed several different architectures of signaling systems and determined which ones are able to transmit unidirectional signals, thus providing an insight into the structure and function of signaling pathways. Our analysis is based on the assumption that the input signals to the signaling system operate on timescales slower than those of fast signaling reactions. This choice is in light of evidence that PD and phosphotransfer cycles have the ability to overcome retroactivity when processing slower input signals [8, [11, $33,[34$. Further, slow signals are common in natural and synthetic systems, such as signals arising from gene expression 38, nutrient deficiency 37] and the circadian rhythm [36]. Using this timescale separation, we have derived Theorems 1-3. providing expressions that can be used to evaluate a signaling system's ability to transmit unidirectional signals. An open question is whether mechanisms exist that can transmit fast signals unidirectionally.

Based on our analysis, pathways that are composed of cascades (Fig. 9E) of kinase-to-kinase phosphorylation (Figs. 9A, 9B) and phosphotransfer events (Figs. 9C), are most suited to this kind of signal transduction. These are highly represented architectures in cellular signaling [8]- [13]. In contrast, architectures that do not perform as well, such as those with substrate as input, are not as highly frequent in natural systems. It has also been reported that kinase-to-kinase relationships are highly conserved evolutionarily [51, implying that upon evolution, signaling mechanisms where kinases phosphorylate other kinases are conserved. These facts lend credence to the notion that cellular signaling has been evolving to be more efficient at one-way transmission.

For graph-based methods for analyzing cellular networks [52], such as discovering functional modules based on motif-search or clustering, signaling pathway architectures that transmit unidirectional signals can then be treated as directed edges. On the contrary, analysis of signaling systems (such as those with a substrate as input) that do not demonstrate the ability to transmit unidirectional signals must take into account effects of retroactivity. In fact, retroactivity effects could result in crosstalk between different targets of the signaling system, since a change in one target would affect the others by changing the signal being transmitted through the pathway 13 . Our work provides a way to identify signaling pathways that overcome such effects. Further, it provides a library of systems that transmit unidirectional signals, which could be used in synthetic biology to connect genetic components that function on the slow timescale of gene expression, enabling modular circuit design.

4 Methods

Theorems 1, 2 and 3 are derived using results from singular perturbation theory 53 and contraction theory 54 . Details and assumptions for these are provided in SI Section 5.1.

All reactions are modeled as two step reactions. Phosphorylation and dephosphorylation reactions are modeled as Michaelis-Menten reactions, and phosphotransfer reactions are modeled as reversible, two-step reactions resulting in the transfer of the phosphate group via the formation of an intermediate complex. Based on these reactions, as well as production and decay of the various species, ODE models are created for the systems using their reaction-rate equations. These ODE models are then brought to the generalized form (11) shown in Section 2 and analyzed using Theorems $1 \| 3$. This analysis is verified using simulations of the full ODE systems run on MATLAB. The numerical ODE solver ode 23 s was used to run simulations for systems 2.4 and 2.5 , and ode15s was used to run simulations for systems $2.2,2.3,2.6$ and 2.7.

5 Supplementary Information

5.1 Assumptions and Proofs for Theorems $1+3$

For the general system (1), we make the following Assumptions:
Assumption 1. Phosphorylation-dephosphorylation and phosphotransfer reactions typically occur at rates of the order of second ${ }^{-1}$ 55], 56, much faster than transcription, translation and decay, which typically occur at rates of the order of
hour $^{-1} 57$. Then, $G_{1} \gg 1$.
Assumption 2. Binding-unbinding reactions of the output with the promoter sites in the downstream system are much faster than transcription, translation and decay [58]. Then, $G_{2} \gg 1$.

Assumption 3. The eigenvalues of $\frac{\partial\left(B \underline{r}+f_{1}\right)}{\partial \underline{X}}$ and $\frac{\partial s}{\partial v}$ have strictly negative real parts.
Assumption 4. There exist invertible matrices T and Q, and matrices M and P, such that $T A+M B=0, M f_{1}=0$ and $Q C+P D=0$.

Assumption 5. Let $\underline{X}=\underline{\Psi}(U, v)$ be the locally unique solution to $f_{1}\left(U, \underline{X}, S_{3} v\right)+B \underline{r}\left(U, \underline{X}, S_{2} v\right)=0$. We assume $\underline{\Psi}(U, v)$ is Lipschitz continuous in v with Lipschitz constant L_{Ψ}.
Assumption 6. Let $v=\phi(\underline{X})$ be the locally unique solution to $s(\underline{X}, v)=0$. Define the function $f(U, \underline{X})=\underline{X}-\underline{\Psi}(U, \phi(\underline{X}))$. Then the matrix $\frac{\partial f(U, \underline{X})}{\partial \underline{X}} \in \mathbb{R}^{n \times n}$ is invertible.

Assumption 7. Let $\underline{\Gamma}(U)$ be the locally unique solution to $B \underline{r}\left(U, \underline{X}, S_{2} v\right)+f_{1}\left(U, \underline{X}, S_{3} v\right)=0$. We assume that $\underline{\Gamma}(U)$ is Lipschitz continuous with Lipschitz constant L_{Γ}.

Remark 1. By definition of $\underline{\Gamma}(U)$, we have that $\underline{\Gamma}(U)=\underline{\Psi}(U, \phi(\underline{\Gamma}(U)))$, since $v=\phi(\underline{X})$ satisfies $s(\underline{X}, v)=0$ and $\underline{X}=\underline{\Psi}(U, \underline{X})$ satisfies $f_{1}\left(U, \underline{X}, S_{3} v\right)+B \underline{r}\left(U, \underline{X}, S_{2} v\right)=0$. If $S_{2}=S_{3}=0, \underline{\Gamma}(U)$ is independent of v, which is denoted by $\underline{\Gamma}_{i s}(U)$. Then, $\underline{\Gamma}_{i s}(U)=\underline{\Psi}(U, 0)$ since $S_{2}=S_{3}=0$. Thus, the difference $\left|\underline{\Gamma}_{i s}(U)-\underline{\Gamma}(U)\right|$ depends on S_{2} and S_{3}, and is zero when $S_{2}=S_{3}=0$. We thus sometimes denote $\underline{\Gamma}(U)$ as $\underline{\Psi}\left(U, g\left(S_{2}, S_{3}\right) \phi(\underline{\Gamma}(U))\right)$, where $g\left(S_{2}, S_{3}\right)=0$ if both $S_{2}=S_{3}=0$. Further, since as $\left\|S_{2}\right\|$ and $\left\|S_{3}\right\|$ decrease, the dependence of $f_{1}\left(U, \underline{X}, S_{3} v\right)+B \underline{r}\left(U, \underline{X}, S_{2} v\right)$ on v decreases, by the implicit function theorem, $g\left(S_{2}, S_{3}\right)$ decreases as $\left\|S_{2}\right\|$ and $\left\|S_{3}\right\|$ decrease.

Assumption 8. The function $f_{0}(U, t)$ is Lipschitz continuous in U with Lipschitz constant L_{0}. The function $\underline{r}(U, \underline{X}, v)$ is Lipschitz continuous in \underline{X} and v.

Assumption 9. The system:

$$
\dot{U}=f_{0}\left(U, R \underline{\Gamma}(U), S_{1} \phi(\underline{\Gamma}(U)), t\right)+G_{1} A \underline{r}\left(U, \underline{\Gamma}(U), S_{2} \phi(\underline{\Gamma}(U))\right)
$$

is contracting 54 with parameter λ.
We now state the following result from 50]:
Lemma 1. If the following system:

$$
\dot{x}=f(x, t)
$$

is contracting with contraction rate λ, then, for the perturbed system:

$$
\dot{\bar{x}}=f(\bar{x}, t)+d(\bar{x}, t)
$$

where there exists a $\bar{d} \geq 0$ such that $|d(\bar{x}, t)| \leq \bar{d}$ for all \bar{x}, t, the difference in trajectories for the actual and perturbed system is given by:

$$
|x(t)-\bar{x}(t)| \leq e^{-\lambda t}|x(0)-\bar{x}(0)|+\frac{\bar{d}}{\lambda}
$$

We state the following result, adapted from [32], for system (1):
Lemma 2. Under Assumptions 1-4, $\|\underline{X}(t)-\underline{\Psi}(U(t), v(t))\|=\mathcal{O}\left(\frac{1}{G_{1}}\right)$ and $\|v(t)-\phi(\underline{X}(t))\|=\mathcal{O}\left(\frac{1}{G_{2}}\right)$ for $t \in\left[t_{b}, t_{f}\right]$, where $\underline{\Psi}(U, v)$ is defined in Assumption 5, $\phi(\underline{X})$ is defined in Assumption 6 and t_{b} is such that $t_{i}<t_{b}<t_{f}$ and $t_{b}-t_{i}$ decreases as G_{1} and G_{2} increase.

Proof of Lemma 2. We bring the system to standard singular perturbation form, by defining $\underline{w}=Q \underline{X}+P v$ and $z=T U+M\left(\underline{X}+Q^{-1} P v\right)$. Under Assumption 4, we obtain the following system:

$$
\begin{align*}
& \dot{z}=T f_{0}\left(U, R \underline{X}, S_{1} v, t\right) \\
& \frac{1}{G_{1}} \underline{\dot{w}}=Q\left[B r\left(U, \underline{X}, S_{2} v\right)+f_{1}\left(U, \underline{X}, S_{3} v\right)\right] \tag{3}\\
& \frac{1}{G_{2}} \dot{v}=G_{2} D s(\underline{X}, v), \\
& \text { where: } U=T^{-1}\left(z-M Q^{-1} v\right), \underline{X}=Q^{-1}(\underline{w}-P v) .
\end{align*}
$$

Under Assumptions $1 \| 3$, this system is in the standard singular perturbation form with $\epsilon=\max \left\{\frac{1}{G_{1}}, \frac{1}{G_{2}}\right\}$. We define function $\underline{W}(z, v)$, such that $\underline{w}=\underline{W}$ is a solution to $\left(B r+f_{1}\right)(z, \underline{w}, v)=0$ and function $V(\underline{w})$ such that $v=V$ is a solution to $s(\underline{w}, v)=0$. Applying singular perturbation, we then have $\|\underline{w}(t)-\underline{W}(z, v)\|=\mathcal{O}\left(\frac{1}{G_{1}}\right)$ and $\|v(t)-V(\underline{w})\|=\mathcal{O}\left(\frac{1}{G_{2}}\right)$. Rewriting these expressions in terms of the original variables, we use the definitions in Assumptions 5 and 6 , we have: $\|\underline{X}(t)-\underline{\Psi}(U, v)\|=\mathcal{O}\left(\frac{1}{G_{1}}\right)$ and $\|v(t)-\phi(\underline{X})\|=\mathcal{O}\left(\frac{1}{G_{2}}\right)$.

Lemma 3. Under Assumptions 11-6, $\|\underline{X}(t)-\underline{\Gamma}(U(t))\|=\mathcal{O}(\epsilon)$, for $t \in\left[t_{b}, t_{f}\right]$, where $\underline{\Gamma}(U)$ is defined in Remark 1 . Proof of Lemma 3. From Lemma 2, we have:

$$
\begin{aligned}
\underline{X} & =\underline{\Psi}\left(U, \phi(\underline{X})+\mathcal{O}\left(\frac{1}{G_{2}}\right)\right)+\mathcal{O}\left(\frac{1}{G_{1}}\right) \\
& =\underline{\Psi}(U, \phi(\underline{X}))+\underline{\Psi}\left(U, \phi(\underline{X})+\mathcal{O}\left(\frac{1}{G_{2}}\right)\right)-\underline{\Psi}(U, \phi(\underline{X}))+\mathcal{O}\left(\frac{1}{G_{1}}\right) .
\end{aligned}
$$

Under Assumption 5, using the Lipschitz continuity of $\underline{\Psi}(U, v)$ we have:

$$
\underline{X} \leq \underline{\Psi}(U, \phi(\underline{X}))+L_{\Psi} \mathcal{O}\left(\frac{1}{G_{2}}\right)+\mathcal{O}\left(\frac{1}{G_{1}}\right) .
$$

By definition of \mathcal{O}, we have:

$$
\begin{equation*}
\underline{X} \leq \underline{\Psi}(U, \phi(\underline{X}))+\mathcal{O}\left(\max \left(\frac{1}{G_{1}}, \frac{1}{G_{2}}\right)=\epsilon\right) \tag{4}
\end{equation*}
$$

By equation (4), $f(U, \underline{U}) \leq \mathcal{O}(\epsilon)$, where the function f is defined in Assumption 4 By definition of $\underline{\Gamma}(U)$, we have $f(U, \underline{\Gamma}(U))=\underline{\Gamma}(U)-\underline{\Psi}(U, \phi(\underline{\Gamma}(U)))=0$. Therefore:

$$
f(U, \underline{X})-f(U, \underline{\Gamma}(U)) \leq \mathcal{O}(\epsilon)
$$

Under Assumption 5, $f(U, \underline{X})$ is differentiable. Applying the Mean Value theorem 59], we have:

$$
f(U, \underline{X})-f(U, \underline{\Gamma}(U))=\left.(\underline{X}-\underline{\Gamma}(U)) \frac{\partial f(U, \underline{X})}{\partial \underline{X}}\right|_{\underline{X}=\underline{c}} \leq \mathcal{O}(\epsilon)
$$

Under Assumption $\left[6\right.$, the matrix $\left.\frac{\partial f(U, \underline{X})}{\partial \underline{X}}\right|_{\underline{X}=\underline{c}}$ is invertible. Thus,

$$
\|\underline{X}-\underline{\Gamma}(U)\|=\mathcal{O}(\epsilon)
$$

Lemma 4. Under Assumptions 1-6, 8, g, for $t \in\left[t_{b}, t_{f}\right],|U(t)-\bar{U}(t)|=\mathcal{O}(\epsilon)$ where \bar{u} is such that:

$$
\begin{equation*}
\dot{\bar{U}}=f_{0}\left(\bar{U}, R \underline{\Gamma}(\bar{U}), S_{1} \phi(\underline{\Gamma}(\bar{U})), t\right)+G_{1} A \underline{r}\left(\bar{U}, \underline{\Gamma}(\bar{U}), S_{2} \phi(\underline{\Gamma}(\bar{U}))\right), \bar{U}(0)=U(0) . \tag{5}
\end{equation*}
$$

Proof of Lemma 4.

$$
\begin{aligned}
\dot{U} & =f_{0}\left(U, R \underline{X}, S_{1} v, t\right)+G_{1} A \underline{r}\left(U, \underline{X}, S_{2} v\right) \\
& =f_{0}\left(U, R \underline{\Gamma}(U), S_{1} \phi(\underline{\Gamma}(U)), t\right)+G_{1} A \underline{r}\left(U, \underline{\Gamma}(U), S_{2} \phi(\underline{\Gamma}(U))\right)+\mathcal{O}(\epsilon)
\end{aligned}
$$

by Lemmas 2 and 3 , since the functions f_{0} and \underline{r} are Lipschitz continuous under Assumption 8 . Applying Lemma 1 to ${ }_{572}$ this system under Assumption 9, we have $|U(t)-\bar{U}(t)|=\mathcal{O}(\epsilon)$.

Proof of Theorem 11. By definition of $U_{\text {ideal }}$, we have from (1):

$$
\dot{U}_{\text {ideal }}=f_{0}\left(U_{\text {ideal }}, 0,0, t\right), U_{\text {ideal }}(0)=U(0)
$$

We define \bar{U} such that its dynamics are given by (5), that is:

$$
\begin{equation*}
\dot{\bar{U}}=f_{0}\left(\bar{U}, R \underline{\Gamma}(\bar{U}), S_{1} \phi(\underline{\Gamma}(\bar{U})), t\right)+G_{1} A \underline{r}\left(\bar{U}, \underline{\Gamma}(\bar{U}), S_{2} \phi(\underline{\Gamma}(\bar{U}))\right), \bar{U}(0)=U(0) \tag{6}
\end{equation*}
$$

By the Lipschitz continuity of f_{0} under Assumption 8, we have:

$$
\begin{equation*}
f_{0}\left(\bar{U}, R \underline{\Gamma}(\bar{U}), S_{1} \phi(\underline{\Gamma}(\bar{U})), t\right)=f_{0}(\bar{U}, 0,0, t)+h(\bar{U}) \tag{7}
\end{equation*}
$$

where $|h(\bar{U})| \leq L_{0}|R \underline{\Gamma}(\bar{U})|+L_{0}\left|S_{1} \phi(\underline{\Gamma}(\bar{U}))\right|$. Thus, $|h(\bar{U})| \leq h_{1}+h_{2}$.
Further define $z=T U+M \underline{X}+M Q^{-1} P v$. Then,

$$
\dot{z}=T \dot{U}+M \underline{\dot{X}}+M Q^{-1} P \dot{v}=T f_{0}\left(U, R \underline{X}, S_{1} v, t\right)
$$

from eqns. (1). Using the expression of \dot{U} from (1), we then see that

$$
G_{1} A r\left(U, \underline{X}, S_{2} v\right)=-T^{-1} M \underline{\dot{X}}-T^{-1} M Q^{-1} P \dot{v}
$$

By Lemma 2 we have $v=\phi(\underline{X})+\mathcal{O}\left(\frac{1}{G_{2}}\right)$ for $t \in\left[t_{b}, t_{f}\right]$. By Lemma 3 we have $\underline{X}=\underline{\Gamma}(U)+\mathcal{O}(\epsilon)$ for $t \in\left[t_{b}, t_{f}\right]$. Thus,

$$
\underline{\dot{X}}=\frac{\partial \underline{\Gamma}(U)}{\partial U} \dot{U}, \dot{v}=\left.\frac{\partial \phi(\underline{X})}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}} \frac{\partial \underline{\Gamma}(U)}{\partial U} \dot{U} \text { for } t \in\left[t_{b}, t_{f}\right]
$$

This implies that

$$
G_{1} A r\left(U, \underline{X}, S_{2} v\right)=-T^{-1} M \frac{\partial \underline{\Gamma}(U)}{\partial U} \dot{U}-\left.T^{-1} M Q^{-1} P \frac{\partial \phi(\underline{X})}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}} \frac{\partial \underline{\Gamma}(U)}{\partial U} \dot{U} \text { for } t \in\left[t_{b}, t_{f}\right]
$$

Then, under Assumption 8, due to the Lipschitz continuity of \underline{r} and Lemmas 2 and 3 ,

$$
G_{1} A r\left(U, \underline{\Gamma}(U), S_{2} \phi(\underline{\Gamma}(U))\right)=-T^{-1} M \frac{\partial \underline{\Gamma}(U)}{\partial U} \dot{U}-\left.T^{-1} M Q^{-1} P \frac{\partial \phi(\underline{X})}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}} \frac{\partial \underline{\Gamma}(U)}{\partial U} \dot{U}+\mathcal{O}(\epsilon)
$$

for $t \in\left[t_{b}, t_{f}\right]$. Changing variables does not change the result, i.e., we define $q(\bar{U})$ such that

$$
\begin{aligned}
q(\bar{U}) & =G_{1} A r\left(\bar{U}, \underline{\Gamma}(\bar{U}), S_{2} \phi(\underline{\Gamma}(\bar{U}))\right) \\
& =-T^{-1} M \frac{\partial \underline{\Gamma}(\bar{U})}{\partial \bar{U}} \dot{\bar{U}}-\left.T^{-1} M Q^{-1} P \frac{\partial \phi(\underline{X})}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}} \frac{\partial \underline{\Gamma}(\bar{U})}{\partial \bar{U}} \dot{\bar{U}}+\mathcal{O}(\epsilon)
\end{aligned}
$$

. From the definition of h_{3} in Theorem 1, we have that $|q(\bar{U})| \leq h_{3}+\mathcal{O}(\epsilon)$. Thus, the dynamics of \bar{U} as given by eqn. (6) can be rewritten using eqn. (7) and $q(\bar{U})=G_{1} \operatorname{Ar}\left(\bar{U}, \underline{\Gamma}(\bar{U}), S_{2} \phi(\underline{\Gamma}(\bar{U}))\right)$ as:

$$
\dot{\bar{U}}=f_{0}(\bar{U}, 0,0, t)+h(\bar{U})+q(\bar{U}) .
$$

Using Lemma 1 we have that

$$
\left|U_{\text {ideal }}(t)-\bar{U}(t)\right| \leq \frac{h_{1}+h_{2}+h_{3}+\mathcal{O}(\epsilon)}{\lambda}
$$

for $t \in\left[t_{b}, t_{f}\right]$. From the triangle inequality, we know that $\left|U_{\text {ideal }}(t)-U(t)\right| \leq\left|U_{\text {ideal }}(t)-\bar{U}(t)\right|+|\bar{U}(t)-U(t)|$. Using Theorem 4 we have:

$$
\left|U_{\text {ideal }}(t)-U(t)\right| \leq \frac{h_{1}+h_{2}+h_{3}}{\lambda}+\mathcal{O}(\epsilon), \quad \text { for } t \in\left[t_{b}, t_{f}\right]
$$

Proof of Theorem 2, By definition, $Y(t)=I X(t)$. Under Lemma 3, this implies that $Y(t)=I \underline{\Gamma}(U(t))+\mathcal{O}(\epsilon)$. The isolated output is then $Y_{\text {is }}(t)=I \underline{\Gamma}_{\mathrm{is}}\left(U_{\mathrm{is}}(t)\right)+\overline{\mathcal{O}(\epsilon)}$. Thus,

$$
\begin{align*}
\left|Y_{\mathrm{is}}(t)-Y(t)\right| & =\| I| |\left|\underline{\Gamma}(U)-\underline{\Gamma}_{\mathrm{is}}\left(U_{\mathrm{is}}\right)\right|+\mathcal{O}(\epsilon) \tag{8}\\
& \leq\left\|I| |\left|\underline{\Gamma}(U)-\underline{\Gamma}_{\mathrm{is}}(U)\right|+\right\| I \|\left|\underline{\Gamma}_{\mathrm{is}}(U)-\underline{\Gamma}_{\mathrm{is}}\left(U_{\mathrm{is}}\right)\right|+\mathcal{O}(\epsilon)
\end{align*}
$$

by the triangle inequality. By definition, as seen in Remark $1, \underline{\Gamma}(U)=\underline{\Psi}\left(U, g\left(S_{2}, S_{3}\right) \phi(\underline{\Gamma}(U))\right)$, where $g\left(S_{2}, S_{3}\right)=0$ for $S_{2}=S_{3}=0$. Also seen in Remark 1. $\underline{\Gamma}_{\text {is }}(U)=\underline{\Psi}(U, 0)$. Then, under Assumption 5 ,

$$
\begin{equation*}
\left|\underline{\Gamma}(U)-\underline{\Gamma}_{\mathrm{is}}(U)\right| \leq L_{\Psi}\left|g\left(S_{2}, S_{3}\right) \phi(\underline{\Gamma}(U))\right| \leq \bar{d}_{1} \tag{9}
\end{equation*}
$$

Under Assumption 7 ,

$$
\begin{equation*}
\left|\underline{\Gamma}_{\mathrm{is}}(U)-\underline{\Gamma}_{\mathrm{is}}\left(U_{\mathrm{is}}\right)\right| \leq L_{\gamma}\left|U-U_{\mathrm{is}}\right| \tag{10}
\end{equation*}
$$

We now define $z=T U+M \underline{X}+M Q^{-1} P v$. Then, from eqn. (1),

$$
\dot{z}=T \dot{U}+M \underline{\dot{X}}+M Q^{-1} P \dot{v}=T f_{0}\left(U, R \underline{X}, S_{1} v, t\right) .
$$

Then,

$$
\dot{U}=f_{0}\left(U, R \underline{X}, S_{1} v, t\right)-T^{-1} M \underline{\dot{X}}-T^{-1} M Q^{-1} P \dot{v}
$$

Comparing the equation above to eqns. (1) we have

$$
G_{1} A \underline{r}\left(U, \underline{X}, S_{2} v\right)=-T^{-1} M \underline{\dot{X}}-T^{-1} M Q^{-1} P \dot{v}
$$

Thus we have that

$$
\begin{aligned}
G_{1} A \underline{r}\left(U, \underline{\Gamma}(U), S_{2} \phi(\underline{\Gamma}(U))\right. & =-T^{-1} M \underline{\dot{\Gamma}}(U)-T^{-1} M Q^{-1} P \dot{\phi} \underline{\Gamma}(U) \\
& =-T^{-1} M \frac{\partial \underline{\Gamma}(U)}{\partial U} \dot{U}-\left.T^{-1} M Q^{-1} P \frac{\partial \phi}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}} \frac{\partial \underline{\Gamma}(U)}{\partial U} \dot{U}
\end{aligned}
$$

Thus, defining \bar{U} as in eqn. (5), we have:

$$
\dot{\bar{U}}=f_{0}\left(\bar{U}, R \underline{\Gamma}(\bar{U}), S_{1} \phi(\underline{\Gamma}(\bar{U})), t\right)-T^{-1} M \frac{\partial \underline{\Gamma}(\bar{U})}{\partial \bar{U}} \dot{\bar{U}}-\left.T^{-1} M Q^{-1} P \frac{\partial \phi}{\partial \underline{X}}\right|_{\underline{x}=\underline{\Gamma}} \frac{\partial \underline{\Gamma}(\bar{U})}{\partial \bar{U}} \dot{\bar{U}}
$$

By the Lipschitz continuity of f_{0} under Assumption 8, this can be written as:

$$
\begin{equation*}
\dot{\bar{U}}=f_{0}(\bar{U}, R \underline{\Gamma}(\bar{U}), 0, t)-T^{-1} M \frac{\partial \underline{\Gamma}(\bar{U})}{\partial \bar{U}} \dot{\bar{U}}+q_{2}(\bar{U})-g_{2}(\bar{U}) \tag{11}
\end{equation*}
$$

where $\left|q_{2}(\bar{U})\right| \leq L_{0}\left|S_{1} \phi(\underline{\Gamma}(\bar{U}))\right|$ for all \bar{U}. Thus, from the definition of h_{2} in Theorem 2 , we have that $\left|q_{2}(\bar{U})\right| \leq h_{2}$. Further, we have

$$
\left|g_{2}(U)\right|=\left|\left(\left.T^{-1} M Q^{-1} P \frac{\partial \phi}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}} \frac{\partial \underline{\Gamma}(\bar{U})}{\partial \bar{U}}\right) \dot{\bar{U}}\right| \leq \bar{h}_{3}, \text { for all } \bar{U}, t \in\left[t_{b}, t_{f}\right] .
$$

Since $\dot{U}=f_{0}\left(U, R \underline{X}, S_{1} v, t\right)-T^{-1} M \underline{\dot{X}}-T^{-1} M Q^{-1} P \dot{v}$, the isolated input dynamics are by definition: $\dot{U}_{i s}=f_{0}(U, R \underline{X}, 0, t)-T^{-1} M \underline{X}$. By Lemma 3 and under Assumption 8, this can be written as:

$$
\begin{equation*}
\dot{U}_{i s}=f_{0}\left(U, R \underline{\Gamma}\left(U_{\mathrm{is}}\right), 0, t\right)-T^{-1} M \frac{\partial \underline{\Gamma}\left(U_{\mathrm{is}}\right)}{\partial U_{\mathrm{is}}} \dot{U}_{\mathrm{is}} \tag{12}
\end{equation*}
$$

Applying Lemma 1 to systems 11 and 12 under Assumption 9 , we have: $\left|\bar{U}(t)-U_{\text {is }}(t)\right| \leq \frac{h_{2}+\bar{h}_{3}}{\lambda}$. By the triangle inequality and Lemma 4 ,

$$
\begin{equation*}
\left|U(t)-U_{\text {is }}(t)\right| \leq|U(t)-\bar{U}(t)|+\left|\bar{U}(t)-U_{\mathrm{is}}(t)\right| \leq \frac{h_{2}+\bar{h}_{3}}{\lambda}+\mathcal{O}(\epsilon) \tag{13}
\end{equation*}
$$

Using (8), (9), 10) and (13), we obtain the desired result.

Proof of Theorem 3. From Remark 1, we see that $\underline{\Gamma}_{i s}\left(U_{i s}\right)=\underline{\Psi}\left(U_{\mathrm{is}}, 0\right)$. From Lemma 2, we have $\left\|\underline{X}_{\text {is }}(t)-\underline{\Psi}\left(U_{\mathrm{is}}, 0\right)\right\|=\mathcal{O}(\epsilon)$. Thus, for $y_{i s}=I \underline{X}_{\text {is }}$, we have

$$
\left\|Y_{\text {is }}-I \underline{\Gamma}_{\text {is }}\left(U_{\text {is }}\right)\right\|=\mathcal{O}(\epsilon)
$$

5.2 Single cycle with kinase input

The reactions for this system are:

$$
\begin{array}{lr}
Z \underset{k(t)}{\stackrel{\delta}{\rightleftharpoons}} \phi, & X \stackrel{\delta}{\underset{k_{X}}{\rightleftharpoons}} \phi, \\
M \stackrel{\delta}{\rightleftharpoons} \phi, & C_{1}, C_{2}, X^{*}, C \stackrel{\delta}{\rightleftharpoons} \phi, \\
Z+X \underset{d_{M}}{\stackrel{a_{1}}{\rightleftharpoons}} C_{1} \xrightarrow{k_{1}} X^{*}+Z, & K_{m 1}=\frac{d_{1}+k_{1}}{a_{1}}, \\
X^{*}+M \underset{d_{2}}{\stackrel{a_{2}}{\rightleftharpoons}} C_{2} \xrightarrow{k_{2}} M+X, & K_{m 2}=\frac{d_{2}+k_{2}}{a_{2}}, \\
X^{*}+p \underset{k_{\text {off }}}{\stackrel{k_{\text {on }}}{\rightleftharpoons}} C . &
\end{array}
$$

Using reaction-rate equations, and the conservation law for the promoter $p_{T}=p+C$, the ODEs for this system are then:

$$
\begin{align*}
\frac{d Z}{d t} & =k(t)-\delta Z-a_{1} Z X+\left(d_{1}+k_{1}\right) C_{1}, & Z(0)=0, \\
\frac{d X}{d t} & =k_{X}-\delta X-a_{1} Z X+d_{1} C_{1}+k_{2} C_{2}, & X(0)=\frac{k_{X}}{\delta}=X_{T}, \\
\frac{d M}{d t} & =k_{M}-\delta M-a_{2} X^{*} M+\left(d_{2}+k_{2}\right) C_{2}, & M(0)=\frac{k_{M}}{\delta}=M_{T}, \\
\frac{d C_{1}}{d t} & =a_{1} Z X-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, & C_{1}(0)=0, \tag{19}\\
\frac{d C_{2}}{d t} & =a_{2} X^{*} M-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2}, & C_{2}(0)=0, \\
\frac{d X^{*}}{d t} & =k_{1} C_{1}-a_{2} X^{*} M+d_{2} C_{2}-\delta X^{*}-k_{\mathrm{on}} X^{*}\left(p_{T}-C\right)+k_{\mathrm{off}} C, & X^{*}(0)=0, \\
\frac{d C}{d t} & =k_{\mathrm{on}} X^{*}\left(p_{\mathrm{T}}-C\right)-k_{\mathrm{off}} C-\delta C, & C(0)=0 .
\end{align*}
$$

For the system defined by 19 , let $M_{T}=M+C_{2}$. Then the dynamics of M_{T} are $\dot{M}_{T}=k_{M}-\delta M_{T}, M_{T}(0)=\frac{k_{M}}{\delta}$. This gives a constant $M_{T}(t)=\frac{k_{M}}{\delta}$. The variable $M=M_{T}-C_{2}$ is then eliminated from the system. Similarly, we define $X_{T}=X+C_{1}+C_{2}+X^{*}+C$, whose dynamics become $\dot{X}_{T}=k_{X}-\delta X_{T}, X_{T}(0)=\frac{k_{X}}{\delta}$. Thus, $X_{T}(t)=\frac{k_{X}}{\delta}$ is a constant. The variable $X=X_{T}-C_{1}-C_{2}-X^{*}-C$ can then be eliminated from the system. Further, we non-dimensionalize C with respect to p_{T}, such that $c=\frac{C}{p_{T}}$. The system thus reduces to: p_{T} Lhe system thus reduces

$$
\begin{array}{lr}
\frac{d Z}{d t}=k(t)-\delta Z-a_{1} Z\left(X_{T}-C_{1}-C_{2}-X^{*}-p_{T} c\right)+\left(d_{1}+k_{1}\right) C_{1}, & Z(0)=0, \\
\frac{d C_{1}}{d t}=a_{1} Z\left(X_{T}-C_{1}-C_{2}-X^{*}-p_{T} c\right)-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, & C_{1}(0)=0, \\
\frac{d C_{2}}{d t}=a_{2} X^{*}\left(M_{T}-C_{2}\right)-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2}, & C_{2}(0)=0, \tag{20}\\
\frac{d X^{*}}{d t}=k_{1} C_{1}-a_{2} X^{*}\left(M_{T}-C_{2}\right)+d_{2} C_{2}-\delta X^{*}-k_{\mathrm{on}} X^{*} p_{T}(1-c)+k_{\text {off } p_{T} c,} & X^{*}(0)=0, \\
\frac{d c}{d t}=k_{\mathrm{on}} X^{*}(1-c)-k_{\text {off }} c-\delta c, & c(0)=0 .
\end{array}
$$

U	Z	v	c
\underline{X}	$\left[\begin{array}{lll}C_{1} & C_{2} & X^{*}\end{array}\right]_{3 \times 1}^{T}$	Y, I	$X^{*},\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]_{1 \times 3}$
G_{1}	$\max \left\{\frac{a_{1} X_{T}}{\delta}, \frac{d_{1}}{\delta}, \frac{k_{1}}{\delta}, \frac{a_{2} X_{T}}{\delta}, \frac{d_{2}}{\delta}, \frac{k_{2}}{\delta},\right\}$	G_{2}	$\max \left\{\frac{k_{\text {on }} p_{T}}{\delta}, \frac{k_{\text {off }}}{\delta}\right\}$
$f_{0}\left(U, R \underline{X}, S_{1} v, t\right)$	$k(t)-\delta Z-\delta C_{1}$	$s(\underline{X}, v)$	$\frac{1}{G_{2}}\left(k_{\text {on }} X^{*}(1-c)-k_{\text {off }} c-\delta c\right)$
$\underline{r}\left(U, \underline{X}, S_{2} v\right)$	$\frac{1}{G_{1}}\left[-a_{1} Z X_{T}\left(1-\frac{X^{*}}{X_{T}}-\frac{C_{1}}{X_{T}}-\frac{C_{2}}{X_{T}}-\frac{p_{T}}{X_{T}} c\right)+\left(d_{1}+k_{1}\right) C_{1}+\delta C_{1}\right]_{1 \times 1}$		
$f_{1}\left(u, \underline{x}, S_{3} v\right)$	$\frac{\frac{1}{G_{1}}\left[\begin{array}{c}0 \\ a_{2} X^{*}\left(M_{T}-C_{2}\right)-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2} \\ k_{1} C_{1}-a_{2} M_{T}\left(X^{*}+\frac{\delta p_{T}}{a_{2} M_{T}} c\right)+a_{2} X^{*} C_{2}+d_{2} C_{2}-\delta X^{*}\end{array}\right]^{\text {ax1 }}}{}$		
A	1	D	1
B	$\left[\begin{array}{lll}-1 & 0 & 0\end{array}\right]_{3 \times 1}^{T}$	C	$\left[\begin{array}{lll}0 & 0 & -p_{T}\end{array}\right]_{3 \times 1}^{T}$
R	$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]_{1 \times 3}$	S_{1}	0
S_{2}	$\frac{p_{T}}{X_{T}}$	S_{3}	$\frac{\delta p_{T}}{a_{2} M_{T}}$
T	1	M	$\left.\begin{array}{llll}1 & 0 & 0\end{array}\right]_{1 \times 3}$
Q	$\mathbb{I}_{3 \times 3}$	P	$\left[\begin{array}{lll}0 & 0 & p_{T}\end{array}\right]_{3 \times 1}^{T}$

Table 1. System variables, functions and matrices for a double phosphorylation cycle with the kinase for both cycles as input brought to form (1).

Based on eqns. 20), we bring the system to form (1) as shown in Table 1 .
We now solve for $\underline{\Psi}, \phi$ and $\underline{\Gamma}$ as defined by Assumptions 5,6 and 7 .
Solving for $\underline{X}=\underline{\Psi}(U, v)$ setting $\left(B r+f_{1}\right)_{3 \times 1}=0$, we have:

$$
\left(B r+f_{1}\right)_{2}=0 \Longrightarrow a_{2} X^{*}\left(M_{T}-C_{2}\right)=\left(\left(d_{2}+k_{2}\right)+\delta\right) C_{2}
$$

Under Assumption 11, $\left(d_{2}+k_{2}\right) \gg \delta$.
Then, $M_{T} X^{*}-X^{*} C_{2} \approx K_{m 2} C_{2}$.
If $K_{m 2} \gg X^{*}, C_{2} \approx \frac{X^{*} M_{T}}{K_{m 2}}$.

$$
\begin{equation*}
\left(B r+f_{1}\right)_{2}+\left(B r+f_{1}\right)_{3}=0 \Longrightarrow\left(k_{1}-\delta\right) C_{1}-\left(k_{2}-\delta\right) C_{2}=0 \tag{22}
\end{equation*}
$$

Under Assumption 1, $k_{1}, k_{2} \gg \delta$. Then, $C_{1}=\frac{k_{2}}{k_{1}} C_{2} \approx \frac{k_{2}}{k_{1}} \frac{X^{*} M_{T}}{K_{m 2}}$.

$$
\left(B r+f_{1}\right)_{1}=0 \Longrightarrow \frac{a_{1} X_{T}}{\delta} Z X_{T}\left(1-\frac{X^{*}}{X_{T}}-\frac{C_{1}}{X_{T}}-\frac{C_{2}}{X_{T}}-\frac{p_{T}}{X_{T}} c\right)=\left(d_{1}+k_{1}+\delta\right) C_{1}
$$

Under Assumption 1, $d_{1}+k_{1} \gg \delta$.Using (21), 22):
$Z X_{T}\left(1-\frac{X^{*}}{X_{T}}-\left(1+\frac{k_{2}}{k_{1}}\right) \frac{X^{*} M_{T}}{X_{T} K_{m 2}}-\frac{p_{T}}{X_{T}} c\right) \approx K_{m 1} \frac{k_{2}}{k_{1}} \frac{X^{*} M_{T}}{X_{T} K_{m 2}}$.
Thus, $X^{*} \approx \frac{Z X_{T}\left(1-\frac{p_{T}}{X_{T}} c\right)}{\left(\frac{k_{2} K_{m 1}}{k_{1} K_{m 2}} M_{T}\right)+\left(1+\left(1+\frac{k_{2}}{k_{1}}\right) \frac{M_{T}}{K_{m 2}}\right) Z}$.

Note that as the input Z becomes very large, the output X^{*} saturates to $\frac{1}{1+\left(1+\frac{k_{2}}{k_{1}}\right) \frac{M_{T}}{K_{m 2}}}$. Since this violates condition (iii) 6 of Def. 1. we must have $K_{m 1} \gg Z$ and $\frac{k_{2} K_{m 1}}{k_{1} K_{m 2}} M_{T} \gg Z$. This gives a range of input z for which condition (iii) of Def. 1 is satisfied. Once the input increases so that $K_{m 1} \gg Z$ and $\frac{k_{2} K_{m 1}}{k_{1} K_{m 2}} M_{T} \gg Z$ are no longer satisfied, condition (iii) does not hold. Under these conditions, the expression for X^{*} is then:

$$
\begin{equation*}
X^{*} \approx \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}} \frac{X_{T}}{M_{T}} Z\left(1-\frac{p_{T}}{X_{T}} c\right) \text { and } X_{\mathrm{is}}^{*} \approx \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}} \frac{X_{T}}{M_{T}} Z_{\mathrm{is}} \tag{23}
\end{equation*}
$$

From $\sqrt{21}-(23)$, we have $\underline{\Psi}(U, v)$ given by:

$$
\begin{equation*}
\underline{\psi} \approx\left[\frac{X_{T}}{K_{m 1}} Z\left(1-\frac{p_{T}}{X_{T}} c\right), \quad \frac{k_{1}}{k_{2}} \frac{X_{T}}{K_{m 1}} Z\left(1-\frac{p_{T}}{X_{T}} c\right), \quad \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}} \frac{X_{T}}{M_{T}} Z\left(1-\frac{p_{T}}{X_{T}} c\right)\right]_{3 \times 1}^{T} . \tag{24}
\end{equation*}
$$

Solving for ϕ by setting $s(\underline{X}, v)=0$, we have:

$$
\begin{align*}
& k_{\mathrm{on}} X^{*}(1-c)=k_{\mathrm{off}} c \\
& \text { i.e., } X^{*}-X^{*} c=k_{D} c \tag{25}\\
& \text { i.e., } \phi=c=\frac{X^{*}}{k_{D}+X^{*}}
\end{align*}
$$

We can use (24) and (25) to find $\underline{\Gamma}$ as defined in Remark 1, and find that it satisfies Assumption 7. We then state without proof the following claims for this system:

Claim 1. For the matrix B and functions r, f_{1} and s defined in Table 1, Assumption 3 is satisfied for this system.
Claim 2. For the functions f_{0} and \underline{r} and matrices R, S_{1} and A defined in Table 1 , and the functions $\underline{\gamma}$ and ϕ as found above, Assumption 9 is satisfied for this system.

For matrices T, Q, M, P defined in Table 1, we see that Assumption 4 is satisfied. Further, for $\underline{\Psi}$ and ϕ defined by (24) and (25), Assumption 5 and 6 are satisfied. Thus, Theorems 1,2 and 3 can be applied to this system to check if the system can transmit unidirectional signals according to Definition 1 by varying X_{T} and M_{T}.

Results: (i) Retroactivity to the input: Using Theorem 1, we see that since $S_{1}=0$ from Table 1, $h_{2}=0$. Since $|R \underline{\Gamma}(U)|=\frac{X_{T}}{K_{m 1}} Z$, to have small h_{1}, we must have a small $\frac{X_{T}}{K_{m 1}}$. Evaluating the final term, we see that:

$$
\left|\left(T^{-1} M \frac{\partial \underline{\Gamma}(U)}{\partial U}+\left.T^{-1} M Q^{-1} P \frac{\partial \phi}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}(U)} \frac{\partial \underline{\Gamma}(U)}{\partial U}\right) \dot{U}\right|=\frac{X_{T}}{K_{m 1}}|\dot{Z}| .
$$

Thus, for a small h_{3}, we must again have a small $\frac{X_{T}}{K_{m 1}}$. Thus, for a small retroactivity to the input, we must have small $\frac{X_{T}}{K_{m 1}}$.
(ii) Retroactivity to the output: Using Theorem 2, we see that since $S_{1}=0, h_{2}=0$. Further, the term $\left|\left(\left.T^{-1} M Q^{-1} P \frac{\partial \phi}{\partial \underline{x}}\right|_{\underline{x}=\underline{\gamma}(u)} \frac{\partial \underline{\gamma}(u)}{\partial u}\right) \dot{u}\right|=0$ since $T^{-1} M Q^{-1} P=0$ from Table $\mid 1$. Thus, $\bar{h}_{3}=0$. For term \bar{h}_{1} to be small, we see that $S_{2}=S_{3}=\frac{p_{T}}{X_{T}}$ must be small. Thus, to decrease the retroactivity to input, X_{T} must be increased.
(iii) Input-output relationship: Using Theorem 3, we know that $\underline{X}_{i s}=\underline{\Gamma}_{i s}+\mathcal{O}(\epsilon)$. Thus, $Y_{i s}=I \underline{\Gamma}_{i s}+\mathcal{O}(\epsilon)$. Under Remark $1 . I \underline{\Gamma}_{i s}=I \underline{\Psi}\left(U_{i s}, 0\right) \approx \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}} \frac{X_{T}}{M_{T}} Z_{\text {is }}$ from $\sqrt{24}$. Thus, the dimensionless input-output behavior is approximately linear. Thus, from Def. 1 (iii) we have that $m=1$ and $K=\frac{k_{1} K_{m 2}}{k_{2} K_{m 1}} \frac{X_{T}}{M_{T}}$ which can be tuned by tuning the substrate and phosphatase concentrations X_{T}, M_{T}.

5.3 Double cycle with input as kinase of both phosphorylations

The reactions for this system are then:

$$
\begin{align*}
& Z \underset{k(t)}{\stackrel{\delta}{\rightleftharpoons}} \phi, \tag{26}\\
& M \stackrel{k_{M}}{\stackrel{\delta}{\rightleftharpoons}} \phi, \tag{27}\\
& Z+X \stackrel{a_{1}}{a_{1}} C_{1} \xrightarrow{k_{1}} X^{*}+Z, \tag{28}\\
& X^{*}+Z \underset{d_{3}}{\stackrel{a_{3}}{\rightleftharpoons}} C_{3} \xrightarrow{k_{3}} X^{* *}+Z, \tag{29}\\
& X^{* *}+p \underset{k_{\text {off }}}{k_{\text {on }}} C . \tag{30}
\end{align*}
$$

Using the reaction-rate equations, the ODEs for this system are:

$$
\begin{array}{lr}
\frac{d Z}{d t}=k(t)-\delta Z-a_{1} Z X+\left(d_{1}+k_{1}\right) C_{1}-a_{3} X^{*} Z+\left(d_{3}+k_{3}\right) C_{3}, & Z(0)=0, \\
\frac{d X}{d t}=k_{X}-\delta X-a_{1} Z X+d_{1} C_{1}+k_{2} C_{2}, & X(0)=\frac{k_{X}}{\delta}, \\
\frac{d M}{d t}=k_{M}-\delta M-a_{2} X^{*} M+\left(d_{2}+k_{2}\right) C_{2}-a_{4} X^{* *} M+\left(d_{4}+k_{4}\right) C_{4}, & M(0)=\frac{k_{M}}{\delta}, \\
\frac{d C_{1}}{d t}=a_{1} Z X-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, & C_{1}(0)=0, \\
\frac{d C_{2}}{d t}=a_{2} X^{*} M-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2}, & C_{2}(0)=0, \\
\frac{d X^{*}}{d t}=k_{1} C_{1}-a_{2} X^{*} M-a_{3} X^{*} Z+k_{4} C_{4}+d_{2} C_{2}+d_{3} C_{3}-\delta X^{*}, & X^{*}(0)=0, \tag{31}\\
\frac{d C_{3}}{d t}=a_{3} X^{*} Z-\left(d_{3}+k_{3}\right) C_{3}-\delta C_{3}, & C_{3}(0)=0, \\
\frac{d C_{4}}{d t}=a_{4} X^{* *} M-\left(d_{4}+k_{4}\right) C_{4}-\delta C_{4}, & C_{4}(0)=0, \\
\frac{d X^{* *}}{d t}=k_{3} C_{3}-a_{4} X^{* *} M+d_{4} C_{4}-\delta X^{* *}-k_{\text {on }} X^{* *}\left(p_{\mathrm{T}}-C\right)+k_{\text {off }} C, & X^{* *}(0)=0, \\
\frac{d C}{d t}=k_{\text {on }} X^{* *}\left(p_{\mathrm{T}}-C\right)-k_{\text {off }} C-\delta C, & C(0)=0 .
\end{array}
$$

For system 31], let $M_{T}=M+C_{2}+C_{4}$. Then its dynamics are $\dot{M}_{T}=k_{M}-\delta M_{T}, M_{T}(0)=\frac{k_{M}}{\delta}$. This gives a constant $\quad{ }^{627}$ $M_{T}(t)=\frac{k_{M}}{\delta}$. The variable $M=M_{T}-C_{2}-C_{4}$ can then be eliminated from the system. Similarly, defining $X_{T}=X+C_{1}+C_{2}+X^{*}+C_{3}+C_{4}+X^{* *}+C$ gives a constant $X_{T}(t)=\frac{k_{X}}{\delta}$, and X can be eliminated from the system as $X=X_{T}-X^{*}-X^{* *}-C_{1}-C_{2}-C_{3}-C_{4}-C$. Further, we define $c=\frac{C}{p_{T}}$ which the dimensionless form of C. The

U	Z	v	c
\underline{x}	$\left[\begin{array}{llllll}C_{1} & C_{2} & X^{*} & C_{3} & C_{4} & X^{* *}\end{array}\right]_{6 \times 1}^{T}$	Y, I	$X^{* *},\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 1\end{array}\right]_{1 \times 6}$
G_{1}	$\max \left\{\frac{a_{1} X_{T}}{\delta}, \frac{d_{1}}{\delta}, \frac{k_{1}}{\delta}, \frac{a_{2} M_{T}}{\delta}, \frac{d_{2}}{\delta}, \frac{k_{2}}{\delta}, \frac{a_{3} X_{T}}{\delta}, \frac{d_{3}}{\delta}, \frac{k_{3}}{\delta}, \frac{a_{4} M_{T}}{\delta}, \frac{d_{4}}{\delta}, \frac{k_{4}}{\delta}\right\}$	G_{2}	$\max \left\{\frac{k_{\text {on }} p_{T}}{\delta}, \frac{k_{\text {off }}}{\delta}\right\}$
$f_{0}\left(U, R \underline{X}, S_{1} v, t\right)$	$k(t)-\delta Z-\delta C_{1}-\delta C_{3}$	$s(\underline{X}, v)$	$\frac{1}{G_{2}}\left(k_{\text {on }} X^{* *}(1-c)-k_{\text {off }} c-\delta c\right)$
$\underline{r}\left(U, \underline{X}, S_{2} v\right)$	$\frac{1}{G_{1}}\left[\begin{array}{c} -a_{1} Z X_{T}\left(1-\frac{X^{*}}{X_{T}}-\frac{X^{* *}}{X_{T}}-\frac{C_{1}}{X_{T}}-\frac{C_{2}}{X_{T}}-\frac{C_{3}}{X_{T}}-\frac{C_{4}}{X_{T}}-\frac{p_{T}}{X_{T}} c\right)+\left(d_{1}+k_{1}\right) C_{1}+\delta C_{1} \\ -a_{3} Z X^{*}+\left(d_{3}+k_{3}\right) C_{3}+\delta C_{3} \end{array}\right]_{2 \times 1}$		
$f_{1}\left(U, \underline{X}, S_{3} v\right)$	$\frac{1}{G_{1}}\left[\begin{array}{c} 0 \\ a_{2} X^{*}\left(M_{T}-C_{2}-C_{4}\right)-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2} \\ k_{1} C_{1}-a_{2} X^{*}\left(M_{T}-C_{2}-C_{4}\right)-a_{3} X^{*} Z+k_{4} C_{4}+d_{2} C_{2}+d_{3} C_{3}-\delta X^{*} \\ 0 \\ a_{4} X^{* *}\left(M_{T}-C_{2}-C_{4}\right)-\left(d_{4}+k_{4}\right) C_{4}-\delta C_{4} \\ k_{3} C_{3}-a_{4} M_{T}\left(X^{* *}+\frac{\delta p_{T}}{a_{4} M_{T}} c\right) a_{4} X^{* *}\left(C_{2}+C_{4}\right)+d_{4} C_{4}-\delta X^{* *} \end{array}\right]$		
A	$\left[\begin{array}{ll}1 & 1\end{array}\right]_{1 \times 2}$	D	1
B	$\left[\begin{array}{cccccc}-1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0\end{array}\right]_{6 \times 2}^{T}$	C	$\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & -p_{T}\end{array}\right]_{6 \times 1}^{T}$
R	$\left.\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 0\end{array}\right]_{1 \times 6}$	S_{1}	0
S_{2}	$\frac{p_{T}}{X_{T}}$	S_{3}	$\frac{\partial p_{T}}{a_{4} M_{T}}$
T	1	M	$\left.\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 0\end{array}\right]_{1 \times 6}$
Q	$\mathbb{I}_{6 \times 6}$	P	$\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & p_{T}\end{array}\right]_{6 \times 1}^{T}$

Table 2. System variables, functions and matrices for a double phosphorylation cycle with the kinase for both cycles as input brought to form 1 .
system then reduces to:

$$
\begin{array}{lr}
\frac{d Z}{d t}=k(t)-\delta Z-a_{1} Z\left(X_{T}-X^{*}-X^{* *}-C_{1}-C_{2}-C_{3}-C_{4}-p_{T} c\right)+\left(d_{1}+k_{1}\right) C_{1}-a_{3} X^{*} Z+\left(d_{3}+k_{3}\right) C_{3}, & Z(0)=0, \\
\frac{d C_{1}}{d t}=a_{1} Z\left(X_{T}-X^{*}-X^{* *}-C_{1}-C_{2}-C_{3}-C_{4}-p_{T} c\right)-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, & C_{1}(0)=0 \\
\frac{d C_{2}}{d t}=a_{2} X^{*}\left(M_{T}-C_{2}-C_{4}\right)-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2}, & C_{2}(0)=0 \\
\frac{d X^{*}}{d t}=k_{1} C_{1}-a_{2} X^{*}\left(M_{T}-C_{2}-C_{4}\right)-a_{3} X^{*} Z+k_{4} C_{4}+d_{2} C_{2}+d_{3} C_{3}-\delta X^{*}, & X^{*}(0)=0, \\
\frac{d C_{3}}{d t}=a_{3} X^{*} Z-\left(d_{3}+k_{3}\right) C_{3}-\delta C_{3}, & C_{3}(0)=0 \\
\frac{d C_{4}}{d t}=a_{4} X^{* *}\left(M_{T}-C_{2}-C_{4}\right)-\left(d_{4}+k_{4}\right) C_{4}-\delta C_{4}, & C_{4}(0)=0 \\
\frac{d X^{* *}}{d t}=k_{3} C_{3}-a_{4} X^{* *}\left(M_{T}-C_{2}-C_{4}\right)+d_{4} C_{4}-\delta X^{* *} & X^{* *}(0)=0 \\
-k_{\text {on }} X^{* *} p_{T}(1-c)+k_{\text {off }} p_{T} c, & c(0)=0 \\
\frac{d C}{d t}=k_{\text {on }} X^{* *}(1-c)-k_{\text {off }} c-\delta c, &
\end{array}
$$

This system (32) is brought to form (1) as shown in Table 2 .
For the system brought to form (1) as seen in Table 2, we now solve for Ψ and ϕ as defined by Assumptions 5 and 6 .

Solving for $\underline{X}=\underline{\Psi}$ by setting $\left(B r+f_{1}\right)_{6 \times 1}=0$, we have:

$$
\begin{equation*}
\left(B r+f_{1}\right)_{2}=0 \Longrightarrow a_{2} X_{T}^{*}\left(M_{T}-C_{2}-C_{4}\right)=\left(d_{2}+k_{2}+\delta\right) C_{2} \tag{33}
\end{equation*}
$$

Under Assumption 11, $\left(d_{2}+k_{2}\right) \gg \delta$.
Then, $M_{T} X^{*}-X^{*} C_{2}-X^{*} C_{4} \approx K_{m 2} C_{2}$.
$\left(B r+f_{1}\right)_{5}=0 \Longrightarrow a_{4} X^{* *}\left(M_{T}-C_{2}-C_{4}\right)=\left(d_{4}+k_{4}+\delta\right) C_{4}$
Under Assumption 1, $d_{4}+k_{4} \gg \delta$.
Then, $M_{T} X^{* *}-X^{* *} C_{2}-X^{* *} C_{4} \approx K_{m 4} C_{4}$.
For $K_{m 2} \gg X^{*}$ and $K_{m 4} \gg X^{* *}$,
$C_{2} \approx \frac{X^{*} M_{T}}{K_{m 2}}$ and $C_{4} \approx \frac{X^{* *} M_{T}}{K_{m 4}}$.

$$
\begin{aligned}
& \left(B r+f_{1}\right)_{5}=0 \text { and }\left(B r+f_{1}\right)_{6}=0 \Longrightarrow k_{3} C_{3} \approx k_{4} C_{4} \\
& \text { i.e., } C_{3} \approx \frac{k_{4}}{k_{3}} \frac{X^{* *} M_{T}}{K_{m 4}} . \\
& \left(B r+f_{1}\right)_{3}=0 \text { and }\left(B r+f_{1}\right)_{4}=0 \Longrightarrow k_{1} C_{1} \approx k_{2} C_{2} \\
& \text { i.e., } C_{1} \approx \frac{k_{2}}{k_{1}} \frac{M_{T} X^{*}}{K_{m 2}} .
\end{aligned}
$$

$$
\left(B r+f_{1}\right)_{4}=0 \Longrightarrow a_{3} X^{*} Z=\left(d_{3}+k_{3}\right) C_{3}
$$

$$
\text { i.e., from (35), } \frac{Z X^{*}}{K_{m 3}}=C_{3} \approx \frac{k_{4}}{k_{3}} \frac{X^{* *} M_{T}}{K_{m 4}} \text {, }
$$

$$
\text { i.e., } X^{*} \approx \frac{k_{4} K_{m 3}}{k_{3} K_{m 4}} \frac{X^{* *} M_{T}}{Z}
$$

$$
\left(B r+f_{1}\right)_{1}=0 \Longrightarrow
$$

$$
a_{1} Z X_{T}\left(1-\frac{X^{*}}{X_{T}}-\frac{X^{* *}}{X_{T}}-\frac{C_{1}}{X_{T}}-\frac{C_{2}}{X_{T}}-\frac{C_{3}}{X_{T}}-\frac{C_{4}}{X_{T}}-\frac{p_{T}}{X_{T}} c\right)=\left(d_{1}+k_{1}\right) C_{1}
$$

$$
\text { i.e., } Z\left(1-\frac{k_{4} K_{m 3}}{k_{3} K_{m 4}} \frac{X^{* *} M_{T}}{Z X_{T}}-\frac{X^{* *}}{X_{T}}-\left(\frac{k_{2}}{k_{1}}+1\right) \frac{M_{T}}{X_{T} K_{m 2}} \frac{k_{4} K_{m 3}}{k_{3} K_{m 4}} \frac{X^{* *} M_{T}}{Z}\right.
$$

$$
\left.-\left(\frac{k_{4}}{k_{3}}+1\right) \frac{X^{* *} M_{T}}{X_{T} K_{m 4}}-\frac{p_{T}}{X_{T}} c\right) \approx K_{m 1} \frac{k_{2}}{k_{1}} \frac{M_{T}}{K_{m 2}} \frac{k_{4} K_{m 3}}{k_{3} K_{m 4}} \frac{X^{* *} M_{T}}{Z}
$$

i.e., $Z X_{T}\left(1-\frac{p_{T}}{X_{T}} c\right)$
$\approx X^{* *}+X^{* *}\left(\frac{k_{4} K_{m 3}}{k_{3} K_{m 4}} \frac{M_{T}}{Z}\right)\left(\frac{M_{T}}{K_{m 2}}\left(\frac{k_{2}}{k_{1}}+1\right)+M_{T} \frac{k_{2} K_{m 1}}{k_{1} K_{m 2}}+\frac{k_{3} Z}{k_{4} K_{m 3}}\left(\frac{k_{4}}{k_{3}}+1\right)\right)$.
If $K_{m 1}, K_{m 2}, K_{m 3}, K_{m 4} \gg Z$ and $\frac{M_{T}}{Z} \gg 1$,
$Z\left(1-\frac{p_{T}}{X_{T}} c\right) \approx X^{* *}\left(\frac{k_{4} K_{m 3}}{k_{3} K_{m 4}} \frac{M_{T}}{X_{T}} \frac{k_{2} K_{m 1}}{k_{1} K_{m 2}} \frac{M_{T}}{\bar{k} z}\right)$,
i.e., $X^{* *} \approx \frac{X_{T}}{M_{T}^{2}} Z^{2} \frac{k_{3} K_{m 4}}{k_{4} K_{m 3}} \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}\left(1-\frac{p_{T}}{X_{T}} c\right)$.

Thus, from $(34)-(38)$, we have the function $\underline{\Psi}(U, v)$:

$$
\underline{\Psi} \approx\left[\begin{array}{c}
\left(\frac{Z X_{T}}{K_{m 1}}\right)\left(1-\frac{p_{T}}{X_{T}} c\right), \tag{39}\\
\frac{k_{1}}{k_{2}}\left(\frac{Z X_{T}}{K_{m 1}}\right)\left(1-\frac{p_{T}}{X_{T}} c\right), \\
\frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}\left(\frac{Z X_{T}}{M_{T}}\right)\left(1-\frac{p_{T}}{X_{T}} c\right), \\
\frac{Z^{2} X_{T}}{M_{T}} \frac{1}{K_{m 3}} \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}\left(1-\frac{p_{T}}{X_{T}} c\right), \\
\frac{Z^{2} X_{T}}{M_{T}} \frac{k_{3}}{k_{4} K_{m 3}} \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}\left(1-\frac{p_{T}}{X_{T}} c\right), \\
\left(\frac{Z}{M_{T}}\right)^{2} X_{T} \frac{k_{3} K_{m 4}}{k_{4} K_{m 3}} \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}\left(1-\frac{p_{T}}{X_{T}} c\right)
\end{array}\right]_{6 \times 1}
$$

Solving for ϕ by setting $s(\underline{X}, v)=0$, we have:

$$
\begin{align*}
& k_{\mathrm{on}} X^{* *}(1-c)=k_{\mathrm{off}} c \\
& \text { i.e., } X^{* *}-X^{* *} c=k_{D} c \tag{40}\\
& \text { i.e., } \phi=c=\frac{X^{* *}}{k_{D}+X^{* *}}
\end{align*}
$$

We can use (39) and 40 to find $\underline{\Gamma}$ as defined in Remark 1 , and find that it satisfies Assumption 7 . We then state the following claims without proof for this system:

Claim 3. For the matrix B and the functions r, f_{1} and s defined in Table 2, Assumption 3 is satisfied for large $K_{m 1}, K_{m 2}, K_{m 3}, K_{m 4}$.

Claim 4. For the functions f_{0} and \underline{r} and matrices R, S_{1} and A defined in Table 2 , and the functions $\underline{\gamma}$ and ϕ as found above, Assumption 9 is satisfied for this system.

For matrices T, Q, M, P defined in Table 2, we see that Assumption 4 is satisfied. Further, for $\underline{\Psi}$ and ϕ defined by (39) and 40), Assumptions 5 and 6 are satisfied. Thus, Theorems 1,2 and 3 can be applied to this system.

Results: (i) Retroactivity to the input: Using Theorem 1, we see that since $S_{1}=0$ from Table 2, $h_{2}=0$. Further, $R|\underline{\Gamma}(U)|=Z \frac{X_{T}}{K_{m 1}}+Z^{2} \frac{X_{T}}{M_{T} K_{m 3}} \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}$. For the final term h_{3}, we evaluate:

$$
\left|\left(T^{-1} M \frac{\partial \underline{\Gamma}(U)}{\partial U}+\left.T^{-1} M Q^{-1} P \frac{\partial \phi}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}(U)} \frac{\partial \underline{\Gamma}(U)}{\partial U}\right) \dot{U}\right|=\left(\frac{X_{T}}{K_{m 1}}+2 Z \frac{X_{T}}{M_{T} K_{m 3}} \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}\right) \dot{Z}
$$

Thus, for small h_{1} and h_{3}, and therefore small retroactivity to the input, we must have small $\frac{X_{T}}{K_{m 1}}$ and $\frac{X_{T}}{M_{T} K_{m 3}} \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}$.
(ii) Retroactivity to the output: From Table 2, we see that $S_{1}=0$. Thus, $h_{2}=0$. Further, evaluating the expression $\left|\left(\left.T^{-1} M Q^{-1} P \frac{\partial \phi(\underline{X})}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}(U)} \frac{\partial \underline{\Gamma}(U)}{\partial U}\right) \dot{U}\right|$ gives $\bar{h}_{3}=0$, since $T^{-1} M Q^{-1} P=0$. For a small retroactivity to the output,
then, we must have small \bar{h}_{1}. Since $S_{3}=0$, we must have a small $S_{2}=\frac{p_{T}}{X_{T}}$. Thus, for a small retroactivity to the output, we must have a large X_{T}.
(iii) Input-output relationship: From eqn. (39), we have that:

$$
\begin{equation*}
Y_{i s}=I \underline{X}_{i s} \approx I \underline{\Gamma}_{i s}=I \underline{\Psi}\left(U_{i s}, 0\right) \approx \frac{X_{T}}{M_{T}^{2}} Z_{i s}^{2} \frac{k_{3} K_{m 4}}{k_{4} K_{m 3}} \frac{k_{1} K_{m 2}}{k_{2} K_{m 1}} \tag{41}
\end{equation*}
$$

5.4 Phosphotransfer with kinase as input

The reactions for this system are:

$$
\begin{align*}
& Z \underset{k(t)}{\stackrel{\delta}{\rightleftharpoons}} \phi, \tag{42}\\
& X_{2} \underset{k_{X_{2}}}{\stackrel{\delta}{\rightleftharpoons}} \phi, \tag{43}\\
& C_{1}, X_{1}^{*}, X_{2}^{*}, C_{2}, C_{4}, C \xrightarrow{\delta} \phi, \tag{44}\\
& X_{1}+Z \underset{d_{1}}{\stackrel{a_{1}}{1}} C_{1} \xrightarrow{k_{1}} X_{1}^{*}+Z, \\
& X_{1}^{*}+X_{2} \underset{d_{2}}{\stackrel{a_{2}}{\rightleftharpoons}} C_{2} \underset{a_{3}}{\stackrel{d_{3}}{\rightleftharpoons}} X_{1}+X_{2}^{*}, \tag{45}\\
& X_{2}^{*}+p \underset{k_{\text {off }}}{k_{\text {on }}} C . \tag{46}
\end{align*}
$$

The ODEs based on the reaction rate equations are:

$$
\begin{array}{lr}
\dot{Z}=k(t)-\delta Z-a_{1} X_{1} Z+\left(d_{1}+k_{1}\right) C_{1}, & Z(0)=0, \\
\dot{X}_{1}=k_{X_{1}}-\delta X_{1}-a_{1} X_{1} Z+d_{1} C_{1}+d_{3} C_{2}-a_{3} X_{1} X_{2}^{*}, & X_{1}(0)=\frac{k_{X_{1}}}{\delta}, \\
\dot{C}_{1}=a_{1} X_{1} Z-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, & C_{1}(0)=0, \\
\dot{X}_{1}^{*}=k_{1} C_{1}-a_{2} X_{1}^{*} X_{2}+d_{2} C_{2}-\delta X_{1}^{*}, & X_{1}^{*}(0)=0, \\
\dot{X}_{2}=k_{X_{2}}-\delta X_{2}-a_{2} X_{1}^{*} X_{2}+d_{2} C_{2}+k_{4} C_{4}, & X_{2}(0)=\frac{k_{X_{2}}}{\delta}, \tag{47}\\
\dot{C}_{2}=a_{2} X_{1}^{*} X_{2}+a_{3} X_{1} X_{2}^{*}-\left(d_{2}+d_{3}\right) C_{2}-\delta C_{2}, & C_{2}(0)=0, \\
\dot{X}_{2}^{*}=d_{3} C_{2}-a_{3} X_{1} X_{2}^{*}-a_{4} X_{2}^{*} M+d_{4} C_{4}-\delta X_{2}^{*}-k_{\text {on }} X_{2}^{*}\left(p_{T}-C\right)+k_{\text {off }} C, & X_{2}^{*}(0)=0, \\
\dot{C}_{4}=a_{4} X_{2}^{*} M-\left(d_{4}+k_{4}\right) C_{4}-\delta C_{4}, & C_{4}(0)=0, \\
\dot{M}=k_{M}-\delta M-a_{4} X_{2}^{*} M+\left(d_{4}+k_{4}\right) C_{4}, & M(0)=\frac{k_{M}}{\delta}, \\
\dot{C}=k_{\text {on }} X_{2}^{*}\left(p_{T}-C\right)-k_{\text {off }} C-\delta C, & C(0)=0 .
\end{array}
$$

For 477, define $X_{T 1}=X_{1}+C_{1}+X_{1}^{*}+C_{2}$. Then, $\dot{X}_{T 1}=k_{X_{1}}-\delta X_{T 1}, X_{T 1}(0)=\frac{k_{X_{1}}}{\delta}$. Thus, $X_{T 1}(t)=\frac{k_{X_{1}}}{\delta}$ is a constant at all time $t>0$. Similarly, $X_{T 2}=X_{2}+C_{2}+X_{2}^{*}+C_{3}+C$ is a constant with $X_{T 2}(t)=\frac{k_{X_{2}}}{\delta}$ and $M_{T}=M+C_{3}$ is a constant with $M_{T}(t)=\frac{k_{M}}{\delta}$ for all time $t>0$. Thus, the variables $X_{1}=X_{T 1}-C_{1}-X_{1}^{*}-C_{2}$,
$X_{2}=X_{T 2}-C_{2}-X_{2}^{*}-C_{3}-C$ and $M=M_{T}-C_{4}$ can be eliminated from the system. Further, we define $c=\frac{C}{p_{T}}$. The reduced system is then:

$$
\begin{array}{lr}
\dot{Z}=k(t)-\delta Z-a_{1} Z\left(X_{T 1}-C_{1}-X_{1}^{*}-C_{2}\right)+\left(d_{1}+k_{1}\right) C_{1}, & Z(0)=0, \\
\dot{C}_{1}=a_{1} Z\left(X_{T 1}-C_{1}-X_{1}^{*}-C_{2}\right)-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, & C_{1}(0)=0, \\
\dot{X}_{1}^{*}=k_{1} C_{1}-a_{2} X_{1}^{*}\left(X_{T 2}-C_{2}-X_{2}^{*}-C_{4}-p_{T} c\right)+d_{2} C_{2}-\delta X_{1}^{*}, & X_{1}^{*}(0)=0, \\
\dot{C}_{2}=a_{2} X_{1}^{*}\left(X_{T 2}-C_{2}-X_{2}^{*}-C_{4}-p_{T} c\right)+a_{3}\left(X_{T 1}-C_{1}-X_{1}^{*}-C_{2}\right) X_{2}^{*}-\left(d_{2}+d_{3}\right) C_{2}-\delta C_{2}, & C_{2}(0)=0, \\
\dot{X}_{2}^{*}=d_{3} C_{2}-a_{3}\left(X_{T 1}-C_{1}-X_{1}^{*}-C_{2}\right) X_{2}^{*}-a_{4} X_{2}^{*}\left(M_{T}-C_{4}\right)+d_{4} C_{4}-\delta X_{2}^{*}-k_{\text {on }} X_{2}^{*} p_{T}(1-c)+k_{\text {off }} p_{T} c, & X_{2}^{*}(0)=0, \\
\dot{C}_{4}=a_{4} X_{2}^{*}\left(M_{T}-C_{4}\right)-\left(d_{4}+k_{4}\right) C_{4}-\delta C_{4}, & C_{4}(0)=0, \\
\dot{c}=k_{\text {on }} X_{2}^{*}(1-c)-k_{\text {off }}-\delta c, & c(0)=0 .
\end{array}
$$

This system (48) is brought to form (1] as shown in Table 3 .
We now solve for the functions Ψ and ϕ as defined by Assumptions 5 and 6

Table 3. System variables, functions and matrices for a phosphotransfer system with kinase as input brought to form (1).

Solving for $\underline{X}=\underline{\Psi}$ by setting $\left(B r+f_{1}\right)_{5}=0$, we have:

$$
\left(B r+f_{1}\right)_{1}=0 \Longrightarrow Z X_{T 1}-Z X_{1}^{*}-Z C_{2} \approx\left(K_{m 1}+Z\right) C_{1}, \text { under Assumption } 1
$$

If $K_{m 1} \gg Z, \quad Z X_{T 1} \approx K_{m 1} C_{1}$, i.e., $C_{1} \approx \frac{Z X_{T 1}}{K_{m 1}}$.
$\left(B r+f_{1}\right)_{2}+\left(B r+f_{1}\right)_{3}+\left(B r+f_{1}\right)_{4}+\left(B r+f_{1}\right)_{5}=0 \Longrightarrow k_{1} C_{1}-k_{4} C_{4} \approx 0$,
i.e., $C_{4} \approx \frac{k_{1}}{k_{4}} \frac{Z X_{T 1}}{K_{m 1}}$.

$$
\begin{gathered}
\left(B r+f_{1}\right)_{5}=0 \Longrightarrow X_{2}^{*} M_{T} \approx\left(X_{2}^{*}+K_{m 4}\right) C_{4} \\
\text { If } K_{m 4} \gg X_{2}^{*}, \quad X_{2}^{*} \approx \frac{K_{m 4}}{M_{T}} \frac{k_{1}}{k_{4}} \frac{Z X_{T 1}}{K_{m 1}} . \\
\left(B r+f_{1}\right)_{3}=0 \Longrightarrow \\
a_{2} X_{1}^{*} X_{T 2}\left(1-\frac{C_{2}}{X_{T 2}}-\frac{X_{2}^{*}}{X_{T 2}}-\frac{C_{4}}{X_{T 2}}-\frac{p_{T}}{X_{T 2}} c\right) \\
-\left(d_{2}+d_{3}\right) C_{2}+a_{3}\left(X_{T 1}-C_{1}-X_{1}^{*}-C_{2}\right) X_{2}^{*} \approx 0 . \\
\text { If }\left(d_{2}+d_{3}\right) \gg a_{2} X_{1}^{*} \text { and } a_{3} X_{T 1}, C_{2} \approx \frac{a_{2} X_{1}^{*} X_{T 2}+a_{3} X_{2}^{*} X_{T 1}}{d_{2}+a_{3}} \\
\left(B r+f_{1}\right)_{2}=0 \\
\Longrightarrow k_{1} C_{1}-a_{2} X_{T 2} X_{1}^{*}\left(1-\frac{C_{2}}{X_{T 2}}-\frac{X_{2}^{*}}{X_{T 2}}-\frac{C_{4}}{X_{T 2}}-\frac{p_{T}}{X_{T 2}} c\right)+d_{2} C_{2}-\delta X_{1}^{*}=0 .
\end{gathered}
$$

$$
\left(B r+f_{1}\right)_{2}=0
$$

If $d_{2} \gg a_{2} X_{1}^{*}, d_{2} C_{2} \approx a_{2} X_{1}^{*}-k_{1} c_{1}$.

Solving the above 2 simultaneously, we obtain:

$$
\begin{aligned}
& X_{1}^{*} \approx \frac{k_{1} X_{T 1}}{a_{2} d_{3} X_{T 2} K_{m 1}}\left(\frac{d_{2} a_{3} K_{m 4} X_{T 1}}{k_{4} M_{T}}+d_{2}+d_{3}\right) Z \\
& \text { and } C_{2} \approx \frac{a_{3} X_{T 2}}{d_{2}+d_{3}}\left(\frac{d_{2}}{d_{3}}+\frac{X_{T 1}}{X_{T 2}}\right) \frac{k_{1} K_{m 4}}{k_{4} K_{m 1}} \frac{X_{T 1}}{M_{T}} Z .
\end{aligned}
$$

Thus, we have the function $\underline{\Psi}(U, v)$:

$$
\underline{\Psi} \approx\left[\begin{array}{c}
\frac{Z X_{T 1}}{K_{m 1}}, \tag{49}\\
\frac{k_{1} X_{T 1}}{a_{2} d_{3} X_{T 2} K_{m 1}}\left(\frac{d_{2} a_{3} K_{m 4} X_{T 1}}{k_{4} M_{T}}+d_{2}+d_{3}\right) Z, \\
\frac{a_{3} X_{T 2}}{d_{2}+d_{3}}\left(\frac{d_{2}}{d_{3}}+\frac{X_{T 1}}{X_{T}}\right) k_{1} k_{m 4} K_{4} K_{m 1} \frac{X_{T 1}}{M_{T}} Z, \\
\frac{k_{1} K_{m 3}}{k_{3} K_{X_{1} 1}} \frac{X_{T 1} Z,}{k_{T} Z} Z,
\end{array}\right]_{5 \times 1}^{T} .
$$

Solving for ϕ by setting $s(\underline{X}, v)=0$, we have:

$$
\begin{align*}
& k_{\mathrm{on}} X_{2}^{*}(1-c)-k_{\mathrm{off}} c-\delta c=0 \\
& \text { Under Assumption } 1, X_{2}^{*}-X_{2}^{*} c \approx k_{D} c \tag{50}\\
& \text { i.e., } \phi=c \approx \frac{X_{2}^{*}}{X_{2}^{*}+k_{D}}
\end{align*}
$$

Finding Γ from (49) and (50) under Remark 1, we see that it satisfies Assumption 7 For matrices T, Q, M and P as seen in Table 3. we see that Assumption 4 is satisfied. Functions f_{0} and \underline{r} in Table 3 satisfy Assumptions 8 For the functions $\underline{\Psi}, \phi$ and $\underline{\Gamma}$, Assumptions 5,6 and 7 are satisfied. We also claim without proof that Assumptions 3 and 9 are satisfied for this system. Theorems 1,2 and 3 can then be applied to this system.

Results: (i) Retroactivity to the input: Using Theorem 1. since $S_{1}=0$ from Table 3, $h_{2}=0$. Further, $|R \underline{\Gamma}(U)|=\frac{X_{T 1}}{K_{m 1}} Z$. Finally, we evaluate the following expression for h_{3} :

$$
\left|\left(T^{-1} M \frac{\partial \underline{\Gamma}(U)}{\partial U}+\left.T^{-1} M Q^{-1} P \frac{\partial \phi}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}(U)} \frac{\partial \underline{\Gamma}(U)}{\partial U}\right) \dot{U}\right| \approx \frac{X_{T 1}}{K_{m 1}} \dot{Z} .
$$

Thus, for small h_{1} and h_{3}, and therefore small retroactivity to the input, we must have small $\frac{X_{T 1}}{K_{m 1}}$.
(ii) Retroactivity to the output: Using Claim 2, we see from Table 3 that $S_{1}=0$, thus, $h_{2}=0$. Further, since $T^{-1} M Q^{-1} P=0$, we find $\bar{h}_{3}=0$. For a small retroactivity to the output then, we must have a small \bar{h}_{1}. Since $S_{2}=0$, we must have a small $S_{3}=\frac{p_{T}}{X_{T 2}}, \frac{\delta p_{T}}{a_{3} X_{T 1}}$. Thus, for a small retroactivity to the output, we must have a large $X_{T 2}$ and $\frac{X_{T 1} d_{3}}{\delta}$ compared to p_{T}.
(iii) Input-output relationship: From 49, we see that

$$
\begin{equation*}
X_{2, i s}^{*}=I \underline{X}_{i s} \approx I \underline{\Gamma}_{i s}=I \underline{\Psi}\left(U_{i s}, 0\right) \approx \frac{k_{1} K_{m 3}}{k_{3} K_{m 1}} \frac{X_{T 1}}{M_{T}} Z_{i s} \tag{51}
\end{equation*}
$$

5.5 N-stage cascade of single phosphorylation cycles with common phosphatase

The two-step reactions for the cascade are shown below. The reactions involving species of the first cycle are given by:

$$
\begin{align*}
& \phi \stackrel{k(t)}{\rightleftharpoons} Z, \quad X_{1}+Z \stackrel{a_{11}}{\stackrel{a_{11}}{\rightleftharpoons}} C_{11} \xrightarrow{k_{11}} X_{1}^{*}+Z, \tag{52}\\
& X_{1}^{*}+M \underset{\beta_{21}}{\stackrel{\beta_{11}}{\rightleftharpoons}} C_{21} \xrightarrow{k_{21}} X_{1}+M, \tag{53}\\
& X_{1}^{*}+X_{2} \underset{d_{12}}{\stackrel{a_{12}}{\longrightarrow}} C_{12} \xrightarrow{k_{12}} X_{1}^{*}+X_{2}^{*} . \tag{54}
\end{align*}
$$

The reactions involving species of the $i^{\text {th }}$ cycle, for $i \in[2, N-1]$, are given by:

$$
\begin{align*}
& X_{i}+X_{i-1}^{*} \stackrel{a_{1 i}}{\stackrel{d_{1 i}}{\rightleftharpoons}} C_{1 i} \stackrel{k_{1 i}}{k_{i}^{*}} X_{i}^{*}+X_{i-1}^{*}, K_{m 1 i}=\frac{d_{1 i}+k_{1 i}}{a_{1 i}}, \tag{55}\\
& X_{i}^{*}+M \underset{\beta_{2 i}}{\beta_{1 i}} C_{2 i} \xrightarrow{k_{2 i}} X_{i}+M, K_{m 2 i}=\frac{\beta_{2 i}+k_{2 i}}{\beta_{1 i}}, \tag{56}\\
& X_{i}^{*}+X_{i+1} \stackrel{a_{1_{i+1}}}{\underset{d_{1_{i+1}}}{ }} C_{1_{i+1}} \xrightarrow{k_{1_{i+1}}} X_{i}^{*}+X_{i+1}^{*} . \tag{57}
\end{align*}
$$

And those for the final cycle are given by:

$$
\begin{align*}
& X_{N}+X_{N-1}^{*} \stackrel{a_{1 N}}{\rightleftharpoons} C_{1 N} \stackrel{k_{1 N}}{\rightleftharpoons} X_{N}^{*}+X_{N-1}^{*} \tag{58}\\
& X_{N}^{*}+M \underset{d_{1 N}}{\stackrel{\beta_{1 N}}{\rightleftharpoons}} C_{2 N} \stackrel{k_{2 N}}{\rightleftharpoons} X_{N}+M \tag{59}\\
& X_{N}^{*}+p \underset{k_{\text {off }}}{\stackrel{k_{\text {on }}}{\rightleftharpoons}} C \tag{60}
\end{align*}
$$

The production and dilution of the proteins and other species gives:

$$
X_{i} \underset{k_{X i}}{\stackrel{\delta}{\rightleftharpoons}} \phi, \quad M \underset{k_{M}}{\stackrel{\delta}{\rightleftharpoons}} \phi, \quad C_{1 i}, X_{i}^{*}, C_{2 i}, C \xrightarrow{\delta} \phi
$$

The reaction rate equations for the system are then given below, for time $t \in\left[t_{i}, t_{f}\right]$. For the input,

$$
\begin{equation*}
\dot{Z}=k(t)-\delta Z-a_{11} X_{1} Z+\left(d_{11}+k_{11}\right) C_{11} \tag{61}
\end{equation*}
$$

For the first cycle,

$$
\begin{array}{lr}
\dot{X}_{1}=k_{X 1}-\delta X_{1}-a_{11} X_{1} Z+d_{11} C_{11}+k_{21} C_{21}, & X_{1}(0)=\frac{k_{X 1}}{\delta} \\
\dot{C}_{11}=a_{11} X_{1} Z-\left(d_{11}+k_{11}\right) C_{11}-\delta C_{11}, & C_{11}(0)=0 \\
\dot{C}_{21}=\beta_{11} X_{1}^{*} M-\left(\beta_{21}+k_{21}\right) C_{21}-\delta C_{21}, & C_{21}(0)=0 \\
\dot{X}_{1}^{*}=k_{11} C_{11}-\beta_{11} X_{1}^{*} M+\beta_{21} C_{21}-a_{12} X_{1}^{*} X_{2} & \\
+\left(d_{12}+k_{12}\right) C_{12}-\delta X_{1}^{*}, & X_{1}^{*}(0)=0 \tag{66}
\end{array}
$$

For the $i^{\text {th }}$ cycle, where $i \in[2, N-1]$:

$$
\begin{array}{lr}
\dot{X}_{i}=k_{X i}-\delta X_{i}-a_{1 i} X_{i} X_{i-1}^{*}+d_{1 i} C_{1 i}+k_{2 i} C_{2 i}, & X_{i}(0)=\frac{k_{X i}}{\delta} \\
\dot{C}_{1 i}=a_{1 i} X_{i} X_{i-1}^{*}-\left(d_{1 i}+k_{1 i}\right) C_{1 i}-\delta C_{1 i}, & C_{1 i}(0)=0 \\
\dot{C}_{2 i}=\beta_{1 i} X_{i}^{*} M-\left(\beta_{2 i}+k_{2 i}\right) C_{2 i}-\delta C_{2 i}, & C_{2 i}(0)=0 \\
\dot{X}_{i}^{*}=k_{1 i} C_{1 i}-\beta_{1 i} X_{i}^{*} M+\beta_{2 i} C_{2 i}-a_{1_{i+1}} X_{i}^{*} X_{i+1} & \\
+\left(d_{1_{i+1}}+k_{1_{i+1}}\right) C_{1_{i+1}}-\delta X_{i}^{*}, & X_{i}^{*}(0)=0 \tag{71}
\end{array}
$$

For the last, $N^{\text {th }}$, cycle:

$$
\begin{array}{lr}
\dot{X}_{N}=k_{X N}-\delta X_{N}-a_{1 N} X_{N} X_{N-1}^{*}+d_{1 N} C_{1 N}+k_{2 N} C_{2 N}, & X_{N}(0)=\frac{k_{X N}}{\delta} \\
\dot{C}_{1 N}=a_{1 N} X_{N} X_{N-1}^{*}-\left(d_{1 N}+k_{1 N}\right) C_{1 N}-\delta C_{1 N}, C_{1 N}(0)=0, & C_{1 N}(0)=0 \\
\dot{C}_{2 N}=\beta_{1 N} X_{N}^{*} M-\left(\beta_{2 N}+k_{2 N}\right) C_{2 N}-\delta C_{2 N}, & C_{2 N}(0)=0 \\
\dot{X}_{N}^{*}=k_{1 N} C_{1 N}-\beta_{1 N} X_{N}^{*} M+\beta_{2 N} C_{2 N} & \\
-k_{\text {on }}\left(p_{T}-C\right) X_{N}^{*}+k_{\text {off }} C-\delta X_{N}^{*}, & X_{N}^{*}(0)=0 \tag{76}
\end{array}
$$

U		Z	v	c	
$\underline{\underline{x}}$	$\left.\begin{array}{lllllll}C_{11} & \ldots & C_{1 i} & C_{2 i} & X_{i}^{*} & \ldots & X_{N}^{*}\end{array}\right]_{3 N \times 1}^{T}$		Y, I	$X_{N}^{*},\left[\begin{array}{lllll}0 & 0 & \ldots & 0 & 1\end{array}\right]_{1 \times 3 N}$	
G_{1}	$G_{1}=\min \left\{\frac{a_{1} X_{T_{i}}}{\delta}, \frac{d_{1}}{\delta}, \frac{k_{1}}{\delta}, \frac{a_{2} M_{T}}{\delta}, \frac{d_{2}}{\delta}, \frac{k_{2}}{\delta}\right\}$		G_{2}	$\min \left\{\frac{k_{\text {on }} p_{T}}{\delta}, \frac{k_{\text {off }}}{\delta}\right\}$	
$f_{0}\left(U, R \underline{X}, S_{1} v, t\right)$		$k(t)-\delta Z-\delta C_{11}$	$s(\underline{X}, v)$	$\frac{1}{G_{2}}\left(k_{\text {on }} X_{N}^{*}(1-c)-k_{\text {off }} C-\delta c\right)$	
$\underline{r}\left(u, \underline{x}, S_{2} v\right)$	$\frac{1}{G_{1}}\left[-a_{1} Z\left(X_{T 1}-C_{11}-X_{1}^{*}-C_{21}-C_{12}\right)+\left(d_{1}+k_{1}\right) C_{11}+\delta C_{11}\right]_{1 \times 1}$				
$f_{1}\left(u, \underline{x}, S_{3} v\right)$	$\frac{1}{G_{1}}\left[\begin{array}{c}0 \\ a_{2}\left(M_{T}-\sum C_{2 i}\right) X_{1}^{*}-\left(d_{2}+k_{2}\right) C_{21}-\delta C_{2 i}, \\ k_{1} C_{11}-a_{2} X_{1}^{*}\left(M_{T}-\sum C_{2 i}\right)+d_{2} C_{21}-a_{1} X_{1}^{*}\left(X_{T 2}-C_{12}-X_{2}^{*}-C_{22}-C_{13}\right)+\left(d_{1}+k_{1}\right) C_{12}-\delta X_{1}^{*} \\ \cdots \\ a_{1} X_{i-1}^{*}\left(X_{T i}-C_{1 i}-X_{i}^{*}-C_{2 i}-C_{1_{i+1}}\right)-\left(d_{1}+k_{1}\right) C_{1 i}-\delta C_{1 i} \\ a_{2}\left(M_{T}-\sum C_{2 i}\right) X_{i}^{*}-\left(d_{2}+k_{1}\right) C_{2 i}-\delta C_{2 i} \\ k_{1} C_{1 i}-a_{2} X_{i}^{*}\left(M_{T}-\sum C_{2 i}\right)-a_{1} X_{i}^{*}\left(X_{T_{i+1}}-C_{1_{i+1}}-X_{i+1}^{*}-C_{2_{i+1}}-C_{1_{i+2}}\right)+\left(d_{1}+k_{1}\right) C_{1_{i+1}}-\delta X_{i}^{*} \\ \cdots \\ a_{1} X_{T N} X_{N-1}^{*}\left(1-\frac{p_{T}}{\left.X_{T N} c\right)-a_{1} X_{N-1}^{*}\left(C_{1 N}+X_{N}^{*}+C_{2 N}\right)-\left(d_{1}+k_{1}\right) C_{1 N}-\delta C_{1 N}}\right. \\ a_{2} X_{N}^{*}\left(M_{T}-\sum C_{2 i}\right)-\left(d_{2}+k_{2}\right) C_{2 N}-\delta C_{2 N} \\ k_{1} C_{1 N}-a_{2} M_{T}\left(X_{N}^{*}+\frac{\delta p_{T}}{a_{2} M_{T}} c\right)+a_{2} X_{N}^{*} \sum C_{2 i}+d_{2} C_{2 N}-\delta X_{N}^{*}\end{array}\right]$	$\begin{gathered} 0 \\ a_{2}\left(M_{T}-\sum C_{2 i}\right) X_{1}^{*}-\left(d_{2}+k_{2}\right) C_{21}-\delta C_{2 i}, \\ k_{1} C_{11}-a_{2} X_{1}^{*}\left(M_{T}-\sum C_{2 i}\right)+d_{2} C_{21}-a_{1} X_{1}^{*}\left(X_{T 2}-C_{12}-X_{2}^{*}-C_{22}-C_{13}\right)+\left(d_{1}+k_{1}\right) C_{12}-\delta X_{1}^{*} \\ \ldots \\ a_{1} X_{i-1}^{*}\left(X_{T i}-C_{1 i}-X_{i}^{*}-C_{2 i}-C_{1_{i+1}}\right)-\left(d_{1}+k_{1}\right) C_{1 i}-\delta C_{1 i} \\ a_{2}\left(M_{T}-\sum C_{2 i}\right) X_{i}^{*}-\left(d_{2}+k_{1}\right) C_{2 i}-\delta C_{2 i} \\ k_{1} C_{1 i}-a_{2} X_{i}^{*}\left(M_{T}-\sum C_{2 i}\right)-a_{1} X_{i}^{*}\left(X_{T_{i+1}}-C_{1_{i+1}}-X_{i+1}^{*}-C_{2_{i+1}}-C_{1_{i+2}}\right)+\left(d_{1}+k_{1}\right) C_{1_{i+1}}-\delta X_{i}^{*} \\ a_{1} X_{T N} X_{N-1}^{*}\left(1-\frac{p_{T}}{X_{T N}} c\right)-a_{1} X_{N-1}^{*}\left(C_{1 N}+X_{N}^{*}+C_{2 N}\right)-\left(d_{1}+k_{1}\right) C_{1 N}-\delta C_{1 N} \\ a_{2} X_{N}^{*}\left(M_{T}-\sum \sum_{2 i}\right)-\left(d_{2}+k_{2}\right) C_{2 N}-\delta C_{2 N} \\ k_{1} C_{1 N}-a_{2} M_{T}\left(X_{N}^{*}+\frac{\delta p_{T}}{a_{2} M_{T}} c\right)+a_{2} X_{N}^{*} \sum C_{2 i}+d_{2} C_{2 N}-\delta X_{N}^{*} \end{gathered}$			
A		1	D	$1 \longrightarrow$	
B		$\left[\begin{array}{llll}-1 & 0 & \ldots & 0\end{array}\right]_{3 N \times 1}^{T}$	C	$\left[\begin{array}{lllll}0 & 0 & \ldots & 0 & -p_{T}\end{array}\right]_{3 N \times 1}^{T}$	
R		$\left.\begin{array}{lllll}1 & 0 & \ldots & 0\end{array}\right]_{1 \times 3 N}$	S_{1}	0	
S_{2}		0	S_{3}	$\frac{p_{T}}{X_{T N}}, \frac{\partial_{p_{T}}}{a_{2} M_{T}}$	
T		1	M	$\left.\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right]_{1 \times 3 N}$	
Q		$\mathbb{I}_{3 N \times 3 N}$	P	$\left[\begin{array}{llll} 0 & \ldots & 0 & p_{T} \end{array}\right]_{3 N \times 1}^{T}$	

Table 4. System variables, functions and matrices for an N -stage cascade of phosphorylation cycles with the kinase as input to the first cycle brought to form (1).

For the common phosphatase:

$$
\begin{equation*}
\dot{M}=k_{M}-\delta M-\sum_{i=1}^{i=N}\left(\beta_{1 i} X_{i}^{*} M-\left(\beta_{2 i}+k_{2 i}\right) C_{2 i}\right) \tag{77}
\end{equation*}
$$

For the downstream system,

$$
\begin{equation*}
\dot{C}=k_{\mathrm{on}}\left(p_{T}-C\right) X_{N}^{*}-k_{\mathrm{off}} C-\delta C . \tag{78}
\end{equation*}
$$

Seeing that $X_{T i}(t)=\frac{k_{X}}{\delta}=X_{i}+X_{i}^{*}+C_{1 i}+C_{2 i}+C_{1_{i+1}}$ and $M_{T}(t)=\frac{k_{M}}{\delta}=M+\sum_{i=1}^{N} C_{2 i}$, we reduce the system above to bring it to form (1) as seen in Table 4 , with $c=\frac{C}{p_{T}}$. We make the following Assumptions for the system:
Assumption 10. All cycles have the same reaction constants, i.e., $\forall i \in[1, N]$,
$k_{1 i}=k_{1}, k_{2 i}=k_{2}, a_{1 i}=a_{1}, \beta_{1 i}=a_{2}, d_{1 i}=d_{1}, \beta_{2 i}=d_{2}$. Then, $K_{m 1 i}=K_{m 1}, K_{m 2 i}=K_{m 2}$. Define $\lambda^{\prime}=\frac{k_{1} K_{m 2}}{k_{2} K_{m 1}}$.
Assumption 11. $\forall t$ and $\forall i \in[1, N], K_{m 2} \gg X_{i}^{*}(t)$.
We now solve for $\underline{\Psi}$ by setting $\left(B r+f_{1}\right)_{3 n \times 1}=0$. Under Assumption 11, this is given by:

$$
\begin{align*}
& \underline{\Psi} \approx\left[\begin{array}{lll}
\ldots & \frac{k_{2}}{k_{1}} \frac{M_{T}}{K_{m 2}} \bar{X}_{i}^{*}, & \frac{M_{T}}{K_{m 2}} \bar{X}_{i}^{*}, \quad \bar{X}_{i}^{*}, \quad \cdots
\end{array}\right]_{3 N \times 1}^{T} \\
& \text { where } \bar{X}_{i}^{*}=\frac{\prod_{j=1}^{i} X_{T j} Z}{b^{i}+\left(\sum_{j=1}^{i}\left(b^{i-j} \alpha_{i}(t) \prod_{k=1}^{j-1} X_{T k}\right)\right) Z} \text { for } i \in[1, N-1] \tag{79}\\
& \text { and } \bar{X}_{N}^{*}=\frac{\prod_{j=1}^{N} X_{T j} Z\left(1-\frac{p_{T}}{X_{T N}} c(t)\right)}{b^{N}+\left(\sum_{j=1}^{N}\left(b^{N-j} \alpha_{j}(t) \prod_{k=1}^{j-1} X_{T k}\right)\right) Z}=\frac{\left(\frac{\prod_{j=1}^{N} X_{T j}}{b^{N}}\right) Z\left(1-\frac{p_{T}}{X_{T N}} c(t)\right)}{1+\left(\sum_{j=1}^{N}\left(b^{-j} \alpha_{j}(t) \prod_{k=1}^{j-1} X_{T k}\right)\right) Z}
\end{align*}
$$

Here, $\alpha_{j}(t) \leq\left(\frac{X_{T_{j+1}}}{K_{m 1}}+\left(\frac{k_{2}}{k_{1}}+1\right) \frac{M_{T}}{K_{m 2}}+1\right)$ for $j \in[1, N-1], \alpha_{N}(t)=\left(\left(\frac{k_{2}}{k_{1}}+1\right) \frac{M_{T}}{K_{m 2}}+1\right)$ and $b=\frac{M_{T}}{\lambda^{\prime}}=\frac{M_{T} k_{2} K_{m 1}}{k_{1} K_{m 2}}$.
Solving for ϕ by setting $s(\underline{X}, v)=0$, we have:

$$
\begin{gather*}
k_{\mathrm{on}} X_{N}^{*}(1-c)=k_{\mathrm{off}} c \\
\text { i.e., } X_{N}^{*}-X_{N}^{*} c=k_{D} c \tag{80}\\
\text { i.e., } \phi=c=\frac{X_{N}^{*}}{k_{D}+X_{N}^{*}} .
\end{gather*}
$$

We can use 89 and 80 to find $\underline{\Gamma}$ as defined in Remark 1 , and find that this satisfies Assumption 7 . Note that this $\underline{\Gamma}$ differs from $\underline{\Psi}$ only in the last 3 terms, involving \bar{X}_{N}^{*}. Functions $\underline{\Psi}$ and ϕ satisfy Assumptions 5 and 6 . Further, from Table 4, we see that matrices T, Q, M and P satisfy Assumption 4 , and functions f_{0} and \underline{r} satisfy Assumption 8 . We further assume that Assumptions 3 and 9 are satisfied for this system. Thus, Theorems 1,2 and 3 can be applied to this system.

Results: (i) Retroactivity to the input: Since $S_{1}=0$ from Table 4, under Claim $1, h_{2}=0$. Further, $|R \underline{\Gamma}| \approx \frac{X_{T 1} Z}{K_{m 1}} \frac{b}{\left(b+a_{1} Z\right)}$, and thus, to make h_{1} small, we must have small $\frac{X_{T 1}}{K_{m 1}}$. For the final term, we see that $T^{-1} M=\left[\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right]$ and $T^{-1} M Q^{-1} P=0$. Since $T^{-1} M$ only has an entry on the first term, and since $\frac{\partial \Gamma}{\partial \bar{U}}$ and $\frac{\partial \underline{\Psi}}{\partial \bar{U}}$ differ only in the last 3 terms, we can compute the final term using 79 . This gives the following expression:

$$
\left|\left(T^{-1} M \frac{\partial \underline{\Gamma}(U)}{\partial U}+\left.T^{-1} M Q^{-1} P \frac{\partial \phi}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}(U)} \frac{\partial \underline{\Gamma}(U)}{\partial U}\right) \dot{U}\right|=\frac{X_{T 1}}{K_{m 1}} \frac{b^{2}}{\left(b+a_{1} Z\right)^{2}}|\dot{Z}| .
$$

Thus, for a small retroactivity to the input, $\frac{X_{T 1}}{K_{m 1}}$ must be small.
(ii) Retroactivity to the output: Since $S_{1}=0, h_{2}=0$. Further, $T^{-1} M Q^{-1} P=0$, and thus $\bar{h}_{3}=0$. For \bar{h}_{1} to be small, since $S_{2}=0$, we must have a small S_{3}. From Table $4, S_{3}=\frac{p_{T}}{X_{T N}}, \frac{\delta p_{T}}{a_{2} M_{T}}$. Thus, if $X_{T N}, \frac{a_{2} M_{T}}{\delta} \gg p_{T}, \bar{h}_{1}$ is small. Thus, for a small retroactivity to the output, $X_{T N}$ and M_{T} must be large.
(iii) Input-output relationship: From (79), we see that

$$
\begin{equation*}
I \underline{\Gamma}_{i s}(u)=I \underline{\Psi}\left(U_{i s}, 0\right) \approx \frac{\left(\frac{\prod_{j=1}^{N} X_{T j}}{b^{N}}\right) \frac{Z_{i s}}{X_{T 1}}}{1+\left(\sum_{j=1}^{N}\left(b^{-j} a_{j}(t) \prod_{k=1}^{j-1} X_{T k}\right)\right) Z_{i s}} \tag{81}
\end{equation*}
$$

Note that $b=\frac{M_{T}}{\lambda^{\prime}}$ and $\prod_{j=1}^{i-1} X_{T j}$ are constants, and the linear gain is $\frac{\lambda^{\prime N} \prod_{j=1}^{i-1} X_{T j}}{M_{T}^{N}}$.
The upper bound for $a_{i}(t)=\left(\frac{\bar{X}_{i+1}(t)}{K_{m 1}}+\left(\frac{k_{2}}{k_{1}}+1\right) \frac{M_{T}}{K_{m 2}}+1\right), i \in[1, N]$, is given by seeing that the maximum value for \bar{X}_{i+1} is $X_{T_{i+1}}$. Let the maximum value of $Z(t)$ for which the input-output relationship is approximately linear be $Z_{\max }$. We then have:

$$
\left(\sum_{i=1}^{N}\left(b^{-i} a_{i} \prod_{j=1}^{i-1} X_{T j}\right)\right) Z_{i s} \leq \underbrace{\left(\sum_{i=1}^{N}\left(b^{-i}\left(\frac{X_{T_{i+1}}}{K_{m 1}}+\left(\frac{k_{2}}{k_{1}}+1\right) \frac{M_{T}}{K_{m 2}}+1\right) \prod_{j=1}^{i-1} X_{T j}\right)\right)}_{\epsilon_{3}} Z_{\max },
$$

where $b=\frac{M_{T}}{\lambda^{\prime}}$. Thus, for the input-output relationship to not saturate, $\epsilon_{3} Z_{\max }$ must be small. To maximize $Z_{\max }$, the range in which the input-output relationship is linear, we must then minimize ϵ_{3}. We see that, to make ϵ_{3} small, we must have a large b and small $X_{T_{i+1}}$. Since, to satisfy (ii), we saw before that $X_{T N}$ must be large, we have $X_{T_{i+1}} \leq X_{T N}$. However, as seen from the expression of $I \underline{\Gamma}_{i s}$, increasing b also decreases the input-output gain. For simplicity, the next arguments are made to achieve unit gain for the original input $Z_{i s}(t)$ and output $X_{N, i s}^{*}(t)$. For unit gain, $b^{N}=\prod_{j=1}^{N} X_{T j}$. Since $X_{T j} \leq X_{T N}, j \in[2, N]$, the maximum possible $b=\left(X_{T 1} X_{T N}^{N-1}\right)^{\frac{1}{N}}$, which occurs when $X_{T j}=X_{T N}, j \in[2, N]$. Thus, following this argument, for unit gain and maximum linear range of the input for any N , we have
$X_{T j}=X_{T N}, j \in[2, N]$ and $b=\frac{M_{T}}{\lambda}=\left(X_{T 1} X_{T N}^{N-1}\right)^{\frac{1}{N}}$. Substituting $M_{T}=\lambda X_{T 1}^{\frac{1}{N}} X_{T N}^{\frac{N-1}{N}}$, and using the geometric series sum, we obtain the following expression for ϵ_{3} :

$$
\begin{align*}
& \epsilon_{3}=\underbrace{\frac{1}{K_{m 1}}\left(\frac{X_{T N}}{X_{T 1}}\right)^{\frac{1}{N}}+\frac{1}{X_{T 1}^{\frac{1}{N}} X_{T N}^{\frac{N-1}{N}}}}_{(1)}+\left(\frac{k_{2}}{k_{1}}+1\right) \frac{\lambda}{K_{m 2}} \\
& +\underbrace{\left(\frac{X_{T 1}}{X_{T N} K_{m 1}}+\left(\frac{k_{2}}{k_{1}}+1\right) \frac{\lambda}{K_{m 2}}\left(\frac{X_{T 1}}{X_{T N}}\right)^{1+\frac{1}{N}}+\frac{X_{T 1}}{X_{T N}^{2}}\right)}_{(2 \mathrm{a})} \cdot \underbrace{\left(\frac{\frac{X_{T N}}{X_{T 1}}-\left(\frac{X_{T N}}{X_{T 1}}\right)^{\frac{2}{N}}}{\left(\frac{X_{T N}}{X_{T 1}}\right)^{\frac{1}{N}}-1}\right)}_{(2 \mathrm{~b})} \tag{82}\\
& +\underbrace{K_{T 1}}_{\left(\frac{\lambda\left(\frac{k_{2}}{k_{1}}+1\right)}{K_{m 2}}\left(\frac{X_{T 1}}{X_{T N}}\right)^{\frac{1}{N}}\right.}+\frac{1}{X_{T N}} .
\end{align*}
$$

Starting from $N=2$, we see that since $X_{T 1}<X_{T N}$, term (1) decreases with N, terms (2a), (2b) and (2c) increase with N and as $N \rightarrow \infty, \epsilon_{3} \rightarrow \infty$. The function ϵ_{3} is continuous, and therefore, there exists an optimal number of cycles \bar{N} for which the linear operating range of the input, $Z_{\max }$ is maximized.

The final condition that the cascade must satisfy to satisfy Def. $1 \epsilon_{3}$ to be small, so that $m=1$ as defined in requirement (iii) of Def. 1. As discussed above, there is an optimal N at which ϵ_{3} is minimized, all other parameters remaining the same. We see from Fig. 10, that with load, the number of cycles needed increase, since $X_{T N}$ increases as load p_{T} is increased. Note that, it may not be necessary to have \bar{N} cycles to achieve a desirable result, i.e., a sufficiently large operating range. However, it is possible that no N is capable of producing linearity for the desired operating range, since ϵ_{3} is bounded below.

(b)
(a)

Fig 10. Figures showing the variation of ϵ_{3} with N, for different $X_{T N}$. Parameter values are: $K_{m 1}=K_{m 2}=300 n M$, $k_{1}=k_{2}=600 s^{-1}, \lambda=1$, (a) $X_{T N}=1000 n M$, where resulting $\bar{N}=6$ and (b) $X_{T N}=10000 n M$, where resulting $\bar{N}=8$.

5.5.1 Simulation results for other cascades

Phosphotransfer + single cycle
(A)

Signaling System \mathbf{S}

Fig 11. Tradeoff between small retroactivity to the input and attenuation of retroactivity to the output is overcome by a cascade of a phosphotransfer system with a single phosphorylation cycle. (A) Cascade of a phosphotransfer system that receives its input through a kinase Z phosphorylating the phosphate donor, and a phosphorylation cycle: Z phosphorylates X_{1} to X_{1}^{*}, X_{1}^{*} transfers the phosphate group in a reversible reaction to $\mathrm{X}_{2} . \mathrm{X}_{2}^{*}$ further acts as the kinase for X_{3}, phosphorylating it to X_{3}^{*}, which is the output, acting on sites p in the downstream system, which is depicted as a gene expression system here. Both X_{2}^{*} and X_{3}^{*} are dephosphorylated by phosphatase M. (B), (C) Simulation results for ODE model 83). Simulation parameters ${ }^{1}$.
$k(t)=0.01(1+\sin (0.05 t)) n M . s^{-1}, \delta=0.01 s^{-1}, a_{1}=a_{2}=d_{3}=a_{4}=a_{5}=a_{6}=18 n M^{-1} s^{-1}$,
$d_{1}=d_{2}=a_{3}=d_{4}=d_{5}=d_{6}=2400 s^{-1}, k_{1}=k_{4}=k_{5}=k_{6}=600 \mathrm{~s}^{-1}$. (B) Effect of retroactivity to the input: for the ideal input $Z_{\text {ideal, }}$, system is simulated with $X_{T 1}=X_{T 2}=X_{T 3}=M_{T}=p_{T}=0$; for actual input Z, system is simulated with $X_{T 1}=3 n M$,
$X_{T 2}=1200 n M, X_{T 3}=1200 n M, M_{T}=3 n M, p_{T}=100 n M$. (C) Effect of retroactivity to the output: for the isolated output $X_{3, \text { is }}^{*}$, system is simulated with $X_{T 1}=3 n M, X_{T 2}=1200 n M, X_{T 3}=1200 n M, M_{T}=3 n M, p_{T}=0$; for the actual output X_{3}^{*}, system is simulated with $X_{T 1}=3 n M, X_{T 2}=1200 \mathrm{nM}, X_{T 3}=1200 \mathrm{nM}, M_{T}=3 \mathrm{nM}, p_{T}=100 \mathrm{nM}$.

Equations:

$$
\begin{align*}
& \dot{Z}=k(t)-\delta Z-a_{1} Z X_{1}+\left(d_{1}+k_{1}\right) C_{1} \\
& \dot{X}_{1}=k_{X_{1}}-\delta X_{1}-a_{1} Z X_{1}+d_{1} C_{1}+a_{3} C_{2}-d_{3} X_{1} X_{2}^{*} \\
& \dot{C}_{1}=a_{1} Z X_{1}-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1} \\
& \dot{X}_{1}^{*}=k_{1} C_{1}-a_{2} X_{1}^{*} X_{2}+d_{2} C_{2}-\delta X_{1}^{*} \\
& \dot{X}_{2}=k_{X_{2}}-\delta X_{2}-a_{2} X_{1}^{*} X_{2}+d_{2} C_{2}+k_{5} C_{5} \\
& \dot{C}_{2}=a_{2} X_{1}^{*} X_{2}+d_{3} X_{1} X_{2}^{*}-\left(d_{2}+a_{3}\right) C_{2}-\delta C_{2} \\
& \dot{X}_{2}^{*}=a_{3} C_{2}-d_{3} X_{1} X_{2}^{*}-a_{4} X_{2}^{*} X_{3}+\left(d_{4}+k_{4}\right) C_{4}-a_{5} X_{2}^{*} M+d_{5} C_{5}-\delta X_{2}^{*}, \tag{83}\\
& \dot{X}_{3}=k_{X_{3}}-\delta X_{3}-a_{4} X_{2}^{*} X_{3}+d_{4} C_{4}+k_{6} C_{6} \\
& \dot{C}_{4}=a_{4} X_{2}^{*} X_{3}-\left(d_{4}+k_{4}\right) C_{4}-\delta C_{4} \\
& \dot{X}_{3}^{*}=k_{4} C_{4}-a_{6} X_{3}^{*} M+d_{6} C_{6}-\delta X_{3}^{*}-k_{\text {on }} X_{3}^{*} p+k_{\text {off }} C \\
& \dot{M}=k_{M}-\delta M-a_{5} X_{2}^{*} M+\left(d_{5}+k_{5}\right) C_{5}-a_{6} X_{3}^{*} M+\left(d_{6}+k_{6}\right) C_{6} \\
& \dot{C}_{5}=a_{5} X_{2}^{*} M-\left(d_{5}+k_{5}\right) C_{5}-\delta C_{5} \\
& \dot{C}_{6}=a_{6} X_{3}^{*} M-\left(d_{6}+k_{6}\right) C_{6}-\delta C_{6} \\
& \dot{C}=k_{\text {on }} X_{3}^{*} p-k_{\text {off }} C-\delta C
\end{align*}
$$

Single + Double cycle

(A)

Fig 12. Tradeoff between small retroactivity to the input and attenuation of retroactivity to the output is overcome by a cascade of a single phosphorylation cycle and a double phosphorylation cycle. (A) Cascade of a a single phosphorylation and a double phosphorylation cycle with input kinase $\mathrm{Z}: \mathrm{Z}$ phosphorylates X_{1} to $\mathrm{X}_{1}^{*}, \mathrm{X}_{1}^{*}$ further acts as the kinase for X_{2}, phosphorylating it to X_{2}^{*} and $\mathrm{X}_{2}^{* *}$, which is the output, acting on sites p in the downstream system, which is depicted as a gene expression system here. All phosphorylated proteins $\mathrm{X}_{1}^{*}, \mathrm{X}_{2}^{*}$ and $\mathrm{X}_{2}^{* *}$ are dephosphorylated by phosphatase M. (B), (C) Simulation results for ODE model (84). Simulation parameters ${ }^{11}$. $k(t)=0.01(1+\sin (0.05 t)) n M . s^{-1}, \delta=0.01 s^{-1}, a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=18 \mathrm{nM}^{-1} \mathrm{~s}^{-1}$, $d_{1}=d_{2}=d_{3}=d_{4}=d_{5}=d_{6}=2400 s^{-1}, k_{1}=k_{2}=k_{3}=k_{4}=k_{5}=k_{6}=600 \mathrm{~s}^{-1}$. (B) Effect of retroactivity to the input: for the ideal input $Z_{\text {ideal }}$, system is simulated with $X_{T 1}=X_{T 2}=X_{T 3}=M_{T}=p_{T}=0$; for actual input Z, system is simulated with $X_{T 1}=3 n M, X_{T 2}=1200 n M, M_{T}=9 n M, p_{T}=100 n M$. (C) Effect of retroactivity to the output: for the isolated output $X_{2, \text { is }}^{*}$, system is simulated with $X_{T 1}=3 n M, X_{T 2}=1200 n M, M_{T}=9 n M, p_{T}=0$; for the actual output X_{2}^{*}, system is simulated with $X_{T 1}=3 n M, X_{T 2}=1200 n M, M_{T}=9 n M, p_{T}=100 \mathrm{nM}$.

Equations:

$$
\begin{align*}
& \dot{Z}=k(t)-\delta Z-a_{1} Z X_{1}+\left(d_{1}+k_{1}\right) C_{1}, \\
& \dot{X}_{1}=k_{X_{1}}-\delta X_{1}-a_{1} Z X_{1}+d_{1} C_{1}+k_{2} C_{2}, \\
& \dot{C}_{1}=a_{1} Z X_{1}-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, \\
& \dot{X}_{1}^{*}=k_{1} C_{1}-a_{2} X_{1}^{*} M+d_{2} C_{2}-a_{3} X_{1}^{*} X_{2}+\left(d_{3}+k_{3}\right) C_{3}-a_{4} X_{1}^{*} X_{2}^{*}+\left(d_{4}+k_{4}\right) C_{4}-\delta X_{1}^{*}, \\
& \dot{M}=k_{M}-\delta M-a_{2} X_{1}^{*} M+\left(d_{2}+k_{2}\right) C_{2}-a_{5} X_{2}^{*} M+\left(d_{5}+k_{5}\right) C_{5} \\
& -a_{6} X_{2}^{* *} M+\left(d_{6}+k_{6}\right) C_{6}, \\
& \dot{C}_{2}=a_{2} X_{1}^{*} M-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2}, \\
& \dot{X}_{2}=k_{X_{2}}-\delta X_{2}-a_{3} X_{1}^{*} X_{2}+d_{3} C_{3}+k_{5} C_{5}, \tag{84}\\
& \dot{C}_{3}=a_{3} X_{1}^{*} X_{2}-\left(d_{3}+k_{3}\right) C_{3}-\delta C_{3}, \\
& \dot{X}_{2}^{*}=k_{3} C_{3}-a_{4} X_{1}^{*} X_{2}^{*}+d_{4} C_{4}-a_{5} X_{2}^{*} M+d_{5} C_{5}+k_{6} C_{6}-\delta X_{2}^{*}, \\
& \dot{C}_{4}=a_{4} X_{1}^{*} X_{2}^{*}-\left(d_{4}+k_{4}\right) C_{4}-\delta C_{4}, \\
& \dot{X}_{2}^{* *}=k_{4} C_{4}-a_{6} X_{2}^{* *} M+d_{6} C_{6}-k_{\text {on }} X_{2}^{* *} p+k_{\text {off }} C-\delta X_{2}^{* *}, \\
& \dot{C}_{5}=a_{5} X_{2}^{*} M-\left(d_{5}+k_{5}\right) C_{5}-\delta C_{5}, \\
& \dot{C}_{6}=a_{6} X_{2}^{* *} M-\left(d_{6}+k_{6}\right) C_{6}-\delta C_{6}, \\
& \dot{C}=k_{\text {on }} X_{2}^{* *} p-k_{\text {off }} C-\delta C .
\end{align*}
$$

5.6 Phosphotransfer with autophosphorylation

The reactions for this system are then:

$$
\begin{array}{lr}
X_{1} \stackrel{\delta}{\stackrel{\delta(t)}{\rightleftharpoons}} \phi, & X_{2} \stackrel{\delta}{\stackrel{\delta}{k_{X_{2}}}} \phi, \\
M \stackrel{\delta}{\stackrel{\delta}{\rightleftharpoons}} \phi, & X_{1}^{*}, C_{1}, X_{2}^{*}, C_{3}, C \stackrel{\delta}{\longrightarrow} \phi, \\
X_{1} \xrightarrow{\pi_{1}} X_{1}^{*}, & X_{1}^{*}+X_{2} \underset{d_{1}}{a_{1}} C_{1} \underset{a_{2}}{d_{2}} X_{1}+X_{2}^{*}, \\
X_{2}^{*}+M \underset{d_{3}}{\stackrel{a_{3}}{\rightleftharpoons}} C_{3} \xrightarrow{k_{3}} X_{2}+M, & X_{2}^{*}+p \underset{k_{\text {off }}}{\stackrel{k_{\text {on }}}{\rightleftharpoons}} C . \tag{88}
\end{array}
$$

The ODEs based on the reaction rate equations are:

$$
\begin{array}{lr}
\dot{X}_{1}=k(t)-\delta X_{1}-\pi_{1} X_{1}+d_{2} C_{1}-a_{2} X_{2}^{*} X_{1}, & X_{1}(0)=0, \\
\dot{X}_{1}^{*}=\pi_{1} X_{1}-a_{1} X_{1}^{*} X_{2}+d_{1} C_{1}-\delta X_{1}^{*}, & X_{1}^{*}(0)=0, \\
\dot{C}_{1}=-\delta C_{1}+a_{1} X_{1}^{*} X_{2}-\left(d_{1}+d_{2}\right) C_{1}+a_{2} X_{2}^{*} X_{1}, & C_{1}(0)=0, \\
\dot{X}_{2}=k_{X_{2}}-\delta X_{2}-a_{1} X_{1}^{*} X_{2}+d_{1} C_{1}+k_{3} C_{3}, & X_{2}(0)=\frac{k_{X}}{\delta}, \\
\dot{X}_{2}^{*}=-\delta X_{2}^{*}+d_{2} C_{1}-a_{2} X_{2}^{*} X_{1}-a_{3} X_{2}^{*} M+d_{3} C_{3}-k_{\text {on }} X_{2}^{*}\left(p_{T}-C\right)+k_{\text {off }} C, & X_{2}^{*}(0)=0, \\
\dot{C}_{3}=-\delta C_{3}+a_{3} X_{2}^{*} M-\left(d_{3}+k_{3}\right) C_{3}, & C_{3}(0)=0, \\
\dot{M}=k_{M}-\delta M-a_{3} X_{2}^{*} M+\left(d_{3}+k_{3}\right) C_{3}, & M(0)=\frac{k_{M}}{\delta}, \\
\dot{C}=k_{\text {on }} X_{2}^{*}\left(p_{T}-C\right)-k_{\text {off }} C-\delta C, & C(0)=0 . \tag{89}
\end{array}
$$

For system 899, define $X_{T 2}=X_{2}+X_{2}^{*}+C_{1}+C_{3}+C$, then $\dot{X}_{T 2}=k_{X_{2}}-\delta X_{T 2}, X_{T 2}=\frac{k_{X_{2}}}{\delta}$. Thus, $X_{T 2}(t)=\frac{k_{X_{2}}}{\delta}$ is $\quad 721$ a constant. Similarly, defining $M_{T}=M+C_{3}$ gives a constant $M_{T}(t)=\frac{k_{M}}{\delta}$. Thus, the variables $X_{2}=X_{T 2}-X_{2}^{*}-C_{1}-C_{3}-C$ and $M=M_{T}-C_{3}$ can be eliminated from the system. Further, we define $c=\frac{C}{p_{T}}$. This system is then:

$$
\begin{array}{lr}
\dot{X}_{1}=k(t)-\delta X_{1}-\pi_{1} X_{1}+d_{2} C_{1}-a_{2} X_{2}^{*} X_{1}, & X_{1}(0)=0, \\
\dot{X}_{1}^{*}=\pi_{1} X_{1}-a_{1} X_{1}^{*}\left(X_{T 2}-X_{2}^{*}-C_{1}-C_{3}-p_{T} c\right)+d_{1} C_{1}-\delta X_{1}^{*}, & X_{1}^{*}(0)=0, \\
\dot{C}_{1}=-\delta C_{1}+a_{1} X_{1}^{*}\left(X_{T 2}-X_{2}^{*}-C_{1}-C_{3}-p_{T} c\right)-\left(d_{1}+d_{2}\right) C_{1}+a_{2} X_{2}^{*} X_{1}, & C_{1}(0)=0, \\
\dot{X}_{2}^{*}=-\delta X_{2}^{*}+d_{2} C_{1}-a_{2} X_{2}^{*} X_{1}-a_{3} X_{2}^{*}\left(M_{T}-C_{3}\right)+d_{3} C_{3}-k_{\text {on }} X_{2}^{*} p_{T}(1-c)+k_{\text {off } C,}, & X_{2}^{*}(0)=0, \\
\dot{C}_{3}=-\delta C_{3}+a_{3} X_{2}^{*}\left(M_{T}-C_{3}\right)-\left(d_{3}+k_{3}\right) C_{3}, & C_{3}(0)=0, \\
\dot{c}=k_{\text {on }} X_{2}^{*}(1-c)-k_{\text {off } c}-\delta c, & c(0)=0 . \tag{90}
\end{array}
$$

Based on eqns. (90), we bring the system to form (1) as shown in Table 5 . We now solve for the functions $\underline{\Psi}$ and ϕ as defined by Assumptions 5 and 6 .

Solving for $\underline{X}=\underline{\Psi}$ by setting $\left(\operatorname{Br}+f_{1}\right)_{4}=0$, we have:

$$
\begin{aligned}
& \left(B r+f_{1}\right)_{1}+\left(B r+f_{1}\right)_{2}+\left(B r+f_{1}\right)_{3}+\left(B r+f_{1}\right)_{4}=0 \Longrightarrow \\
& \pi_{1} X_{1}-k_{3} C_{3} \approx 0, \text { i.e., } C_{3} \approx \frac{\pi_{1}}{k_{3}} X_{1} . \\
& \left(B r+f_{1}\right)_{4}=0 \Longrightarrow a_{3} X_{2}^{*}\left(M_{T}-C_{3}\right) \approx\left(d_{3}+k_{3}\right) C_{3} . \\
& \text { If } K_{m 3} \gg X_{2}^{*}, X_{2}^{*} \approx \frac{\pi_{1} K_{m 3}}{k_{3} M_{T}} X_{1}=K X_{1}, \text { where } K=\frac{\pi_{1} K_{m 3}}{k_{3} M_{T}} .
\end{aligned}
$$

U	X_{1}	v	c
\underline{X}	$\left[\begin{array}{llll}X_{1}^{*} & C_{1} & X_{2}^{*} & C_{3}\end{array}\right]_{4 \times 1}^{T}$	Y, I	$X_{2}^{*},\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]_{1 \times 4}$
G_{1}	$\max \left\{\frac{a_{1} X_{T 2}}{\delta}, \frac{d_{1}}{\delta}, \frac{d_{2}}{\delta}, \frac{a_{2} X_{T 1}}{\delta}, \frac{a_{3} M_{T}}{\delta}, \frac{d_{3}}{\delta}, \frac{k_{3}}{\delta}\right\}$	G_{2}	$\max \left\{\frac{k_{\text {on }} p_{T}}{\delta}, \frac{k_{\text {off }}}{\delta}\right\}$
$f_{0}\left(U, R \underline{X}, S_{1} v, t\right)$	$k(t)-\delta X_{1}-\delta C_{1}-\delta X_{1}^{*}$	$s(\underline{X}, v)$	$\frac{1}{G_{2}}\left(k_{\text {on }} X_{2}^{*}(1-c)-k_{\text {off }} c-\delta c\right)$
$\underline{r}\left(U, \underline{X}, S_{2} v\right)$	$\frac{1}{G_{1}}\left[\begin{array}{r}-\pi_{1} X_{1} \\ d_{2} C_{1}-a_{2}\end{array}\right.$	δX_{1}^{*}, $X_{1}+\delta C_{1}$	2×1
$f_{1}\left(U, \underline{X}, S_{3} v\right)$	$\frac{1}{G_{1}}\left[\begin{array}{r}-a_{1} X_{T 2} X_{1}^{*}\left(1-\frac{C_{1}}{X_{T 2}}-\frac{X}{X}\right. \\ a_{1} X_{T 2} X_{1}^{*}\left(1-\frac{C_{1}}{X_{T 2}}-\frac{X_{2}}{X_{T 2}}\right. \\ -\delta X_{2}^{*}+d_{2} C_{1}-a_{2} X_{2}^{*} X_{1}+a_{3} X_{2}^{*} \\ -\delta C_{3}+a_{3} X_{2}^{*}\left(M_{T}\right.\end{array}\right.$	$\begin{gathered} -\frac{C_{3}}{X_{T 2}}- \\ -\frac{C_{3}}{X_{T 2}}- \\ 3+d_{3} C_{3} \\ \left.C_{3}\right)-(d \end{gathered}$	$\left.\begin{array}{l} \frac{12 \times 1}{p_{T}}\left(d_{1} C_{1},\right. \\ p_{T} \\ \left.X_{T 2} c\right)-d_{1} C_{1}, \\ -a_{3} M_{T}\left(X_{2}^{*}+\frac{p_{T} \delta}{a_{3} M_{T}} c\right), \\ \left.+k_{3}\right) C_{3} \end{array}\right]_{4 \times 1}$
A	$\left[\begin{array}{ll}1 & 1\end{array}\right]_{1 \times 2}$	D	1
B	$\left[\begin{array}{cc}-1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0\end{array}\right]_{4 \times 2}$	C	$\left[\begin{array}{c}0 \\ 0 \\ -p_{T} \\ 0\end{array}\right]_{4 \times 1}$
R	$\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]_{1 \times 4}$	S_{1}	0
S_{2}	0	S_{3}	$\frac{p_{T}}{X_{T 2}}, \frac{p_{T} \delta}{a_{3} M_{T}}$
T	$\mathbb{1}_{2 \times 2}$	M	$\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]_{1 \times 4}$
Q	$\mathbb{1}_{4 \times 4}$	P	$\left[\begin{array}{llll}0 & 0 & p_{T} & 0\end{array}\right]_{4 \times 1}^{T}$

Table 5. System variables, functions and matrices for a phosphotransfer system with autophosphorylation brought to form (11).

$$
\begin{aligned}
& \quad\left(B r+f_{1}\right)_{1}+\left(B r+f_{1}\right)_{2}=0 \Longrightarrow \pi_{1} X_{1}-d_{2} C_{1}+a_{2} X_{2}^{*} X_{1} \approx 0, \\
& \text { i.e., } C_{1} \approx \frac{a_{2} K}{d_{2}} X_{1}^{2}+\frac{\pi_{1}}{d_{2}} X_{1} . \\
& \left(B r+f_{1}\right)_{2}=0 \Longrightarrow \\
& -C_{1}+a_{1} X_{1}^{*} X_{T 2}\left(1-\frac{C_{1}}{X_{T 2}}-\frac{X_{2}^{*}}{X_{T 2}}-\frac{C_{3}}{X_{T 2}}-\frac{p_{T}}{X_{T 2}} c\right)-\left(d_{1}+d_{2}\right) C_{1}+a_{2} X_{2}^{*} X_{1}=0 . \\
& \text { If }\left(d_{1}+d_{2}\right) \gg a_{1} X_{1}^{*}, X_{1}^{*} \approx \frac{\left(d_{1}+d_{2}\right) C_{1}-a_{2} K X_{1}^{2}}{a_{1} X_{T 2}} \approx \frac{d_{1} a_{2} K}{a_{1} d_{2} X_{T 2}} X_{1}^{2}+\frac{\pi_{1}\left(d_{1}+d_{2}\right)}{a_{1} d_{2} X_{T 2}} X_{1} .
\end{aligned}
$$

Thus, we have the function $\underline{\Psi}(U, v)$:

$$
\underline{\Psi} \approx\left[\begin{array}{c}
\frac{d_{1} a_{2} K}{a_{1} d_{2} X_{T_{2}}} X_{1}^{2}+\frac{\pi_{1}\left(d_{1}+d_{2}\right)}{a_{1} d_{1} X_{T 2}} X_{1}, \tag{91}\\
\frac{a_{2} K}{d_{2}} X_{1}^{2}+\frac{\pi_{1}}{d_{2}} X_{1}, \\
K x_{1}, \\
\frac{\pi_{1}}{k_{3}} X_{1}
\end{array}\right]_{4 \times 1}, \text { where } K=\frac{\pi_{1} K_{m 3}}{k_{3} M_{T}} .
$$

Solving for ϕ by setting $s(\underline{X}, v)=0$, we have:

$$
\begin{align*}
& k_{\mathrm{on}} X_{2}^{*}(1-c)-k_{\mathrm{off}} c-c=0 . \\
& \text { Under Assumption } 1, X_{2}^{*}-X_{2}^{*} c \approx k_{D} c, \tag{92}\\
& \text { i.e., } \phi=c \approx \frac{X_{2}^{*}}{X_{2}^{*}+k_{D}} .
\end{align*}
$$

Again, we find $\underline{\Gamma}$ from (91) and (92) under Remark 1. This system satisfies Assumptions 3 (9) Theorems 113 can then be applied.

Results: (i) Retroactivity to input: Under Theorem 1, we see that since $S_{1}=0$ from Table 5, $h_{2}=0$. Further, $|R \underline{\Gamma}(U)| \approx \frac{d_{1} a_{2} K}{a_{1} d_{2} X_{T 2}} X_{1}^{2}+\frac{\pi_{1}\left(d_{1}+d_{2}\right)}{a_{1} d_{2} X_{T 2}} X_{1}+\frac{a_{2} K}{d_{2}} X_{1}^{2}+\frac{\pi_{1}}{d_{2}} X_{1}$. To compute the final term h_{3}, we see that:

$$
\begin{aligned}
& \left|\left(T^{-1} M \frac{\partial \underline{\Gamma}(U)}{\partial U}+\left.T^{-1} M Q^{-1} P \frac{\partial \phi}{\partial \underline{X}}\right|_{\underline{X}=\underline{\Gamma}(U)} \frac{\partial \underline{\Gamma}(U)}{\partial U}\right)\right| \approx \\
& \frac{2 d_{1} a_{2} K}{a_{1} d_{2} X_{T 2}} X_{1}+\frac{\pi_{1}\left(d_{1}+d_{2}\right)}{a_{1} d_{2} X_{T 2}}+\frac{2 a_{2} K}{d_{2}} X_{1}+\frac{\pi_{1}}{a_{2}} .
\end{aligned}
$$

Thus, for a small retroactivity to the input, terms $\frac{2 d_{1} a_{2} K}{a_{1} d_{2} X T_{T}}, \frac{\pi_{1}\left(d_{1}+d_{2}\right)}{a_{1} d_{2} X_{T 2}}, \frac{2 a_{2} K}{d_{2}}$ and $\frac{\pi_{1}}{d_{2}}$ must be small. However, these terms cannot be made smaller by varying concentrations alone. Thus the retroactivity to the input depends on the reaction rate parameters of the system, and is harder to tune.
(ii) Retroactivity to output: Using Claim 2, we see from Table 5 that $S_{1}=0$, thus $h_{2}=0$. Further, $T^{-1} M Q^{-1} P=0$, thus $\bar{h}_{3}=0$. For the last term, \bar{h}_{1}, we see that $S_{2}=0$ and thus, for small \bar{h}_{1} implying small retroactivity to the output, we must have a small $S_{3}=\frac{p_{T}}{X_{T_{2}}}, \frac{p_{T} \delta}{a_{3} M_{T}}$.
(iii) Input-output relationship: From (91), we see that

$$
\begin{equation*}
Y_{i s}=I \underline{X}_{i s} \approx I \underline{\Gamma}_{i s}=I \underline{\Psi}\left(U_{i s}, 0\right) \approx \frac{\pi_{1} K_{m 3}}{k_{3} M_{T}} X_{1, i s} . \tag{93}
\end{equation*}
$$

Thus, the dimensionless output X_{2}^{*} varies linearly with the dimensionless input X_{1}, i.e., $m=1$ and $K=\frac{\pi_{1} K_{m 3}}{k_{3} M_{T}}$.

5.7 Single cycle with substrate input

The reactions for this system are:

$$
\begin{align*}
& X \underset{k(t)}{\stackrel{\delta}{\rightleftharpoons}} \phi, \tag{94}\\
& M \underset{k_{M}}{\stackrel{\delta}{\rightleftharpoons}} \phi, \tag{95}\\
& X+Z \underset{d_{1}}{\stackrel{a_{1}}{\rightleftharpoons}} C_{1} \xrightarrow{k_{1}} X^{*}+Z, \tag{96}\\
& X^{*}+p \underset{k_{\text {off }}}{k_{\text {on }}} C . \tag{97}\\
& Z \underset{k_{Z}}{\stackrel{\delta}{\rightleftharpoons}} \phi, \\
& C_{1}, C_{2}, X^{*}, C \xrightarrow{\delta} \phi, \\
& X^{*}+M \underset{d_{2}}{\stackrel{a_{2}}{\rightleftharpoons}} C_{2} \xrightarrow{k_{2}} X+M,
\end{align*}
$$

The corresponding ODEs based on the reaction rate equations are then:

$$
\begin{array}{lr}
\dot{X}=k(t)-\delta X-a_{1} X Z+d_{1} C_{1}+k_{2} C_{2}, & X(0)=0 \\
\dot{X}^{*}=-\delta X^{*}+k_{1} C_{1}-a_{2} X^{*} M+d_{2} C_{2}-k_{\mathrm{on}} X^{*}\left(p_{T}-C\right)+k_{\mathrm{off}} C, & X^{*}(0)=0 \\
\dot{C}_{1}=a_{1} X Z-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, & C_{1}(0)=0 \\
\dot{C}_{2}=a_{2} X^{*} M-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2}, & C_{2}(0)=0 \\
\dot{Z}=k_{Z}-\delta Z-a_{1} X Z+\left(k_{1}+d_{1}\right) C_{1}, & Z(0)=\frac{k_{Z}}{\delta} \tag{98}\\
\dot{M}=k_{M}-\delta M-a_{2} X^{*} M+\left(d_{2}+k_{2}\right) C_{2}, & M(0)=\frac{k_{M}}{\delta} \\
\dot{C}=k_{\mathrm{on}} X^{*}\left(p_{T}-C\right)-k_{\mathrm{off}} C-\delta C, & C(0)=0
\end{array}
$$

Let $Z_{T}=Z+C_{1}$. Then, from the ODEs 98) and the initial conditions, we see that $\dot{Z}_{T}=k_{Z}-\delta Z_{T}, Z_{T}(0)=\frac{k_{Z}}{\delta}$. Thus, $Z_{T}(t)=\frac{k_{Z}}{\delta}$ is a constant. Similarly, defining $M_{T}=M+C_{2}$ gives a constant $M_{T}(t)=\frac{k_{M}}{\delta}$. The variables $Z=Z_{T}-C_{1}$ and $M=M_{T}-C_{2}$ can then be eliminated from the system. Further, we define $c=\frac{C}{p_{T}}$. The reduced system is then:

$$
\begin{array}{lr}
\dot{X}=k(t)-\delta X-a_{1} X\left(Z_{T}-C_{1}\right)+d_{1} C_{1}+k_{2} C_{2}, & X(0)=0, \\
\dot{X}^{*}=-\delta X^{*}+k_{1} C_{1}-a_{2} X^{*}\left(M_{T}-C_{2}\right)+d_{2} C_{2}-k_{\mathrm{on}} X^{*} p_{T}(1-c)+k_{\mathrm{off}} p_{T} c, & X^{*}(0)=0, \\
\dot{C}_{1}=a_{1} X\left(Z_{T}-C_{1}\right)-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, & C_{1}(0)=0, \tag{99}\\
\dot{C}_{2}=a_{2} X^{*}\left(M_{T}-C_{2}\right)-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2}, & C_{2}(0)=0, \\
\dot{c}=k_{\mathrm{on}} X^{*}(1-c)-k_{\mathrm{off}} c-\delta c, & c(0)=0 .
\end{array}
$$

Based on the system of ODEs (99), we bring this system to form (1) as shown in Table 6. We now solve for the functions $\underline{\Psi}$ and ϕ as defined by Assumptions 5 and 6 .

Solving for $\underline{X}=\underline{\Psi}$ by setting $\left(B r+f_{1}\right)_{3 \times 1}=0$, we have:

$$
\begin{align*}
& \left(B r+f_{1}\right)_{2}=0 \Longrightarrow a_{1} X\left(Z_{T}-C_{1}\right)=\left(d_{1}+k_{1}+\delta\right) C_{1}, \\
& \text { since }\left(d_{1}+k_{1}\right) \gg \delta \text { under Assumption } 1 . \\
& X Z_{T}-X C_{1} \approx K_{m 1} C_{1} \\
& \text { i.e., } C_{1} \approx \frac{X}{X+K_{m 1}} . \tag{100}\\
& \text { For } K_{m 1} \gg X, C_{1} \approx \frac{X}{K_{m 1}} .
\end{align*}
$$

U	X	v	c
\underline{X}	$\left[\begin{array}{llll}X^{*} & C_{1} & C_{2}\end{array}\right]_{3 \times 1}^{T}$	Y, I	$X^{*},\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]_{1 \times 3}$
G_{1}	max $\left\{\frac{a_{1} Z_{T}}{\delta}, \frac{d_{1}}{\delta}, \frac{k_{1}}{\delta}, \frac{a_{2} M_{T}}{\delta}, \frac{d_{2}}{\delta}, \frac{k_{2}}{\delta}\right\}$	G_{2}	$\max \left\{\frac{k_{\text {on }} p_{T}}{\delta}, \frac{k_{\text {off }}}{\delta}\right\}$
$f_{0}\left(U, R \underline{X}, S_{1} v, t\right)$	$k(t)-\delta X-\delta X^{*}-\delta C_{1}-\delta C_{2}-\delta p_{T} c$	$s(\underline{X}, v)$	$\frac{1}{G_{2}}\left(k_{\text {on }} X^{*}(1-c)-k_{\text {off }} c-\delta c\right)$
$\underline{r}\left(U, \underline{X}, S_{2} v\right)$	$\frac{1}{G_{1}}\left[\delta\left(X^{*}+p_{T} c\right), \quad-a_{1} X\left(Z_{T}-\right.\right.$	$+d_{1}$	$\left.+\delta C_{1}, \quad k_{2} C_{2}+\delta C_{2}\right]_{3 \times 1}^{T}$
$f_{1}\left(U, \underline{X}, S_{3} v\right)$	$\frac{1}{G_{1}}\left[k_{1} C_{1}-a_{2} X\left(M_{T}-C_{2}\right)+d_{2} C_{2}\right.$,	$-k_{1} C_{1}$,	$\left.a_{2} X^{*}\left(M_{T}-C_{2}\right)-d_{2} C_{2}\right]_{3 \times 1}^{T}$
A	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]_{1 \times 3}$	D	1
B	$\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]_{3 \times 3}$	C	$\left[\begin{array}{c}-p_{T} \\ 0 \\ 0\end{array}\right]_{3 \times 1}$
R	$\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]_{1 \times 3}$	S_{1}	p_{T}
S_{2}	p_{T}	S_{3}	0
T	1	M	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]_{1 \times 3}$
Q	$\mathbb{I}_{3 \times 3}$	P	$\left[\begin{array}{ccc}p_{T} & 0 & 0\end{array}\right]_{3 \times 1}^{T}$

Table 6. System variables, functions and matrices for a single phosphorylation cycle with substrate as input brought to form (1).

$$
\begin{align*}
& \left(B r+f_{1}\right)_{3}=0 \Longrightarrow a_{2} X^{*}\left(M_{T}-C_{2}\right)=\left(d_{2}+k_{2}+\delta\right) C_{2} \\
& \text { since }\left(d_{2}+k_{2}\right) \gg \delta \text { under Assumption 1. } \\
& X^{*} M_{T}-X^{*} C_{2}=K_{m 2} C_{2} \\
& \text { i.e., } C_{2}=\frac{X^{*}}{X^{*}+K_{m 2}} . \tag{101}\\
& \text { If } K_{m 2} \gg X^{*}, C_{2} \approx \frac{X^{*}}{K_{m 2}} . \\
& \qquad\left(B r+f_{1}\right)_{1}=0 \Longrightarrow-\delta X^{*}-\delta p_{T} c+k_{1} C_{1}-k_{2} C_{2}=0 .
\end{align*}
$$

$$
\begin{equation*}
\text { Using (100) and 101), we have: } \frac{k_{1} X}{K_{m 1}}-\frac{k_{2} X^{*}}{K_{m 2}}-\delta X^{*}-\delta p_{T} c \approx 0 \tag{102}
\end{equation*}
$$

$$
\text { i.e., } X^{*} \approx \frac{\left(\frac{k_{1} Z_{T}}{K_{m 1}}\right)}{\frac{k_{2} M_{T}}{K_{m 2}}+\delta} X-\frac{\delta p_{T}}{\frac{k_{2} M_{T}}{K_{m 2}}+\delta} c \text {. }
$$

Thus, from equations 100- 102 , we have the function $\underline{\Psi}(U, v)$:

$$
\begin{equation*}
\underline{\Psi} \approx\left[\frac{\left(\frac{k_{1} z_{T}}{K_{m 1}}\right.}{\frac{k_{2} M_{T}}{K_{m}}+\delta} X-\frac{\delta p_{T}}{\frac{k_{2} M_{T}}{K_{m 2}}+\delta} c, \quad \frac{X}{K_{m 1}}, \quad \frac{X}{K_{m 2}}\left(\frac{\left(\frac{k_{1} z_{T}}{K_{m 1}}\right)}{\frac{k_{m} M_{T}}{K_{m}}+\delta}-\frac{\delta p_{T}}{\frac{k_{2} M_{T}}{K_{m}}+\delta} c\right)\right]^{T} . \tag{103}
\end{equation*}
$$

Solving for $v=\phi(\underline{X})$ by setting $s(\underline{X}, v)=0$, we have:

$$
\begin{align*}
& k_{\text {on }} X^{*}(1-c)=k_{\text {off } c} c \\
& \text { i.e., } X^{*}-X^{*} c=k_{D} c \text {, } \tag{104}\\
& \text { i.e., } \phi(\underline{X})=c=\frac{X^{*}}{k_{D}+X^{*}} .
\end{align*}
$$

Using (103) and (104, $\underline{\Gamma}$ can be found as described in Remark 1 . We find that this satisfies Assumption 7 We then state the following claims without proof for this system:

Claim 5. For the matrix B and functions r, f_{1} and s defined in Table 6, Assumption 了 is satisfied for this system.
Claim 6. For the functions f_{0} and \underline{r} and matrices R, S_{1} and A defined in Table 6 , and the functions $\underline{\Gamma}$ and ϕ as found above, Assumption 9 is satisfied for this system.

For matrices T, Q, M and P as seen in Table 6, we see that Assumption 4 is satisfied. For functions f_{0} and \underline{r} defined in Table 6, Assumption 8 is satisfied. Further, for Ψ and ϕ defined by (103) and 104, Assumptions 5. 6 and 7 are satisfied. Thus, Theorems 1. 2 and 3 can be applied to this system.

Results: (i) Retroactivity to the input: From Table 6 we see that R and S_{1} cannot be made small by changing system variables. Under Claim 1 therefore, retroactivity to the input cannot be made small.
(ii) Retroactivity to the output: From Table 6, we see that S_{1} and S_{2} cannot be made small. Under Claim 2 , therefore, retroactivity to the output cannot be made small.
(iii) Input-output relationship: Using Theorem 3, we see that

$$
\begin{equation*}
Y_{i s}(t)=I \underline{X}_{i s} \approx I \underline{\Gamma}_{i s}=I \underline{\Psi}\left(U_{i s}, 0\right) \approx K X_{i s}(t), \tag{105}
\end{equation*}
$$

for $t \in\left[t_{b}, t_{f}\right]$ from 103 , where $K=\left(\frac{\frac{k_{1} Z_{T}}{K} M_{1}}{\frac{k_{2} M_{T}}{K_{m 2}}+\delta}\right)$.

5.8 Double cycle with substrate input

The reactions for this system are:

$$
\begin{align*}
& X \underset{k(t)}{\stackrel{\delta}{\rightleftharpoons}} \phi, \tag{106}\\
& M \underset{k_{M}}{\stackrel{\delta}{\rightleftharpoons}} \phi, \tag{107}\\
& X+Z \underset{d_{1}}{\stackrel{a_{1}}{\rightleftharpoons}} C_{1} \xrightarrow{k_{1}} X^{*}+Z, \tag{108}\\
& X^{*}+Z \underset{d_{3}}{\stackrel{a_{3}}{\rightleftharpoons}} C_{3} \xrightarrow{k_{3}} X^{* *}+Z, \tag{109}\\
& X^{* *}+p \underset{k_{\text {off }}}{k_{\text {on }}} C . \tag{110}\\
& Z \underset{k_{Z}}{\stackrel{\delta}{\rightleftharpoons}} \phi, \\
& C_{1}, C_{2}, C_{3}, C_{4}, X^{*}, X^{* *}, C \xrightarrow{\delta} \phi, \\
& X^{*}+M \underset{d_{2}}{\stackrel{a_{2}}{\rightleftharpoons}} C_{2} \xrightarrow{k_{2}} X+M, \\
& X^{* *}+M \underset{d_{4}}{\stackrel{a_{4}}{\rightleftharpoons}} C_{4} \xrightarrow{k_{4}} X^{*}+M,
\end{align*}
$$

The ODEs based on the reaction rate equations are:

$$
\begin{array}{lr}
\dot{X}=k(t)-\delta X-a_{1} X Z+d_{1} C_{1}+k_{2} C_{2}, & X(0)=0, \\
\dot{X}^{*}=-\delta X^{*}+k_{1} C_{1}-a_{2} X^{*} M+d_{2} C_{2}-a_{3} X^{*} Z+d_{3} C_{3}+k_{4} C_{4}, & X^{*}(0)=0, \\
\dot{X}^{* *}=-\delta X^{* *}+k_{3} C_{3}-a_{4} X^{* *} M+d_{4} C_{4}-k_{\mathrm{on}} X^{* *}\left(p_{T}-C\right)+k_{\text {off }} C, & X^{* *}(0)=0, \\
\dot{Z}=k_{Z}-\delta Z-a_{1} X Z+\left(d_{1}+k_{1}\right) C_{1}-a_{3} X^{*} Z+\left(d_{3}+k_{3}\right) C_{3}, & Z(0)=\frac{k_{Z}}{\delta}, \\
\dot{M}=k_{M}-\delta M-a_{2} X^{*} M+\left(d_{2}+k_{2}\right) C_{2}-a_{4} X^{* *} M+\left(d_{4}+k_{4}\right) C_{4}, & M(0)=\frac{k_{M}}{\delta}, \tag{111}\\
\dot{C}_{1}=a_{1} X Z-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, & C_{1}(0)=0, \\
\dot{C}_{2}=a_{2} X^{*} M-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2}, & C_{2}(0)=0, \\
\dot{C}_{3}=a_{3} X^{*} Z-\left(d_{3}+k_{3}\right) C_{3}-\delta C_{3}, & C_{3}(0)=0, \\
\dot{C}_{4}=a_{4} X^{* *} M-\left(d_{4}+k_{4}\right) C_{4}-\delta C_{4}, & C_{4}(0)=0, \\
\dot{C}=k_{\mathrm{on}} Z^{* *}\left(p_{T}-C\right)-k_{\text {off }} C-\delta C, & C(0)=0 .
\end{array}
$$

Define $Z_{T}=Z+C_{1}+C_{3}$. Then, the dynamics of Z_{T}, seen from 111, are: $\dot{Z}_{T}=k_{Z}-\delta Z_{T}, Z_{T}(0)=\frac{k_{Z}}{\delta}$. Thus, $Z_{T}(t)=\frac{k_{Z}}{\delta}$ is a constant at all time t. Similarly, for $M_{T}=M+C_{2}+C_{4}, M_{T}(t)=\frac{k_{M}}{\delta}$ is a constant for all t. Thus, the variables $Z=Z_{T}-C_{1}-C_{2}$ and $M=M_{T}-C_{2}-C_{4}$ can be eliminated from the system. Further, we define $c=\frac{C}{p_{T}}$. The reduced system is then:

$$
\begin{array}{lr}
\dot{X}=k(t)-\delta X-a_{1} X\left(Z_{T}-C_{1}-C_{2}\right)+d_{1} C_{1}+k_{2} C_{2}, & X(0)=0, \\
\dot{X}^{*}=-\delta X^{*}+k_{1} C_{1}-a_{2} X^{*}\left(M_{T}-C_{2}-C_{4}\right)+d_{2} C_{2}-a_{3} X^{*}\left(Z_{T}-C_{1}-C_{2}\right)+d_{3} C_{3}+k_{4} C_{4}, & X^{*}(0)=0, \\
\dot{X}^{* *}=-\delta X^{* *}+k_{3} C_{3}-a_{4} X^{* *}\left(M_{T}-C_{2}-C_{4}\right)+d_{4} C_{4}-k_{\text {on }} X^{* *} p_{T}(1-c)+k_{\text {off }} c, & X^{* *}(0)=0, \\
\dot{C}_{1}=a_{1} X\left(Z_{T}-C_{1}-C_{2}\right)-\left(d_{1}+k_{1}\right) C_{1}-\delta C_{1}, & C_{1}(0)=0, \\
\dot{C}_{2}=a_{2} X^{*}\left(M_{T}-C_{2}-C_{4}\right)-\left(d_{2}+k_{2}\right) C_{2}-\delta C_{2}, & C_{2}(0)=0, \\
\dot{C}_{3}=a_{3} X^{*}\left(Z_{T}-C_{1}-C_{2}\right)-\left(d_{3}+k_{3}\right) C_{3}-\delta C_{3}, & C_{3}(0)=0, \\
\dot{C}_{4}=a_{4} X^{* *}\left(M_{T}-C_{2}-C_{4}\right)-\left(d_{4}+k_{4}\right) C_{4}-\delta C_{4}, & C_{4}(0)=0, \\
\dot{C}=k_{\text {on }} X^{* *}(1-c)-k_{\text {off }} c-\delta c, & c(0)=0 .
\end{array}
$$

Based on the system of ODEs 112 , we bring this system to form (13 as shown in Table 7 . We now solve for the functions Ψ and ϕ as defined by Assumptions 5 and 6 .

Solving for $\underline{X}=\underline{\Psi}$ by setting $\left(B r+f_{1}\right)_{6 \times 1}=0$, we have:
$\left(B r+f_{1}\right)_{3}=0 \Longrightarrow a_{1} X\left(Z_{T}-C_{1}-C_{3}\right)=\left(d_{1}+k_{1}+\delta\right) C_{1}$.
Under Assumption 11 $\left(d_{1}+k_{1}\right) \gg \delta$.
Thus, $X Z_{T}-X C_{3} \approx\left(K_{m 1}+X\right) C_{1}$.
If $K_{m 1} \gg X$, we have: $X Z_{T}-X C_{3} \approx K_{m 1} C_{1}$.
$\left(B r+f_{1}\right)_{5}=0 \Longrightarrow a_{3} X^{*}\left(Z_{T}-C_{1}-C_{3}\right)=\left(d_{3}+k_{3}+\delta\right) C_{3}$.
Under Assumption 11 $\left(d_{3}+k_{3}\right) \gg \delta$.
Thus, $X^{*} Z_{T}-X^{*} c_{1} \approx\left(K_{m 3}+X^{*}\right) C_{3}$.
If $K_{m 3} \gg X^{*}$, we have: $X^{*} Z_{T}-X^{*} C_{1} \approx K_{m 3} C_{3}$.
Simultaneously solving these two expressions, for $K_{m 1} \gg X$ and $K_{m 3} \gg X^{*}$:

$$
\begin{align*}
C_{1} & \approx \frac{X Z_{T}}{K_{m 1}} \tag{113}\\
C_{3} & \approx \frac{X^{*} Z_{T}}{K_{m 3}}
\end{align*}
$$

U	X	v	c
\underline{X}	$\left[\begin{array}{llllll}X^{*} & X^{* *} & C_{1} & C_{2} & C_{3} & C_{4}\end{array}\right]_{6 \times 1}^{T}$	Y, I	$X^{* *},\left[\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0\end{array}\right]_{1 \times 6}$
G_{1}	$\max \left\{\frac{a_{1} Z_{T}}{\delta}, \frac{d_{1}}{\delta}, \frac{k_{1}}{\delta}, \frac{a_{2} M_{T}}{\delta}, \frac{d_{2}}{\delta}, \frac{k_{2}}{\delta}, \frac{a_{3} Z_{T}}{\delta}, \frac{d_{3}}{\delta}, \frac{k_{3}}{\delta}, \frac{a_{4} M_{T}}{\delta}, \frac{d_{4}}{\delta}, \frac{k_{4}}{\delta}\right\}$	G_{2}	$\max \left\{\frac{k_{\text {on }} p_{T}}{\delta}, \frac{k_{\text {off }}}{\delta}\right\}$
$f_{0}\left(U, R \underline{X}, S_{1} v, t\right)$	$k(t)-\delta\left(X+X^{*}+X^{* *}+C_{1}+C_{2}+C_{3}+C_{4}+p_{T} c\right)$	$s(\underline{X}, v)$	$\frac{1}{G_{2}}\left(k_{\text {on }} X^{* *}(1-c)-k_{\text {off }} c-\delta c\right)$
$\underline{r}\left(U, \underline{X}, S_{2} v\right)$	$\frac{1}{G_{1}}\left[\delta X^{*}, \quad \delta\left(X^{* *}+p_{T} c\right), \quad-a_{1} X\left(Z_{T}-C_{1}-C_{3}\right)+d_{1} C\right.$	δC_{1},	$\left.C_{2}+\delta C_{2}, \quad \delta C_{3}, \quad \delta C_{4}\right]_{6 \times 1}^{T}$
$f_{1}\left(u, \underline{x}, S_{3} v\right)$	$\frac{1}{G_{1}}\left[\begin{array}{c} k_{1} C_{1}-a_{2} X^{*}\left(M_{T}-C_{2}-C_{4}\right)+d_{2} C_{2}-a_{3} X^{*}(\\ k_{3} C_{3}-a_{4} X^{* *}\left(M_{T}-C_{2}-\right. \\ -k_{1} C_{1}, \\ a_{2} X^{*}\left(M_{T}-C_{2}-C_{4}\right)- \\ a_{3} X^{*}\left(Z_{T}-C_{1}-C_{2}\right)-\left(d^{2}\right. \\ a_{4} X^{* *}\left(M_{T}-C_{2}-C_{4}\right)-(\\ \hline \hline \end{array}\right.$	$\begin{aligned} & \Gamma-C_{1}- \\ & +d_{4} C_{4} \\ & d_{2} C_{2}, \\ & \left.+k_{3}\right) C_{3}, \\ & \left.+k_{4}\right) C_{4} \\ & \hline \end{aligned}$	$]_{6 \times 1}$
A	$\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]_{1 \times 6}$	D	1
B	$\left[\begin{array}{cccccc}-1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1\end{array}\right]_{6 \times 6}$	C	$\left[\begin{array}{c}0 \\ -p_{T} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]_{6 \times 1}$
R	$\left.\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]_{1 \times 6}$	S_{1}	p_{T}
S_{2}	p_{T}	S_{3}	0
T	1	M	$\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]_{1 \times 6}$
Q	$\mathbb{I}_{6 \times 6}$	P	$\left[\begin{array}{llllll}0 & p_{T} & 0 & 0 & 0 & 0\end{array}\right]_{6 \times 1}^{T}$

Table 7. System variables, functions and matrices for a double phosphorylation cycle with substrate as input brought to form (1).

$$
\left(B r+f_{1}\right)_{4}=0 \Longrightarrow a_{2} X^{*}\left(M_{T}-C_{2}-C_{4}\right)=\left(d_{2}+k_{2}+\delta\right) C_{2}
$$

Under Assumption 11, $\left(d_{2}+k_{2}\right) \gg \delta$.
Thus, $X^{*} M_{T}-X^{*} C_{4} \approx\left(K_{m 2}+X^{*}\right) C_{2}$.
If $K_{m 2} \gg X^{*}: X^{*} M_{T}-X^{*} C_{4} \approx K_{m 2} C_{2}$.
$\left(B r+f_{1}\right)_{6}=0 \Longrightarrow a_{4} X^{* *}\left(M_{T}-C_{2}-C_{4}\right)=\left(d_{4}+k_{4}+\delta\right) C_{4}$
Under Assumption 11, $\left(d_{4}+k_{4}\right) \gg \delta$.
Thus, $X^{* *} M_{T}-X^{* *} C_{2}=\left(K_{m 4}+X^{* *}\right) C_{4}$.
If $K_{m 4} \gg X^{* *}, X^{* *} M_{T}-X^{* *} C_{2} \approx K_{m 4} C_{4}$.
Simultaneously solving these two expressions, for $K_{m 2} \gg X^{*}$ and $K_{m 4} \gg X^{* *}$:

$$
\begin{aligned}
& C_{2} \approx \frac{X^{*} M_{T}}{K_{m 2}} \\
& c_{4} \approx \frac{X^{* *} M_{T}}{K_{m 4}} \\
& \left(B r+f_{1}\right)_{2}=0 \Longrightarrow-\delta X^{* *}-\delta p_{T} c+k_{3} C_{3}-a_{4} X^{* *}\left(M_{T}-C_{2}-C_{4}\right)+d_{4} C_{4}=0, \\
& \text { using }\left(B r+f_{1}\right)_{6}=0,-\delta X^{* *}-\delta p_{T} c+k_{3} C_{3}-k_{4} c_{4} \approx 0
\end{aligned}
$$

From 113 and 114, $-\delta X^{* *}-\delta p_{T} c+k_{3} X^{*}-k_{4} X^{* *} \approx 0$,

$$
\begin{aligned}
& \text { i.e., } X^{* *} \approx\left(\frac{\frac{k_{3} Z_{T}}{K_{m 3}}}{\delta+\frac{k_{4} M_{T}}{K_{m 4}}}\right) X^{*}-\left(\frac{\delta p_{T}}{\delta+\frac{k_{4} M_{T}}{K_{m 4}}}\right) c \\
& X^{* *} \approx K^{\prime \prime} X^{*}-K_{c}^{\prime} c, \text { where } K^{\prime \prime}=\left(\frac{\frac{k_{3} Z_{T}}{K_{m 3}}}{\delta+\frac{k_{4} M_{T}}{K_{m 4}}}\right), K_{c}^{\prime}=\left(\frac{\delta p_{T}}{\delta+\frac{k_{4} M_{T}}{K_{m 4}}}\right) .
\end{aligned}
$$

$$
\left(B r+f_{1}\right)_{1}=0 \Longrightarrow
$$

$$
-\delta X^{*}+k_{1} C_{1}-a_{2} X^{*}\left(M_{T}-C_{2}-C_{4}\right)+d_{2} C_{2}-a_{3} X^{*}\left(Z_{T}-C_{1}-C_{3}\right)+d_{3} C_{3}+k_{4} C_{4}=0
$$

$$
\operatorname{using}\left(B r+f_{1}\right)_{4}=0 \text { and }\left(B r+f_{1}\right)_{5}=0,-\delta X^{*}+k_{1} C_{1}-k_{2} C_{2}-k_{3} C_{3}+k_{4} C_{4} \approx 0
$$

From (113), 114) and 115, $-\delta X^{*}+k_{1} X-k_{2} X^{*}-k_{3} X^{*}+k_{4}\left(K^{\prime \prime} X-K_{c}^{\prime} c\right) X^{*} \approx 0$,
i.e., $X^{*}=K^{\prime} X-K_{c}^{\prime \prime} c$,

$$
\text { where } K^{\prime}=\left(\frac{\frac{k_{1} Z_{T}}{K_{m 1}}}{\delta+\frac{k_{2} M_{T}}{K_{m 2}}+\frac{k_{3} Z_{T}}{K_{m 3}}-K^{\prime \prime} \frac{k_{4} M_{T}}{K_{m 4}}}\right) \text { and } K_{c}^{\prime \prime}=\left(\frac{K_{c}^{\prime} \frac{k_{4} M_{T}}{K_{m 4}}}{\delta+\frac{k_{2} M_{T}}{K_{m 2}}+\frac{k_{3} Z_{T}}{K_{m 3}}-K^{\prime \prime} \frac{k_{4} M_{T}}{K_{m 4}}}\right)
$$

Thus, from equations (113)-116), for $K^{\prime}, K^{\prime \prime}, K_{c}^{\prime}$ and $K_{c}^{\prime \prime}$ defined in 115 and 116 , we have the function $\underline{\Psi}(U, v)$:

$$
\underline{\Psi} \approx\left[\begin{array}{c}
K^{\prime} X-K_{c}^{\prime \prime} c \\
K^{\prime} K^{\prime \prime} x-\left(K^{\prime \prime} K_{c}^{\prime \prime}+K_{c}^{\prime}\right) c, \\
\frac{X Z_{T}}{K_{m 1}}, \\
\frac{1}{K_{m 2}}\left(G^{\prime} X-G_{c}^{\prime \prime} c\right), \\
\frac{X_{T}}{K_{m 3}}\left(G^{\prime} X-G_{c}^{\prime \prime} c\right), \\
\frac{1}{K_{m 4}}\left(G^{\prime} G^{\prime \prime} X-\left(G^{\prime \prime} G_{c}^{\prime \prime}+G_{c}^{\prime}\right) c\right)
\end{array}\right]_{6 \times 1}
$$

Solving for ϕ by setting $s(\underline{X}, v)=0$, we have:

$$
\begin{aligned}
& k_{\mathrm{on}} X^{* *}(1-c)=k_{\mathrm{off}} c \\
& \text { i.e., } X^{* *}-X^{* *} c=k_{D} c \\
& \text { i.e., } \phi=c=\frac{X^{* *}}{k_{D}+X^{* *}}
\end{aligned}
$$

Here again, we find $\underline{\Gamma}$ from (117) and (118) under Remark 1, and find that it satisfies Assumption 7 We then state without proof the following claims for this system:

Claim 7. For the matrix B and functions r, f_{1} and s defined in Table 7, Assumption 3 is satisfied for this system.
Claim 8. For the functions f_{0} and \underline{r} and matrices R, S_{1} and A defined in Table 7 , and the functions $\underline{\gamma}$ and ϕ as found above, Assumption 9 is satisfied for this system.

For matrices T, Q, M, P defined in Table 7 , we see that Assumption 4 is satisfied. Further, for $\underline{\Psi}$ and ϕ defined by (117) and 418, Assumption 5 and 6 are satisfied. Thus, Theorems 1,2 and 3 can be applied to this system.

Results: (i) Retroactivity to the input: From Table 7 , we see that R and S_{1} cannot be made small. Thus, under Theorem 1, h_{1} and h_{2} cannot be made small, and thus, retroactivity to the input cannot be made small.
(ii) Retroactivity to the output: From Table $7, S_{1}$ and S_{2} cannot be made small. Thus, under Theorem $2, \bar{h}_{1}$ and h_{2} cannot be made small, and thus, retroactivity to the output cannot be made small.
(iii) Input-output relationship: From 117),

$$
\begin{equation*}
Y_{i s}(t) \approx I \underline{\Psi}\left(U_{i s}, 0\right)=K X(t) \tag{119}
\end{equation*}
$$

for $t \in\left[t_{b}, t_{f}\right]$. Thus the input-output relationship has $m=1$ and $K=K^{\prime} K^{\prime \prime}$ as defined in (115), 116), which can be tuned by tuning the total kinase and phosphatase concentrations Z_{T} and M_{T}.

References

1. Chang, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Molecular Targets for Therapy. 2003;doi:10.1038/sj.leu. 2402824.
2. F Christian ELS, Carmody RJ. The Regulation of NF- κ B Subunits by Phosphorylation. Cell. 2016; doi:10.3390/cells5010012.
3. Garcia-Garcia T, Poncet S, Derouiche A, Shi L, Mijakovic I, Noirot-Gros M. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria. Frontiers in Microbiology. 2016;doi:10.3389/fmicb.2016.00184.
4. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell Survival Promoted by the Ras-MAPK Signaling Pathway by Transcription-Dependent and -Independent Mechanisms . Science. 1999;doi:10.1126/science.286.5443.1358.
5. Hardie DG. The AMP-activated protein kinase pathway- new players upstream and downstream. Journal of Cell Science. 2004;doi:10.1242/jcs. 01540.
6. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes \& Development. 2004;doi:10.1101/gad.1212704.
7. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochemical Journal. 2000;doi:http://dx.doi.org/10.1042/bj3510289.
8. Del Vecchio D, Ninfa AJ, Sontag ED. Modular cell biology: retroactivity and insulation. Molecular Systems Biology. 2008;doi:10.1038/msb4100204.
9. Ventura AC, Jiang P, Wassenhove LV, Del Vecchio D, Merajver SD, Ninfa AJ. Signaling properties of a covalent modification cycle are altered by a downstream target. Proc Natl Acad Sci USA.
2010;doi:10.1073/pnas. 0913815107.
10. Jayanthi S, Nilgiriwala K, Del Vecchio D. Retroactivity Controls the Temporal Dynamics of Gene Transcription. ACS Synthetic Biology. 2013;doi:10.1021/sb300098w.
11. Jiang P, Ventura AC, Sontag ED, Merajver SD, Ninfa AJ, Del Vecchio D. Load-Induced Modulation of Signal Transduction Networks. Science Signaling. 2011;doi:10.1126/scisignal.2002152.
12. Kim Y, Paroush Z, Nairz K, Hafen E, Jiménez G, Shvartsman SY. Substrate-dependent control of MAPK phosphorylation in vivo. Molecular Systems Biology. 2011;doi:10.1038/msb.2010.121.
13. Kim Y, Coppey M, Grossman R, Ajuria L, Jiménez G, Paroush Z, et al. MAPK Substrate Competition Integrates Patterning Signals in the Drosophila Embryo. Current Biology. 2010;20(5):446-451. doi:10.1016/j.cub.2010.01.019.
14. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Current Opinion in Cell Biology. 1997;9(2):180 - 186. doi:http://dx.doi.org/10.1016/S0955-0674(97)80061-0.
15. Stock AM, Robinson VL, Goudreau PN. Two-Component Signal Transduction. Annual Review of Biochemistry. 2000;69(1):183-215. doi:10.1146/annurev.biochem.69.1.183.
16. Sherr CJ. Cancer cell cycles. Science. 1996;doi:10.1126/science.274.5293.1672.
17. Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair. 2004;doi:10.1016/j.dnarep.2004.03.006.
18. Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclin-dependent kinase modulators. Journal of the National Cancer Institute. 2000;doi:10.1093/jnci/92.5.376.
19. DiPaola RS. To Arrest or Not To G2-M Cell-Cycle Arrest. Clinical Cancer Research. 2002;8(11):3311-3314.
20. Stadtman ER, Chock PB. Superiority of interconvertible enzyme cascades in metabolic regulation: Analysis of monocyclic systems. Proc Natl Acad Sci USA. 1977;
21. Chock PB, Stadtman ER. Covalently interconvertible enzyme cascade systems. Methods in Enzymology. 1980;doi:10.1016/S0076-6879(80)64014-2.
22. Rhee SG, Park R, Chock PB, Stadtman ER. Allosteric regulation of monocyclic interconvertible enzyme cascade systems: use of Escherichia coli glutamine synthetase as an experimental model. Proceedings of the National Academy of Sciences of the United States of America. 1978;75(7):3138-3142. doi:10.1073/pnas.75.7.3138.
23. Goldbeter A, D Koshland J. An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA. 1981;
24. Goldbeter A, D Koshland J. Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. The Journal of Biological Chemistry. 1984;
25. Huang CF, Ferrell JE. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA. 1996;.
26. Sauro HM, Kholodenko BN. Quantitative analysis of signaling networks. Biophysics and Molecular Biology. 2004;doi:10.1016/j.pbiomolbio.2004.03.002.
27. Kholodenko BN. Cell signaling dynamics in time and space. Nature Reviews Molecular Cell Biology. 2006;doi:10.1038/nrm1838.
28. Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike B, Hoek JB, Kholodenko BN. Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Molecular systems biology. 2007;3(144):144. doi:10.1038/msb4100188.
29. Gomez-Uribe C, Verghese GC, Mirny La. Operating regimes of signaling cycles: Statics, dynamics, and noise filtering. PLoS Computational Biology. 2007;3(12):2487-2497. doi:10.1371/journal.pcbi. 0030246.
30. Mettetal JT, Muzzey D, Gómez-Uribe C, van Oudenaarden A. The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science (New York, NY). 2008;319(5862):482-484. doi:10.1126/science. 1151582.
31. Ventura AC, Sepulchre JA, Merajver SD. A Hidden Feedback in Signaling Cascades Is Revealed. PLOS Computational Biology. 2008;doi:http://dx.doi.org/10.1371/journal.pcbi. 1000041.
32. Jayanthi S, Del Vecchio D. Retroactivity Attenuation in Bio-molecular Systems Based on Timescale Separation. IEEE Transactions on Automatic Control. 2011;doi:10.1109/TAC.2010.2069631.
33. Nilgiriwala K, Jiménez J, Rivera PM, Del Vecchio D. A Synthetic Tunable Amplifying Buffer Circuit in E. coli. ACS Synthetic Biology. 2014;doi:10.1021/sb5002533.
34. Mishra D, Rivera PM, Lin A, Del Vecchio D, Weiss R. A load driver device for engineering modularity in biological networks. Nature Biotechnology. 2014;doi:10.1038/nbt. 3044.
35. Ossareh HR, Ventura AC, Merajver SD, Del Vecchio D. Long Signaling Cascades Tend to Attenuate Retroactivity. Biophysical Journal. 2011;doi:10.1016/j.bpj.2011.02.014.
36. McArthur AJ, Hunt AE, Gillette MU. Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: Activation of protein kinase C at dusk and dawn. Endocrinology. 1997;138(2):627-634. doi:10.1210/en.138.2.627.
37. Schachtman DP, Shin R. Nutrient sensing and signaling: NPKS. Annual review of plant biology. 2007;58:47-69. doi:10.1146/annurev.arplant.58.032806.103750.
38. Golding I, Paulsson J, Zawilski SM, Cox EC. Real-Time Kinetics of Gene Activity in Individual Bacteria. Cell. 2005;doi:http://dx.doi.org/10.1016/j.cell.2005.09.031.
39. Legewie S, Herzel H, Westerhoff HV, Blüthgen N. Recurrent design patterns in the feedback regulation of the mammalian signalling network. Molecular Systems Biology. 2008;4(190):190. doi:10.1038/msb.2008.29.
40. Dekel E, Alon U. Optimality and evolutionary tuning of the expression level of a protein. Nature. 2005;doi:10.1038/nature03842.
41. Karin M. Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Current Opinion in Cell Biology. 1994;6(3):415-424. doi:10.1016/0955-0674(94)90035-3.
42. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nature biotechnology. 2010;28(3):245-248.
43. Markevich NI, Hoek JB, Kholodenko BN. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. Journal of Cell Biology. 2004;164(3):353-359. doi:10.1083/jcb. 200308060.
44. Janiak-Spens F, Cook PF, West AH. Kinetic Analysis of YPD1-Dependent Phosphotransfer Reactions in the Yeast Osmoregulatory Phosphorelay System. Biochemistry. 2005;44(1):377-386. doi:10.1021/bi048433s.
45. Wilkinson M, Millar J. Control of the eukaryotic cell cycle by MAP kinase signaling pathways. The Federation of American Societies for Experimental Biology Journal. 2000;doi:10.1096/fj.00-0102rev.
46. Stewart R. Kinetic Characterization of Phosphotransfer between CheA and CheY in the Bacterial Chemotaxis Signal Transduction Pathway. Biochemistry. 1997;doi:10.1021/bi962261k.
47. Whites MF, Kahn CR. The Insulin Signaling System*. The Journal of Biological Chemistry. 1994;269(1):1-4.
48. Ninfa AJ, Reitzer LJ, Magasanik B. Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers. Cell. 1987;50(7):1039-1046. doi:10.1016/0092-8674(87)90170-X.
49. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell. 1999;96(6):857-868. doi:10.1016/S0092-8674(00)80595-4.
50. Rivera PM, Del Vecchio D. Optimal Design of Phosphorylation-Based Insulation Devices. Proc American Control Conference. 2013;doi:10.1109/ACC.2013.6580416.
51. Hu J, Rho H, Newman RH, Hwang W, Neiswinger J, Zhu H, et al. Global analysis of phosphorylation networks in humans. Biochimica et Biophysica Acta. 2014;doi:10.1016/j.bbapap.2013.03.009.
52. Aittokallio T, Schwikowski B. Graph-based methods for analysing networks in cell biology. Briefings in Bioinformatics. 2006;7(3):243-255. doi:10.1093/bib/bbl022.
53. Kokotovic P, Khalil HK, O'reilly J. Singular perturbation methods in control: analysis and design. vol. 25. Siam; 1999.
54. Lohmiller W, Slotine J. On Contraction Analysis for Non-linear Systems. Automatica. 1998;34(6):683-696. doi:http://dx.doi.org/10.1016/S0005-1098(98)00019-3.
55. Ubersax JA, Jr JEF. Mechanisms of specificity in protein phosphorylation. Nature Reviews Molecular Cell Biology. 2007;doi:10.1038/nrm2203.
56. Adams JA, Taylor SS. Energetic Limits of Phosphotransfer in the Catalytic Subunit of CAMP-Dependent Protein Kinase As Measured by Viscosity Experiments. Biochemistry. 1992;doi:10.1021/bi00151a019.
57. Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, et al. Coordination of Growth Rate, Cell Cycle, Stress Response, and Metabolic Activity in Yeast. Molecular Biology of the Cell. 2008;doi:10.1091/mbc.E07-08-0779.
58. Hargrove MS, Barrick D, Olson JS. The Association Rate Constant for Heme Binding to Globin Is Independent of Protein Structure. Biochemistry. 1996;35(35):11293-11299. doi:10.1021/bi960371l.
59. Estep D. The Mean Value Theorem. Practical Analysis in One Variable. 2002; p. 269-277.

[^0]: ${ }^{1}$ Association, dissociation and catalytic rate constants $\left(a_{i}, d_{i}, k_{i}\right)$ and range of total protein concentrations taken from 35

